1
|
Zheng L, Chen X, Kang N, Sun Z, Ding X, Xi C. Effects of whey protein isolate-dextran glycosylation conjugate and different oils on the dispersion and in vitro digestibility of β-carotene emulsions. Int J Biol Macromol 2025; 305:141200. [PMID: 39965695 DOI: 10.1016/j.ijbiomac.2025.141200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
β-carotene is a lipophilic substance with excellent antioxidant activity, but its bioactivity in the gastrointestinal tract is easily destroyed. Glycosylation can improve the emulsifying activity of Whey protein isolate(WPI). In this study, the effects of different oil phases(corn oil, coconut oil, soybean oil) and WPI-dextran(WPI-D) on the stability and digestion efficiency of emulsions loaded with β-carotene were investigated. The glycosylation of WPI with dextran was confirmed by SDS-PAGE and Atomic Force Microscope(AFM). The results of contact angle and surface tension experiments demonstrate that the interfacial properties of WPI-D particles are enhanced, allowing them to adsorb better at the oil-water interface, thereby improving the stability of the emulsion. The in vitro digestion results indicate that different oil phases and glycosylation have effects on the digestion rate of the emulsions and the bioaccessibility of β-carotene. The enhanced steric effect of WPI-D allows for the regulation of the release rate of free fatty acids (FFA). Coconut oil, rich in medium-chain fatty acids, is easily broken down and absorbed during digestion. The release rate of free fatty acids (FFA) is relatively high. This study provides a theoretical basis for controlling the release rate of bioactive substances through the regulation of oil phases and glycosylation.
Collapse
Affiliation(s)
- Liyuan Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xing Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Naixin Kang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Zhengwei Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuan Ding
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Chunyu Xi
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Shen F, Wu H, Liu Y, Wang T, Wu Z. Fermented insoluble fiber enhances the emulsifying property and bioaccessibility of essential oil emulsion with its whey protein isolate conjugates and chitosan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40290072 DOI: 10.1002/jsfa.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Using polysaccharide-protein conjugates to deliver essential oil has garnered widespread attention in the food industry. In this study, conjugates between insoluble dietary fibers (IDF) from Chenpi pomace and whey protein isolate (WPI) were first improved by fermentation, and then dual-layer Pickering emulsions were prepared by the conjugates and chitosan (CS) using layer-by-layer self-assembly technology and used for Chenpi essential oil (CEO) delivery. RESULTS Fermentation was found to enhance the Maillard reaction between IDF and WPI, and the emulsion controlled the release of CEO. Fermented IDF (FIDF) bound more WPI and the grafting degree increased by 54.1%, compared to the original IDF, due to the augmentation of FIDF specific surface area and the exposure of glucose, mannose, and galacturonic acid terminals. Furthermore, FIDF-WPI conjugates exhibited high thermal stability, hydrophobicity, and emulsifying properties, and the CEO-loaded dual-layer emulsions demonstrated uniform droplet size, strong storage stability, and excellent antioxidant activity. This effectively controlled the release of CEO and protected eight CEO components in gastrointestinal digestion, resulting in an increase of 167% in the bioaccessibility of CEO. These results can be attributed to the formation of a compact interfacial film composed of dense hydrophobic FIDF-WPI conjugates around the CEO droplets, the isolating effect of the improved three-dimensional structure formed by the FIDF-WPI-CS complexes, and the electrostatic repulsion between the emulsion droplets. CONCLUSION Fermentation can enhance the delivery of CEO in emulsions prepared with IDF-WPI conjugates and CS, and these findings contribute to the development of related functional foods. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Shen
- School of Future Technology, South China University of Technology, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hancong Wu
- School of Future Technology, South China University of Technology, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| | - Ying Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingyu Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen), Institute of Biological Engineering and Health, Jiangmen, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen), Institute of Biological Engineering and Health, Jiangmen, China
| |
Collapse
|
3
|
Feng X, Tan X, Li L, Liu C, Teng F, Li Y. Utilizing carboxymethyl cellulose to assist soy protein isolate in the formation of emulsion to deliver β-carotene: Exploring the correlation between interfacial behavior and emulsion stability. Int J Biol Macromol 2025; 303:140650. [PMID: 39909239 DOI: 10.1016/j.ijbiomac.2025.140650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
This study investigated the effects of carboxymethyl cellulose (CMC) adsorption on the interfacial properties of soy protein isolate (SPI) and its correlation with emulsion stability. The findings revealed that SPI-CMC emulsions exhibited reduced zeta potential and particle size compared with SPI emulsion alone. Molecular docking analysis suggested that the enhanced stability of SPI-CMC emulsions was primarily due to hydrogen bonding and electrostatic interactions between SPI and CMC. Notably, the encapsulation efficiency of β-carotene in SPI-CMC emulsions increased by 47.74 % at pH 4.0 with 0.4 % CMC and by 39.55 % at pH 5.0 with 0.5 % CMC compared to SPI emulsion. Stability analyses demonstrated that at pH 4.0, the SPI-CMC interfacial layer formed by hydrogen bonding and electrostatic interactions effectively protected β-carotene from external degradation factors. At pH 5.0, steric hindrance facilitated the formation of a SPI-CMC network structure, increasing the path length for oxidants to reach the oil droplet interface. These distinct binding mechanisms in SPI-CMC emulsions effectively prolonged oil droplet digestion and regulated the release of free fatty acids. The resulting emulsion exhibited slow and sustained lipid release and digestion kinetics, making it a suitable model for designing sustained-release nutritional supplements.
