1
|
Drozdov AD, deClaville Christiansen J. Structure-property relations in rheology of cellulose nanofibrils-based hydrogels. J Colloid Interface Sci 2025; 678:1-19. [PMID: 39178687 DOI: 10.1016/j.jcis.2024.08.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Hydrogels prepared from self-assembled cellulose nanofibrils (CNFs) are widely used in biomedicine, electronics and environmental technology. Their ability to serve as inks for extrusion-based 3D printing is conventionally evaluated by means of rheological tests. A model is developed that describes the response of CNF gels in small- and large-amplitude oscillatory tests in a unified manner. The model involves a reasonably small number of material parameters, ensures good agreement between results of simulation and observations in oscillatory tests and correctly predicts the stress-strain Lissajous curves, experimental data in hysteresis loop tests, and measurements of the steady-state viscosity. The model is applied to analyze how composition and preparation conditions for CNF gels affect transition from shear thinning to weak strain overshoot in large-amplitude shear oscillatory tests. Based on the model, simple relations are derived for the fractal dimension of CNF clusters and the storage modulus of gels prepared in aqueous solutions of multivalent salts. The validity of these equations is confirmed by comparison of their predictions with observations in independent tests.
Collapse
Affiliation(s)
- A D Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark.
| | - J deClaville Christiansen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg 9220, Denmark
| |
Collapse
|
2
|
Hernández-Varela JD, Gallegos-Cerda SD, Chanona-Pérez JJ, Rojas Candelas LE, Martínez-Mercado E. Comparison of the SMLM technique and the MSSR algorithm in confocal microscopy for super-resolved imaging of cellulose fibres. J Microsc 2024; 296:184-198. [PMID: 38420882 DOI: 10.1111/jmi.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres' microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres' surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.
Collapse
Affiliation(s)
- Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Susana Dianey Gallegos-Cerda
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Liliana Edith Rojas Candelas
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Mexico, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Eduardo Martínez-Mercado
- Departamento de Ingeniería Química Industrial y de Alimentos, Universidad Iberoamericana, Mexico City, Mexico
| |
Collapse
|
3
|
Wang L, Li Y, Ye L, Zhi C, Zhang T, Miao M. Unveiling structure and performance of tea-derived cellulose nanocrystals. Int J Biol Macromol 2024; 270:132117. [PMID: 38718996 DOI: 10.1016/j.ijbiomac.2024.132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
In this study, cellulose was extracted from black tea residues to produce black tea cellulose nanocrystals (BT-CNCs) using an optimized acid hydrolysis method. The structure and performance of BT-CNCs were evaluated. The results showed that the optimal conditions for acidolysis of BT-CNCs included a sulfuric acid concentration of 64 %, a solid-liquid ratio of 1:18 (w/v), a hydrolysis temperature of 45 °C, and a hydrolysis time of 50 min. The optimization process resulted in a 44.8 % increase in the yield of BT-CNCs, which exhibited a crystallinity of 68.57 % and were characterized by the typical cellulose I structure. The diameters of the particles range from 5 to 45 nm, and they exhibit aggregation behavior. Notably, BT-CNCs demonstrated excellent storage stability, and the Tyndall effect occurred when exposed to a single beam of light. Although the thermal stability of BT-CNCs decreased, their primary thermal degradation temperature remained above 200 °C. The colloidal nature of BT-CNCs was identified as a non-Newtonian fluid with "shear thinning" behavior. This study introduces a novel method to convert tea waste into BT-CNCs, increasing the yield of BT-CNCs and enhancing waste utilization. BT-CNCs hold promise for application in reinforced composites, offering substantial industrial value.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yukun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China..