Collapse
Affiliation(s)
- Xumei Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chunjie Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Lan Y, He Y, Chen X, Jiang S, Wang Z, Li S, Hui T, Li S, Fang Z, Chen H. Thermal processing and in vitro digestion of n-3 pork: Effects on the oxidative and digestive properties of proteins and lipids. Food Chem 2025; 468:142472. [PMID: 39700795 DOI: 10.1016/j.foodchem.2024.142472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
This study assessed the oxidation of proteins and lipids, as well as the digestive properties of six different sources of n-3 pork, after treatment with four thermal processing methods (sous vide (SV), steaming (ST), boiling (BO), and frying (FR)) and in vitro digestion. Results showed antioxidant (selenium) was associated with reduced oxidation of n-3 pork during processing and digestion. SV significantly reduced the oxidation of pork proteins and lipids and the loss of polyunsaturated fatty acids (PUFAs) compared with other processing methods. After in vitro digestion, SV caused n-3 pork to exhibit higher protein and lipid digestibility, increasing the bioaccessibility of α-linolenic acid (ALA) (81.04 %), eicosapentaenoic acid (EPA) (78.16 %), and docosahexaenoic acid (DHA) (77.28 %). Therefore, selenium addition was beneficial for improving the oxidative stability of pork, and SV can minimize nutrient losses during the processing and digestion of pork and improve the bioavailability of n-3 PUFAs.
Collapse
Affiliation(s)
- Yong Lan
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuyang He
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiyuan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Sha Jiang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhuo Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
5
|
Upadhyay S, Sharanagat VS. Plant protein-based Pickering emulsion for the encapsulation and delivery of fat-soluble vitamins: A systematic review. Int J Biol Macromol 2025:141635. [PMID: 40037448 DOI: 10.1016/j.ijbiomac.2025.141635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability). PE stabilized by solid plant protein particles, have emerged as a promising approach for encapsulation and delivery of oil-soluble vitamins (A, D, E, and K). Plant proteins, with their amphiphilic nature and nutritional benefits, are particularly well-suited as a stabilizer for PE. Plant protein-based PE enhances protection of vitamins against the environmental stimuli and enhances the delivery efficiency of oil-soluble vitamins. Factors such as particle size, concentration, and oil type also influence the stability, encapsulation efficiency, and bio-accessibility of fat-soluble vitamins in PE. Hence, the present review explores the impact of various factors on the stability and bio-accessibility of fat-soluble vitamins (A, D and E) and also emphasizing the role of particle size and concentration of stabilizer in controlling release rates of vitamin encapsulated PE. The review also highlights the application of plant protein-based PEs in various food products including nutrient fortification, functional foods, and 3D food printing.
Collapse
Affiliation(s)
- Srishti Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | | |
Collapse
|
6
|
Xu J, Ji F, Liu H, Luo S, Jiang S, Yu Z, Zheng Z. Fabrication, characterization and gastrointestinal fate of curcumin-loaded emulsions stabilized by soy protein-based ternary composite nanoparticles. Food Chem 2025; 464:141886. [PMID: 39522383 DOI: 10.1016/j.foodchem.2024.141886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
To design a novel emulsifier capable of enhancing the bioavailability of curcumin (Cur)-loaded emulsions in the gastrointestinal tract, soy protein-based ternary composite nanoparticles (SEPn) were fabricated by transacylation reaction. The results showed that SEPn was formed by the covalent binding of the carboxyl groups in PGA to the amino groups in SEC through multiple forces. SEPn-1:1 was determined to be the optimal condition for preparing Cur-loaded emulsions. Additionally, SEPn-1:1 had superior emulsifying capacity as formed plastic-state emulsion gel with φ as low as 0.5. Moreover, the rise in oil content promoted the development of gel, thus increasing the apparent viscosity, gel strength, and stability of Cur-loaded emulsions. Furthermore, SEPn-1:1 emulsion exhibited excellent gastric stability and higher free fatty acid (FAA) release rates in the small intestine phase compared with that of SECcon (SEC control sample) and Mixture emulsion, thus leading to the highest bioavailability of Cur (28.57 ± 1.91 %).
Collapse
Affiliation(s)
- Jingjing Xu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Fuyun Ji
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Huihui Liu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Shaotong Jiang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China
| | - Zhenyu Yu
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
7
|
Qi X, Lv X, Pan W, Shen M, Chen Y, Yu Q, Xie J. Antioxidant amyloid fibril derived from rice protein hydrolysate as stabilizer towards preparing high-stable emulsion. Food Chem 2024; 460:140745. [PMID: 39126945 DOI: 10.1016/j.foodchem.2024.140745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
An antioxidant amyloid fibril was prepared as an emulsifier by fibrillating limited enzymatic hydrolysis-modified rice protein (HRP). The purpose of this study was to investigate the feasibility of using fibrillated HRP to stabilize oil-in-water emulsion. A free radical scavenging assay revealed that the antioxidant activity of fibrillated HRP was 2.09 times higher than that of native rice protein. Fibrillated HRP demonstrated a marked reduction in interfacial tension, increased surface hydrophobicity and contact angle (> 80°), and rapid adsorption to the interface, with 35.34 ± 2.43% interfacial adsorbed protein content. The fibrillated HRP barriers resisted environment stresses such as NaCl, pH variations, long-term storage, while reducing lipid oxidation degree. Additionally, fibrillated HRP-based emulsion was more effective in protecting β-carotene from degradation compared to other samples. These findings provide theoretical support for the development of rice protein-based antioxidant emulsifiers and modification of emulsifying properties of plant proteins.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyu Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Zhao M, Wu X, Tan H, Wu W. Protein oxidation affected the encapsulation properties of rice bran protein fibril-high internal phase pickering emulsions: Enhanced stability and bioaccessibility of β-carotene. Food Res Int 2024; 192:114779. [PMID: 39147467 DOI: 10.1016/j.foodres.2024.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with β-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Tian Y, Zhao X, Wang Z, Zhang W, Jiang Z. Structural characteristics and stability analysis of coconut oil body and its application for loading β-carotene. Food Chem 2024; 446:138818. [PMID: 38417282 DOI: 10.1016/j.foodchem.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
In this work, we investigated structural characteristics and stability analysis of the coconut oil body (COB) and its application for loading β-carotene (β-CA). The COB contained neutral lipids (81.1 ± 2.1 %), membrane proteins (0.6 ± 0.0 %), and moistures (18.3 ± 3.2 %), in which the molecular weights of membrane proteins ranged from 12 kDa to 40 kDa, as analyzed by the SDS-PAGE. The COB exhibited a small droplet diameter (5.1 ± 0.3 µm) with a monomodal diameter distribution, as reflected by the dynamic light scattering. The COB showed stable states at alkaline pH values (pH 8-10) and instability against ionic strengths (50-200 mmol/L) and thermal treatment (30-90℃) after analyzing the instability indexes. COB-based emulsions were favorable for the loading and retention of β-CA, as reflected by free fatty acids release rates and bioaccessibility in the simulated gastrointestinal digestion. This study will contribute to using the coconut oil bodies for loading bioactive nutraceuticals to enhance their bioaccessibility.
Collapse
Affiliation(s)
- Yan Tian
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Xinxin Zhao
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhiguo Wang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| | - Zhiguo Jiang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
10
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
11
|
Zhang L. Emulsions delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:173-197. [PMID: 39218502 DOI: 10.1016/bs.afnr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many functional substances are chemically unstable and exhibit variable water/oil solubility, reducing their bioavailability and efficacy. It is necessary to devise effective measures to improve the unfavorable properties of functional substances and maximize their potential benefits in nutritional interventions. Therefore, the development and application of edible emulsion-based delivery systems for these functional substances using food-grade materials would be highly beneficial for the food industry. In recent years, Pickering emulsions have garnered significant attention in the scientific community due to their characteristic of being free from surfactants. This section focuses on emphasizing the design and preparation of emulsion delivery systems based on functional substances. Additionally, we summarize the current applications of emulsion delivery systems in functional substances. This chapter also discusses the potential advantages of Pickering emulsion systems in the precise nutrition field, including high targeting specificity and nutritional intervention for various diseases. Well-designed Pickering emulsion delivery carriers for functional substances can enhance their stability in food processing and in vivo digestion. To meet the nutritional needs of specific populations for functional foods, utilizing emulsion delivery systems to improve the bioavailability of functional substances will provide a theoretical basis for the precise nutrition of functional substances in functional foods.
Collapse
|
12
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Liu Y, Jing L, Cui J, Yuan D, Wang C. Preparation of Edible Colorant Lake Using Calcium Carbonate and β-Carotene: Structural Characterization and Formation Mechanism Study. Foods 2024; 13:1050. [PMID: 38611355 PMCID: PMC11011828 DOI: 10.3390/foods13071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This study prepared a novel β-carotene colorant lake using calcium carbonate (CaCO3) and investigated the lake formation process and its basic characteristics. Kinetic adsorption analysis confirmed that medium pH (9.3) and medium temperature (40 °C) were more suitable for lake preparation, while desorption occurred, possibly due to crystalline transformation of CaCO3. The isothermal analysis and model fitting results suggested that the β-carotene and CaCO3 particles combined via a monolayer adsorption process driven by physical force. Electrostatic attraction likely participated in the process due to the net negative surface charges of β-carotene dispersion and positively charged groups on the CaCO3 particle surfaces. Ethanol, ultrasonic treatment, and drying method significantly influenced the immobilization efficiency (IE) of β-carotene in the lake and light stability of the lake, without affecting its crystal form. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves confirmed absorption of β-carotene onto CaCO3. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated no obvious chemical bonds between β-carotene and CaCO3. Energy-dispersive spectroscopy (EDS) confirmed the presence of β-carotene on surfaces but not in the interior of the CaCO3 particles. The adsorption of β-carotene by calcium carbonate was further confirmed to be a physical adsorption on surface.
Collapse
Affiliation(s)
- Yuhan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (L.J.); (J.C.); (C.W.)
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Le Jing
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (L.J.); (J.C.); (C.W.)
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaqi Cui
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (L.J.); (J.C.); (C.W.)
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (L.J.); (J.C.); (C.W.)
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.L.); (L.J.); (J.C.); (C.W.)