| |
Collapse
|
4
|
Furtado LM, Yee M, Fernandes R, Valera TS, Itri R, Petri DFS. Rheological and mechanical properties of hydroxypropyl methylcellulose-based hydrogels and cryogels controlled by AOT and SDS micelles. J Colloid Interface Sci 2023; 648:604-615. [PMID: 37315482 DOI: 10.1016/j.jcis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
HYPOTHESIS The type and concentration of surfactants affect the rheological behavior of hydroxypropyl methylcellulose (HPMC) chains in hydrogels, influencing the microstructure and mechanical properties of HPMC cryogels. EXPERIMENTS Hydrogels and cryogels containing HPMC, AOT (bis (2-ethylhexyl) sodium sulfosuccinate or dioctyl sulfosuccinate salt sodium, two C8 chains and sulfosuccinate head group), SDS (sodium dodecyl sulfate, one C12 chain and sulfate head group), and sodium sulfate (salt, no hydrophobic chain) at different concentrations were investigated using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), rheological measurements, and compressive tests. FINDINGS SDS micelles bound to the HPMC chains building "bead necklaces", increasing considerably the storage modulus G' values of the hydrogels and the compressive modulus E values of the corresponding cryogels. The dangling SDS micelles promoted multiple junction points among the HPMC chains. AOT micelles and HPMC chains did not form "bead necklaces". Although AOT increased the G' values of the hydrogels, the resulting cryogels were softer than pure HPMC cryogels. The AOT micelles are probably embedded between HPMC chains. The AOT short double chains rendered softness and low friction to the cryogel cell walls. Therefore, this work demonstrated that the structure of the surfactant tail can tune the rheological behavior of HPMC hydrogels and hence the microstructure of the resulting cryogels.
Collapse
Affiliation(s)
- Laíse M Furtado
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Marcio Yee
- Marine Science Department, Federal University of São Paulo, R. Dr. Carvalho de Mendonça, 144, CEP 11070-100, Santos, SP, Brazil.
| | - Rodrigo Fernandes
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Ticiane S Valera
- Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-030, São Paulo, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Denise F S Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
5
|
Structure and rheological properties of silica aerogel/natural rubber latex-based slurries and composites. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Influence of Nanocellulose Structure on Paper Reinforcement. Molecules 2022; 27:molecules27154696. [PMID: 35897873 PMCID: PMC9331812 DOI: 10.3390/molecules27154696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
This article describes how crystalline or fibrous nanocellulose influences the mechanical properties of paper substrate. In this context, we used commercially available cellulose nanocrystals, mechanically prepared cellulose nanofibers dispersed in water or ethanol, and carboxy cellulose nanofibers. Selective reinforcement of the paper treated with the nanocellulose samples mentioned above was observed. The change in the fibre structure was assessed using scanning electron microscopy, roentgenography, and spectroscopy techniques. In addition, the effect of nanocellulose coating on physical properties was evaluated, specifically tensile index, elongation coefficient, Elmendorf tear resistance, Bendtsen surface roughness, Bendtsen air permeability, and bending strength. It can be concluded that the observed decrease in the strength properties of the paper after applying some NC compositions is due to the loss of potential disturbances in hydrogen bonds between the nanocellulose dispersed in ethanol and the paper substrate. On the other hand, significantly increased strength was observed in the case of paper reinforced with nanocellulose functionalized with carboxyl groups.
Collapse
|
7
|
Song HY, Park SY, Kim S, Youn HJ, Hyun K. Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions. Carbohydr Polym 2022; 275:118765. [PMID: 34742451 DOI: 10.1016/j.carbpol.2021.118765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
Linear and nonlinear rheological properties of cellulose nanofiber (CNF) suspensions were measured under small and large amplitude oscillatory shear (SAOS and LAOS) flow. Four different CNFs were produced, two by only mechanical disintegration and two with chemical pretreatments. Linear viscoelastic properties distinguished chemically treated CNFs from two untreated fibers via a different scaling exponent of the elastic modulus. However, different mechanical fibrillation degree was not characterized via linear viscoelastic properties. In contrast, nonlinear viscoelastic properties reflected both effects of chemical pretreatments and mechanical fibrillation. More fibrillated CNFs exhibited nonlinear rheological phenomena at larger deformations. In addition, chemically treated CNFs exhibited greater network stiffness and higher network recovery rates due to the presence of charged functional groups on the fiber surfaces. A material-property co-plot showed that network stiffness and recovery rate were in a trade-off relationship.