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Wang G, Li J, Yan X, Meng Y, Zhang Y, Chang X, Cai J, Liu S, Ding W. Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran. Polymers (Basel) 2024; 16:868. [PMID: 38611126 PMCID: PMC11013494 DOI: 10.3390/polym16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
To investigate the optimal delivery system of quercetin, in this paper, cellulose nanocrystals (CNCs) extracted from rice bran were used to stabilize the Pickering emulsion and Pickering emulsion gels (PEGs) with quercetin. To compare the emulsion properties, stability, antioxidation activity, encapsulation rate, and bioaccessibility of the quercetin, four emulsions of CNC Pickering emulsion (C), CNC Pickering emulsion with quercetin (CQ), CNC Pickering gel emulsion (CG), and CNC Pickering gel emulsions with quercetin (CQG) were prepared. All four emulsions exhibited elastic gel network structure and good stability. The quercetin significantly reduced the particle size, increased the stability, and improved the antioxidant capacity of CQ and CQG. Compared to C and CG, the ABTS+ radical scavenging capacities of CQ and CQG were respectively enhanced by 46.92% and 3.59%. In addition, CQG had a higher encapsulation rate at 94.57% and higher bioaccessibility (16.17) compared to CQ. This study not only indicated that CNC from rice bran could be exploited as an excellent stabilization particle for Pickering emulsions, but also provided a highly stable and bioaccessible delivery system for water-insoluble functional active factors.
Collapse
Affiliation(s)
- Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Jin Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Xiaoqin Yan
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Yanpeng Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Xianhui Chang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| |
Collapse
|
15
|
Jiang Z, Luo H, Huangfu Y, Gao Y, Zhang M, Bao Y, Ma W. High internal phase emulsions stabilized by whey protein covalently modified with carboxymethyl cellulose: Enhanced environmental stability, storage stability and bioaccessibility. Food Chem 2024; 436:137634. [PMID: 37847963 DOI: 10.1016/j.foodchem.2023.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
In this work, the effects of whey protein-carboxymethyl cellulose (WP-CMC) conjugates on the environmental stability, in vitro digestion stability, storage stability and bioaccessibility of high internal phase emulsions (HIPEs) were investigated. Compared to the HIPEs stabilized by the mixture of WP and CMC, the HIPEs stabilized by WP-CMC were less sensitive to environmental changes by particle size and zeta-potential, and showed better stability and bioavailability of pine nut oil as well as β-carotene during simulated gastrointestinal digestion. In addition, the inclusion function and pine nut oil oxidative stability of the HIPEs stabilized by WP-CMC were better during 16 days of storage than those of the pine nut oil and HIPEs stabilized by the mixture of WP and CMC, and also expressed higher storage stability of β-carotene. These results suggested that the conjugate-stabilized emulsions developed in this study have potential applications as protectors and carriers of liposoluble active ingredients.
Collapse
Affiliation(s)
- Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yunpeng Huangfu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Meiqi Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
16
|
Zhong L, Hu Q, Zhan Q, Zhao M, Zhao L. Oat protein isolate- Pleurotus ostreatus β-glucan conjugate nanoparticles bound to β-carotene effectively alleviate immunosuppression by regulating gut microbiota. Food Funct 2024; 15:1867-1883. [PMID: 38236028 DOI: 10.1039/d3fo05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Individuals with immune disorders cannot establish an adequate defense to pathogens, leading to gut microbiota dysbiosis. β-Carotene can regulate immune response, but its bioavailability in vivo is very low. Herein, we developed a glycosylated oat protein-based nanoparticle to improve the application of β-carotene for mitigating cyclophosphamide-induced immunosuppression and gut microbiota imbalance in mice. The results showed that the nanoparticles facilitated a conversion of β-carotene to retinol or retinyl palmitate into the systemic circulation, leading to an increased bioavailability of β-carotene. The encapsulated β-carotene bolstered humoral immunity by elevating immunoglobulin levels, augmenting splenic T lymphocyte subpopulations, and increasing splenic cytokine concentrations in immunosuppressed mice. This effect was accompanied by the alleviation of pathological features observed in the spleen. In addition, the encapsulated β-carotene restored the abnormal gut microbiota associated with immunosuppression, including Erysipelotrichaceae, Akkermansia, Bifidobacterium and Roseburia. This study suggested that nanoparticles loaded with β-carotene have great potential for therapeutic intervention in human immune disorders by specifically targeting the gut microbiota.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P.R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
17
|
Liu Z, Wang H, Bu Y, Wu T, Chen X, Yan H, Lin Q. Fabrication of self-assembled micelles based on amphiphilic oxidized sodium alginate grafted oleoamine derivatives via Schiff base reduction amination reaction for delivery of hydrophobic food active ingredients. Int J Biol Macromol 2024; 257:128653. [PMID: 38072345 DOI: 10.1016/j.ijbiomac.2023.128653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The application of hydrophobic β-carotene in the food industry are limited due to its susceptibility to light, high temperature, pH value, and other factors, leading to poor stability and low bioavailability. To address this problem, we adopt a more green and environmentally friendly reducing agent, 2-methylpyridine borane complex (pic-BH3), instead of traditional sodium borohydride, to achieve the simple green and efficient synthesis of amphiphilic oxidized sodium alginate grafted oleoamine derivatives (OSAOLA) through the reduction amination reaction of Schiff base. The resultant OSAOLA with the degree of substitution (DS) of 7.2 %, 23.6 %, and 38.8 % were synthesized, and their CMC values ranged from 0.0095 to 0.062 mg/mL, indicating excellent self-assembly capability in aqueous solution. Meanwhile, OSAOLA showed no obvious cytotoxicity to RAW 264.7 cells, thus revealing good biocompatibility. Furthermore, β-carotene, as the hydrophobic active ingredients in foods was successfully encapsulated in the OSAOLA micelles by ultrasonic-dialysis method. The prepared drug-loaded OSAOLA micelles could maintain good stability when stored at room temperature for 7 d. Additionally, they were able to continuously release β-carotene and exert long-term effects in pH 7.4 PBS at 37 °C, effectively improving the bioavailability of β-carotene, which exhibited tremendous application potential in functional food and biomedical fields.