Collapse
Affiliation(s)
- Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Shin Young Park
- Department of Forest Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunhyung Kim
- Platform Technology, Corporate R&D, LG Chem. Ltd., Gwacheon-si, Gyeonggi-do 13818, Republic of Korea
| | - Hye Jung Youn
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu Hyun
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; School of Applied Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Intrinsic kink deformation in nanocellulose. Carbohydr Polym 2021; 273:118578. [PMID: 34560982 DOI: 10.1016/j.carbpol.2021.118578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Sharp bends can be widely observed in isolated cellulose nanofibrils (CNFs) after mechanical treatment, referred to as kink dislocations that are previously found in wood cell walls under compression. The non-Gaussian distribution of kink angle implies some inherent deformation behaviors of cellulose nanocrystals (CNCs) hidden in the formation of kink dislocations in CNFs. We herein perform molecular dynamics simulations to investigate the kink deformation of nanocellulose. It is interesting to find an intrinsic deformation mode of Iβ CNCs under uniaxial compression, in which the metastable structure of kinked CNCs turns out to be the triclinic Iα phase with twin boundaries originated from interlayer dislocation-induced allomorphic transition. An intrinsic kink angle (~60°) is defined based on geometric traits of stable kinked CNCs. Moreover, the weakened intrachain hydrogen bonds in twin boundaries lead to exposed glycosidic bonds and damaged hydrogen-bonding networks, which would act as the origin of kink defects in nanocellulose.
Collapse
|
9
|
Qu R, Wang Y, Li D, Wang L. The study of rheological properties and microstructure of carboxylated nanocellulose as influenced by level of carboxylation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 2021; 274:118660. [PMID: 34702479 DOI: 10.1016/j.carbpol.2021.118660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
In this work, the effects of calcium chloride (CaCl2) concentration on the creep-recovery, linear and nonlinear rheological behavior of nanocellulose gels had been investigated to quantify gel properties. The absolute zeta potential of nanocellulose gels were decreased as the CaCl2 concentration increased, which was related to the electrostatic repulsion that origin from carboxyl group could be effectively screened with increasing CaCl2 concentration. Rheological measurements further confirmed this result for nanocellulose gels, which revealed that the increased modulus and viscoelastic properties were obtained in the presence of CaCl2. The rheological properties of nanocellulose gels were showed to depend on CaCl2 concentration. The enhanced gel network structure was related to the Ca2+ ions that promoted crosslink between nanocellulose by salt bridge. This work highlighted the potential of using electrostatic complexation between nanocellulose and Ca2+ ions to form gels, and demonstrated the tunability of the rheological behavior by adjusting the concentration of CaCl2.
Collapse
|
11
|
Hu Y, Hu S, Zhang S, Dong S, Hu J, Kang L, Yang X. A double-layer hydrogel based on alginate-carboxymethyl cellulose and synthetic polymer as sustained drug delivery system. Sci Rep 2021; 11:9142. [PMID: 33911150 PMCID: PMC8080826 DOI: 10.1038/s41598-021-88503-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
A new double-layer, pH-sensitive, composite hydrogel sustained-release system based on polysaccharides and synthetic polymers with combined functions of different inner/outer hydrogels was prepared. The polysaccharides inner core based on sodium alginate (SA) and carboxymethyl cellulose (CMC), was formed by physical crosslinking with pH-sensitive property. The synthetic polymer out-layer with enhanced stability was introduced by chemical crosslinking to eliminate the expansion of inner core and the diffusion of inner content. The physicochemical structure of the double-layer hydrogels was characterized. The drug-release results demonstrated that the sustained-release effect of the hydrogels for different model drugs could be regulated by changing the composition or thickness of the hydrogel layer. The significant sustained-release effect for BSA and indomethacin indicated that the bilayer hydrogel can be developed into a novel sustained delivery system for bioactive substance or drugs with potential applications in drugs and functional foods.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China. .,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Sheng Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Siyi Dong
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China. .,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
12
|
TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydr Polym 2021; 255:117386. [PMID: 33436215 DOI: 10.1016/j.carbpol.2020.117386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/17/2023]
Abstract
Cellulose and TEMPO-oxidized cellulose fibers (TOCF) from the wheat straw were prepared with ultrasonic and chemical treatments to investigate structure and functionalities. Sol-gel transition of TOCF suspensions has been investigated using rheology to unveil the roles of ultrasonic pretreatment and temperature at various concentration. It was found that TOCF extracted with or without ultrasonic pretreatment exhibit similar functional groups in FTIR. However, different crystal structures and thermal stabilities were revealed in XRD and TGA, respectively. The gelation was independent of the ultrasonic pretreatment, while the rheological properties were highly infuenced by the concentration and temperature of the TOCF suspensions. TOCF suspensions presented a strain thinning behavior in large amplitude oscillatory shear tests. Lissajous curves showed that the elastoplastic behavior was predominantly modulated by the fiber concentration and strain amplitude other than the ultrasonic pretreatment. These results could improve the understanding of the relationships between TOCF structure and rheological properties.
Collapse
|
13
|
Fneich F, Ville J, Seantier B, Aubry T. Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology. Carbohydr Polym 2021; 253:117233. [PMID: 33278990 DOI: 10.1016/j.carbpol.2020.117233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Foams were prepared from nanocellulose-based hydrogel precursors using a freeze-drying process. The work mainly aims at investigating the relationships between the mechanical and thermal properties of foams and the rheological properties of their hydrogel precursors, which were characterized in a previous paper. The structure of foams was characterized by SEM and confocal microscopy, their elasticity by compression tests, and their thermal conductivity by hot strip as well as transient pulsed techniques. A strong correlation was shown between the elastic properties of foams and those of their hydrogel precursors, and a minimum thermal conductivity was shown to appear at a cellulose volume fraction corresponding to a transition in viscoelastic properties of hydrogels. Results suggest that foams and hydrogels share common microstructural features, which makes it possible to tune the mechanical and thermal properties of foams by tuning the rheological properties of their hydrogel precursors.
Collapse
Affiliation(s)
- Fatima Fneich
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Julien Ville
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Bastien Seantier
- IRDL UMR CNRS 6027, Université de Bretagne Sud, Centre de Recherche C. Huygens, rue de Saint-Maudé, BP 92116, 56321 Lorient Cedex, France
| | - Thierry Aubry
- IRDL UMR CNRS 6027, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6, Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France.
| |
Collapse
|
14
|
Zhang S, Kang L, Hu S, Hu J, Fu Y, Hu Y, Yang X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 167:1598-1612. [PMID: 33220374 DOI: 10.1016/j.ijbiomac.2020.11.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
A major drawback of oral treatment of inflammatory bowel disease (IBD) is the non-specific distribution of drugs during long-term treatment. Despite its effectiveness as an anti-inflammatory drug, curcumin (CUR) is limited by its low bioavailability in IBD treatment. Herein, a pH-sensitive composite hyaluronic acid/gelatin (HA/GE) hydrogel drug delivery system containing carboxymethyl chitosan (CC) microspheres loaded with CUR was fabricated for IBD treatment. The composition and structure of the composite system were optimized and the physicochemical properties were characterized using infrared spectroscopy, X-ray diffraction, swelling, and release behavior studies. In vitro, the formulation exhibited good sustained release property and the drug release rate was 65% for 50 h. In vivo pharmacokinetic experiments indicated that high level of CUR was maintained in the colon tissue for more than 24 h; it also played an anti-inflammatory role by evaluating the histopathological changes through hematoxylin and eosin (H&E), myeloperoxidase (MPO), and immunofluorescent staining. Additionally, the formulation substantially inhibited the level of the main pro-inflammatory cytokines of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secreted by macrophages, compared to the control group. The pharmacodynamic experiment showed that the formulation group of CUR@gels had the best therapeutic effect on colitis in mice. The composite gel delivery system has potential for the effective delivery of CUR in the treatment of colitis. This study also provides a reference for the design and preparation of a new oral drug delivery system with controlled release behavior.
Collapse
Affiliation(s)
- Shangwen Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Sheng Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanping Fu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
15
|
Calabrese V, da Silva MA, Porcar L, Bryant SJ, Hossain KMZ, Scott JL, Edler KJ. Filler size effect in an attractive fibrillated network: a structural and rheological perspective. SOFT MATTER 2020; 16:3303-3310. [PMID: 32173723 DOI: 10.1039/c9sm02175b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of the filler size on the structural and mechanical properties of an attractive fibrillated network composed of oxidised cellulose nanofibrils (OCNF) in water was investigated. Silica nanoparticles with a diameter of ca. 5 nm (SiNp5) and and ca. 158 nm (SiNp158) were chosen as non-interacting fillers of the OCNF network. These filler sizes were chosen, respectively, to have a particle size which was either similar to that of the network mesh size or much larger than it. Contrast matched small angle neutron scattering (SANS) experiments revealed that the presence of the fillers (SiNp5 and SiNp158) did not perturb the structural properties of the OCNF network at the nanometer scale. However, the filler size difference strongly affected the mechanical properties of the hydrogel upon large amplitude oscillatory shear. The presence of the smaller filler, SiNp5, preserved the mechanical properties of the hydrogels, while the larger filler, SiNp158, allowed a smoother breakage of the network and low network recoverability after breakage. This study showed that the filler-to-mesh size ratio, for non-interacting fillers, is pivotal for tailoring the non-linear mechanical properties of the gel, such as yielding and flow.