Collapse
Affiliation(s)
- Zhaowen Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
18
|
Fu DW, Fu JJ, Xu H, Shao ZW, Zhou DY, Zhu BW, Song L. Glycation-induced enhancement of yeast cell protein for improved stability and curcumin delivery in Pickering high internal phase emulsions. Int J Biol Macromol 2024; 257:128652. [PMID: 38065454 DOI: 10.1016/j.ijbiomac.2023.128652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| | - Hang Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co. Ltd., Qingdao, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China.
| |
Collapse
|
19
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
20
|
Liang Q, Zhou C, Rehman A, Qayum A, Liu Y, Ren X. Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 101:106687. [PMID: 37976566 PMCID: PMC10692874 DOI: 10.1016/j.ultsonch.2023.106687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Multi-frequency power ultrasound was applied as an environmentally friendly technique to control the nanoparticles (LS/XG-NPs) embedded with lotus root starch/xanthan gum, with the aim of enhancing the stability of Pickering emulsions. The present investigation was centered on evaluating the impact of ultrasound technology on various aspects of the emulsions, encompassing their mean particle size, particle size distribution, zeta potential, microstructure, rheological characteristics, and environmental stability. The findings of this study indicate that ultrasonic treatment enhanced the adsorption of LS/XG-NP onto oil droplets surface, resulting in a reduction in their size. Additionally, ultrasonic treatment decreased the viscosity and Brownian motion rate of the emulsion stabilized by LS/XG-NP, leading to increased fluidity. Furthermore, the emulsion's thermal stability and resistance to environmental oxidation were significantly enhanced through ultrasonic treatment. The Pickering emulsions that were prepared using ultrasound demonstrated excellent resistance to acid, alkali (pH 2-8) and salt ions (50-300 mM NaCl) for a period of 30 days during storage. It was worth anticipating that ultrasound-assisted LS/XG-NPs could efficiently retard the volatilization of fishy odor components within fish oil. Taken together, the present research has evinced the efficacy of ultrasound in enhancing the stability of Pickering emulsions coated with LS/XG-NPs. These findings offer significant novel insights into the advancement of ultrasound-assisted Pickering emulsions that are stabilized with starch-based or biopolymeric materials.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
21
|
Luo M, Yuan Q, Liu M, Song X, Xu Y, Zhang T, Zeng X, Wu Z, Pan D, Guo Y. Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier. Food Funct 2023; 14:9567-9579. [PMID: 37800998 DOI: 10.1039/d3fo03331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
Collapse
Affiliation(s)
- Mengfan Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Qiaoyue Yuan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Xingye Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yingjie Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
22
|
Zhou Q, Wang J, Li H, Wu X, Wu W. Effect of protein oxidation on the emulsion carrier prepared by rice bran protein for improving stability and bioavailability of β-carotene. Food Res Int 2023; 172:113166. [PMID: 37689915 DOI: 10.1016/j.foodres.2023.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
The emulsion carriers which prepared by rice bran protein (RBP) with different oxidation extents were utilized to deliver β-carotene (BC). The effects of RBP oxidation extent on stability and bioaccessibility of BC in rice bran protein emulsion (RBPE) were investigated by measuring the droplet size, microstructure, digestive stability, cellular antioxidant, and delivery property of BC-RBPE. The results showed that BC-RBPE prepared by moderately oxidized RBP (extracted from rice bran with a storage time of 5 d) presented excellent digestive stability and delivery property during gastrointestinal digestion. The particle size of initial BC-RBPE, BC-RBPE after gastric digestion, and BC-RBPE after intestinal digestion were 509.73, 2149.33, and 997.82 nm, respectively. Compared with free BC suspension, the BC retention after gastric digestion and the BC bioavailability of BC-RBPE prepared by moderately oxidized RBP increased by 23.50% and 27.54%, respectively. In addition, the BC cellular antioxidant activity and BC cellular uptake of BC-RBPE prepared by moderately oxidized RBP were significantly higher than that of free BC-suspension, which increased by 29.63% and 13.84%, respectively. In summary, the study showed that oil-in-water emulsion prepared by moderately oxidized protein is a potential delivery system of BC, which can provide a theoretical basis for improving the utilization of protein by adjusting the extent of protein oxidation.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Jianqiang Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Helin Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; National Engineering Research Center of Rice and Byproduct Deep Processing Changsha, Hunan 410004, China.
| |
Collapse
|
23
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
24
|
Cui L, Jia Q, Zhao J, Hou D, Zhou S. A comprehensive review on oat milk: from oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct 2023. [PMID: 37317702 DOI: 10.1039/d3fo00893b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant-based milk alternatives have become increasingly desirable due to their sustainability and the increased consumer awareness of health. Among many varieties of emerging plant-based milk, the smooth texture and flavor of oat milk make it spread rapidly around the world. Furthermore, as a sustainable source of diet, oats can provide rich nutrients and phytochemicals. Issues on the stability, sensory properties, shelf life, and nutritional quality of oat milk have been highlighted in published studies. In this review, the processing techniques, quality improvement, and product features of oat milk are elaborated, and the potential applications of oat milk are summarized. Besides, the challenges and future perspectives of oat milk production in the future are discussed.