Collapse
Affiliation(s)
- Vincenzo Calabrese
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Marcelo A da Silva
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
| | - Saffron J Bryant
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | - Janet L Scott
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
16
|
Hosseini H, Zirakjou A, Goodarzi V, Mousavi SM, Khonakdar HA, Zamanlui S. Lightweight aerogels based on bacterial cellulose/silver nanoparticles/polyaniline with tuning morphology of polyaniline and application in soft tissue engineering. Int J Biol Macromol 2020; 152:57-67. [PMID: 32057868 DOI: 10.1016/j.ijbiomac.2020.02.095] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Herein, polyaniline (PANI) with tuning morphology was in-situ synthesized within bacterial cellulose (BC)/silver nanoparticles hydrogels (AgNPs) that were prepared by green hydrothermal reduction method in different molarity of 0.01 and 0.25 of HCl solution along with the presence of polyethylene glycol (PEG). The synthesis of PANI in the presence of PEG in 0.01 M HCl led to the formation of rose-like morphology within nanocomposite aerogels with a size of 1.5-5.2 μm. All aerogels had the porosity and shrinkage of higher than 80% and lower than 10%, respectively. Rheology results showed a higher value of storage modulus (G') than that of loss modulus (G″) for all samples over the whole frequency regime. It confirmed by the loss factor (tan δ) value of less than 1 for all hydrogel samples. The synthesis of PANI within BC/Ag in 0.25 M of HCl solution resulted in a substantial rise of G' to nearly 1.5 × 104 Pa that was one order of magnitude higher than that of other hydrogels. However, the synthesis condition of PANI did not influence the antibacterial activity. In spite of unfavorable cell attachment onto nanocomposite aerogels, the cell proliferation increased steadily over the whole period of incubation.
Collapse
Affiliation(s)
- Hadi Hosseini
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Abbas Zirakjou
- Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran; Leibniz Institute of Polymer Research, D-01067 Dresden, Germany
| | - Soheila Zamanlui
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185-768, Tehran, Iran; Stem cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, P.O. Box 13185-768, Tehran, Iran
| |
Collapse
|
17
|
Jiang Y, De La Cruz JA, Ding L, Wang B, Feng X, Mao Z, Xu H, Sui X. Rheology of regenerated cellulose suspension and influence of sodium alginate. Int J Biol Macromol 2020; 148:811-816. [PMID: 31962069 DOI: 10.1016/j.ijbiomac.2020.01.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/06/2023]
Abstract
Cellulosic colloidal suspensions present unique opportunities for rheological modification of complex fluids. In this work, the rheological behavior of regenerated cellulose (RC) suspensions, including their oscillating shear and time-dependent behavior, as well as yield stress, were studied. The rheological effects of sodium alginate's addition to aqueous RC solutions subject to shear flow were investigated. The results reveal that the RC suspension exhibited "gel-like" behavior and had a shear-thinning property. At increasing RC concentrations, the suspensions' yield stress and the extent of viscosity recovery after plastic deformation had both increased. The viscoelastic suspensions underwent a transition from "solid-like" to "liquid-like" behavior upon sodium alginate's inclusion. Sodium alginate was found to enhance RC suspensions' viscosity recoverability. Furthermore, with increasing concentrations of sodium alginate, the yield stress of RC suspension began to decrease and then vanished, occurring below the 1:1 RC: sodium alginate weight ratio with total solid content fixed at 1 wt%, due to RC's inability to form an extended network RC. This study yields insights into the rheology of RC suspensions and the influence of sodium alginate and supports both their usage as rheological modifies in applications such as coatings, drug delivery systems, and additive manufacturing techniques such as 3D printing.
Collapse
Affiliation(s)
- Yang Jiang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Joshua A De La Cruz
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, United States of America
| | - Lei Ding
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of Donghua University, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|