Collapse
Affiliation(s)
- Lulu Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qiuju Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Jiani Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
25
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
26
|
Tang W, Zhang Q, Ritzoulis C, Walayat N, Ding Y, Liu J. Food protein glycation: A review focusing on stability and in vitro digestive characteristics of oil/water emulsions. Compr Rev Food Sci Food Saf 2023; 22:1986-2016. [PMID: 36939688 DOI: 10.1111/1541-4337.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
Recently, increasing studies have shown that the functional properties of proteins, including emulsifying properties, antioxidant properties, solubility, and thermal stability, can be improved through glycation reaction under controlled reaction conditions. The use of glycated proteins to stabilize hydrophobic active substances and to explore the gastrointestinal fate of the stabilized hydrophobic substances has also become the hot spot. Therefore, in this review, the effects of glycation on the structure and function of food proteins and the physical stability and oxidative stability of protein-stabilized oil/water emulsions were comprehensively summarized and discussed. Also, this review sheds lights on the in vitro digestion characteristics and edible safety of emulsion stabilized by glycated protein. It can further serve as a research basis for understanding the role of structural features in the emulsification and stabilization of glycated proteins, as well as their utilization as emulsifiers in the food industry.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Qingchun Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
27
|
Bu G, Zhao C, Wang M, Yu Z, Yang H, Zhu T. The development and properties of nanoemulsions stabilized with glycated soybean protein for carrying β-carotene. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Cheng J, Shen S, Yang H, Tang D, Wang X, Lin Y, Liu X. Improved physicochemical stability and bioaccessibility of astaxanthin-loaded oil-in-water emulsions by a casein-caffeic acid-glucose ternary conjugate. Food Res Int 2023; 163:112153. [PMID: 36596104 DOI: 10.1016/j.foodres.2022.112153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, the influence of casein-caffeic acid-glucose ternary conjugate (CSC) on the physicochemical properties and bioaccessibility of astaxanthin-loaded emulsion was investigated and compared with sodium caseinate (CSN), a synthetic emulsifier commonly used in the food industry. The CSC-stabilized emulsion exhibits droplet characteristics similar to CSN-stabilized emulsion, and can effectively resist the external forces that lead to the phase separation of the emulsion. Although phase separation also occurred at pH 4.0, CSC emulsion had a wider range of pH stability (pH 3.0, 5.0-8.0) and higher salt ion stability than CSN emulsion. Furthermore, CSC-stabilized astaxanthin emulsions showed better astaxanthin protection under different heat treatment conditions and storage temperatures compared with CSN. After 28 days of storage at 4 °C, astaxanthin residues in the CSC-stabilized emulsion reached 92.37 %. The bioaccessibility of astaxanthin in CSC-stabilized emulsion was 26.21 %, much higher than that in CSN (6.47 %). This research study provides a platform for designing astaxanthin-fortified food or beverage systems to achieve better stability and delivery to target sites.
Collapse
Affiliation(s)
- Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
29
|
Structure and functional properties of whey protein conjugated with carboxymethyl cellulose through maillard reaction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Li M, Sun Y, McClements DJ, Yao X, Ma C, Liu X, Liu F. Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Du X, Hu M, Liu G, Yan S, Qi B, Zhang S, Huang Y, Li Y, Chen H, Zhu X. Development of high-internal-phase emulsions stabilized by soy protein isolate-dextran complex for the delivery of quercetin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6273-6284. [PMID: 35510347 DOI: 10.1002/jsfa.11976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Protein-polysaccharide complexes have been widely used to stabilize high-internal-phase emulsion (HIPEs). However, it is still unknown whether soy protein isolate-dextran (SPI-Dex) complexes can stabilize HIPEs or what is the effect of Dex concentration on the HIPEs. Furthermore, the non-covalent interaction mechanism between SPI and Dex is also unclear. Therefore, we fabricated SPI-Dex complexes and used them to stabilize HIPEs-loaded quercetin and explore the interaction mechanism between SPI and Dex, as well as the effect of Dex concentration on the particle size, ζ-potential, microstructure, rheology, quercetin encapsulation efficiency, and gastrointestinal fate of the HIPEs. RESULTS Spectral analysis (fourier transform infrared spectroscopy, ultraviolet spectroscopy, and fluorescence spectroscopy) results identified the formation of SPI-Dex complexes, and indicated that the addition of Dex changed the spatial structure of SPI, whereas thermodynamic analysis (ΔH > 0, ΔS > 0) showed that hydrophobic interactions were the main driving forces in the formation of SPI-Dex complexes. Compared with HIPEs stabilized by SPI, the SPI-Dex complex-stabilized HIPEs had smaller particles (3000.33 ± 201.22 nm), as well as higher ζ-potential (-21.73 ± 1.10 mV), apparent viscosities, modulus, and quercetin encapsulation efficiency (98.19 ± 0.14%). In addition, in vitro digestion revealed that SPI-Dex complex-stabilized HIPEs significantly reduced the release of free fatty acid and improved quercetin bioaccessibility. CONCLUSION HIPEs stabilized by SPI-Dex complexes delayed the release of free fat acid and improved the bioaccessibility of quercetin, and may be help in designing delivery systems for bioactive substances with specific properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Hao Chen
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Xiuqing Zhu
- College of Food Science, Northeast Agricultural University, Harbin, China
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
32
|
Ke Y, Geng C, Lin L, Zhao M, Rao H. Pectin-type polysaccharide from galangal: An efficient emulsifier to construct the emulsion-based delivery system for galangal flavonoids. Int J Biol Macromol 2022; 221:644-652. [PMID: 36099993 DOI: 10.1016/j.ijbiomac.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Galangal is rich in flavonoids and polysaccharides but underutilized. In this study, galangal flavonoids and polysaccharides (GP-HN and GP-UN) were obtained by segmented extraction, used for chemical composition determination/structural characterization, and constructed for the emulsion delivery system. The results showed that galangin accounted for 71.45 % of total flavonoids. GP-HN and GP-UN were prepared by enzymatic-assisted high-temperature and ultrasonic extraction, which were low-molecular-weight pectin-type polysaccharides mainly constructed by galacturonic acid, galactose, and arabinose. GP-UN was the best emulsifier due to interfacial activities, emulsifying properties, interfacial resistance to bile salts displacement abilities, and anti-lipid digestion abilities of GPs. GP-UN emulsion could stably deliver flavonoids. This study presented a method for orderly reorganizing flavonoids and polysaccharides, guiding for utilization of whole bioactive components in galangal.
Collapse
Affiliation(s)
- Yu Ke
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Chunyang Geng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Huishan Rao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641, China
| |
Collapse
|
33
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
In Vitro Digestion and Storage Stability of β-Carotene-Loaded Nanoemulsion Stabilized by Soy Protein Isolate (SPI)-Citrus Pectin (CP) Complex/Conjugate Prepared with Ultrasound. Foods 2022; 11:foods11162410. [PMID: 36010417 PMCID: PMC9407190 DOI: 10.3390/foods11162410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we employed the ultrasound-prepared electrostatic complex and covalent conjugate of soy protein isolate (SPI) and citrus pectin (CP) to prepare β-carotene-loaded nanoemulsions. The in vitro digestion and storage stability of nanoemulsions stabilized by different types of emulsifiers were investigated and compared. Nanoemulsions stabilized by ultrasound-treated complex/conjugate showed the highest encapsulation efficiency; during gastric digestion, these nanoemulsions also demonstrated the smallest droplet sizes and the highest absolute values of zeta potential, indicating that both electrostatic complexation/covalent conjugation and ultrasound treatment could significantly improve the stability of the resulting nanoemulsions. In comparison, complexes were more beneficial for the controlled release of β-carotene; however, the conjugate-stabilized nanoemulsion showed an overall higher bioaccessibility. The results were also confirmed by optical micrographs. Furthermore, nanoemulsions stabilized by ultrasound-prepared complexes/conjugates exhibited the highest stability during 14-day storage at 25 °C. The results suggested that ultrasound-prepared SPI–CP complexes and conjugates had great application potential for the delivery of hydrophobic nutrients.
Collapse
|
35
|
Huang Z, Zeng YJ, Wu XL, Li MF, Zong MH, Lou WY. Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chem 2022; 397:133764. [PMID: 35905621 DOI: 10.1016/j.foodchem.2022.133764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
In this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na+), thermal treatments (50-90 °C) and pH values (3.0-11.0). MSC-PC also exhibited an outstanding inhibition capacity on lipid oxidation. Besides, MSC-PC stabilized emulsion had a better protective effect on β-carotene than other systems. Interestingly, in spite of similar lipolysis extent, β-carotene bioaccessibility in MSC-PC fabricated emulsion (14.75 %) was markedly higher than that in commercial Tween 80 fabricated emulsion (10.08 %), likely due to the steric-hindrance effect and antioxidant ability of MSC-PC, building interfacial layers that prevented β-carotene from degradation. This work supplied a deep insight into elucidating the mechanisms of emulsifying performance and β-carotene protection effect of MSC-PC fabricated emulsion.
Collapse
Affiliation(s)
- Zhi Huang
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Ying-Jie Zeng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Meng-Fan Li
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
36
|
Li M, Liu Y, Zhao J, Yu R, Altaf Hussain M, Qayum A, Jiang Z, Qu B. Glycosylated whey protein isolate enhances digestion behaviors and stabilities of conjugated linoleic acid oil in water emulsions. Food Chem 2022; 383:132402. [DOI: 10.1016/j.foodchem.2022.132402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
37
|
Fu J, Fu D, Zhang G, Sun C, Tang Y, Shao Z, Xu X, Song L. Fabrication, physicochemical stability and gastrointestinal fate of curcumin‐loaded nanoemulsions stabilized by bovine serum albumin‐glucose conjugates with different degree of glycation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing‐jing Fu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Dong‐wen Fu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Guang‐yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Cong Sun
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Zhen‐wen Shao
- Qingdao Seawit Life Science Co., Ltd. Qingdao 370200 PR China
| | - Xian‐bing Xu
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
- National Engineering Research Center of Seafood No. 1 Qinggongyuan, Ganjingzi District Dalian 116034 P. R. China
| |
Collapse
|
38
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
39
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
40
|
Li S, Liu Y, Qin W, Zhang Q, Chen D, Lin D, Liu S, Huang Z, Chen H. Physicochemical stability and in vitro bioaccessibility of β-carotene emulsions stabilized with arabinoxylan hydrolysates-soy protein isolate conjugates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
42
|
Du X, Hu M, Liu G, Qi B, Zhou S, Lu K, Xie F, Zhu X, Li Y. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Liu G, Hu M, Du X, Yan S, Liao Y, Zhang S, Qi B, Li Y. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Zheng Y, Chang Y, Luo B, Teng H, Chen L. Molecular structure modification of ovalbumin through controlled glycosylation with dextran for its emulsibility improvement. Int J Biol Macromol 2022; 194:1-8. [PMID: 34826451 DOI: 10.1016/j.ijbiomac.2021.11.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Ovalbumin (OVA) is a high nutritious protein, but the poor emulsibility limited its application. The present study glycosylated OVA with dextran (Dex) by controlled wetheating (60-90 °C for 3 h). Temperature was an inductive factor for glycosylation degree (DG and browning intensity), and higher temperature could accelerate the reaction. Variations in molecular structure of OVA were analyzed by SDS-PAGE, FTIR, fluorescence spectroscopy and UV spectroscopy, which verified successes in the generation of glycoconjugate with more flexible structure. Emulsifying activity index (EAI) and emulsion stability index (ESI) for the emulsion of OVA-Dex glycoconjugates were significantly enhanced with the increasing of glycosylation temperature. Moreover, confocal laser scanning results revealed that the emulsion exhibited smaller size and more uniform distribution, and slower transmission profiles were checked by LUMiSizer centrifugal analysis as well, confirming the emulsibility improvement of OVA. Thus, controlled glycosylation reaction is an available method to improve the emulsifying properties of OVA.
Collapse
Affiliation(s)
- Yimei Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Biying Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
45
|
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021; 27:60. [PMID: 35011292 PMCID: PMC8746547 DOI: 10.3390/molecules27010060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.
Collapse
Affiliation(s)
- Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, Brazil
| |
Collapse
|
46
|
Zhan F, Tang X, Sobhy R, Li B, Chen Y. Structural and rheology properties of pea protein isolate‐stabilised emulsion gel: Effect of crosslinking with transglutaminase. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuchao Zhan
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| | - Xiaomin Tang
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
| | - Remah Sobhy
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Department of Biochemistry Faculty of Agriculture Benha University Moshtohor Egypt
| | - Bin Li
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| | - Yijie Chen
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University) Ministry of Education Wuhan China
| |
Collapse
|
47
|
Yu JJ, Zhang YF, Yan J, Li SH, Chen Y. A novel glycoprotein emulsion using high-denatured peanut protein and sesbania gum via cold plasma for encapsulation of β-carotene. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Ding J, Dong Y, Huang G, Zhang Y, Jiang L, Sui X. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food Funct 2021; 12:10875-10886. [PMID: 34622257 DOI: 10.1039/d1fo01462e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural soy oleosomes are known to have a remarkable stability, given the advantage of their sophisticated membrane. The aim of the present study is to examine the concept of fabricating a β-carotene emulsion stabilized by soy oleosin (OLE) and lecithin (LEC) mixtures mimicking the membrane composition of soy oleosomes while providing preferable stability and bioaccessibility. For this, the fabricated emulsion was characterized in terms of droplet size distribution, and emulsion structure, stability and digestion (release and absorption of lipophilic β-carotene). Compared to SPI/LEC (10 : 1) stabilized emulsions, the OLE/LEC (10 : 1) mixture stabilized emulsion exhibited the highest emulsifying activity index (EAI) and emulsifying stability index (ESI) values, and higher encapsulation efficiency. Results show that the β-carotene emulsion stabilized by OLE and LEC mixtures at the ratio of 10 : 1 (w/w) has the most uniform droplet distribution and highest stability. The in vitro gastrointestinal digestion test revealed that the β-carotene emulsion stabilized by OLE and LEC mixtures was digested more rapidly than the emulsion stabilized by soy protein isolate (SPI) and LEC mixtures. In turn, the bioaccessibility and cellular uptake of β-carotene were enhanced, resulting in a higher absorption, a desirable feature of nutrition delivery systems. Our results demonstrated a promising way to fabricate emulsions mimicking natural soy oleosomes.
Collapse
Affiliation(s)
- Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Liao Y, Hu Y, Fu N, Hu J, Xiong H, Chen XD, Zhao Q. Maillard conjugates of whey protein isolate-xylooligosaccharides for the microencapsulation of Lactobacillus rhamnosus: protective effects and stability during spray drying, storage and gastrointestinal digestion. Food Funct 2021; 12:4034-4045. [PMID: 33977935 DOI: 10.1039/d0fo03439h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Maillard reaction products (MRPs) of whey protein isolate (WPI) and xylooligosaccharides (XOS) were prepared by a moist heat method for use as protectants to encapsulate Lactobacillus rhamnosus via spray drying. The protective effects of MRPs on bacterial cells during drying, storage, and in vitro digestion were explored. FTIR results indicated that MRPs were successfully prepared. All MRPs showed good thermo-protective effect on the bacteria, and the survival ratio achieved with 1 : 2 XOS-WPI as a wall material reached 99.83 ± 8.44%, which was around 2 times as high as that of the WPI wall material and 1.5 times as high as that of the 1 : 2 XOS-WPI mixture. The dried lactobacilli showed similar growth curves to the fresh culture. After 10 weeks of storage at 4 °C, the decrease in the bacterial activity was less than 1 log CFU g-1 for all types of microcapsules, while the microcapsules composed of all MRPs had better storage stability. MRPs improved the stability of microcapsules during in vitro digestion. The number of viable bacteria in 1 : 2 XOS-WPI MRPs microcapsules was maintained at 4.09 ± 0.59 × 109 CFU g-1 after simulated gastrointestinal digestion for 4 hours, which only decreased by 0.20 log CFU g-1.
Collapse
Affiliation(s)
- Yang Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Yu Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Nan Fu
- China-Australia Joint Research Center of Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Juwu Hu
- Jiangxi Academy of Sciences, Jiangxi 330029, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Xiao Dong Chen
- China-Australia Joint Research Center of Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
50
|
In vitro digestion and cellular antioxidant activity of β-carotene-loaded emulsion stabilized by soy protein isolate-Pleurotus eryngii polysaccharide conjugates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106340] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|