1
|
El Bouchtaoui FZ, Ablouh EH, Mouhib S, Kassem I, Kadmiri I, Hanani Z, El Achaby M. Hydrophobic Nanostructured Coatings of Colloidal Lignin Particles Reduce Nutrient Leaching and Enhance Wheat Agronomic Performance and Nutritional Quality. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12578-12596. [PMID: 39961040 DOI: 10.1021/acsami.4c19243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Traditional farming practices are increasingly being replaced with more sustainable approaches, including the development of slow-release fertilizers (SRFs), to mitigate environmental stress and ensure food security for the ever-growing global population. Despite the rising focus on eco-friendly materials like biopolymers for fertilizer coatings, optimizing their hydrophobicity remains a significant challenge. In this context, nanotechnology offers a promising route toward achieving hydrophobicity and sustainability. In this study, hydrophobic colloidal lignin particles (20-50 nm) were synthesized using a straightforward acid precipitation method involving the coprecipitation of lignin (LGe) and sodium dodecyl sulfate (SDS). This strategy aimed to reduce particle size, enhance stability, and increase hydrophobicity by incorporating the nonpolar SDS alkyl chains onto the surface of the nanomicelles. TEM and STEM microscopy confirmed the formation of core-shell hybrid micelles, which were incorporated into a cross-linked carboxymethyl cellulose (CMC) matrix at various ratios to produce a series of waterborne coating formulations and films. The spherical morphology and new surface features, along with their integration into an interpenetrating cross-linked network, led to the formation of nanostructured coating films with good hydrophobicity (WCA ∼ 106.1°) and slow biodegradability in soil. When applied to diammonium phosphate (DAP) granular fertilizer, the coatings revealed good interfacial adhesion, enhanced hardness (2.5-fold), and improved water-holding capacity in soil (18%). Most importantly, a 100 day nutrient leaching study revealed an impressive nutrient-release longevity, showing a 75% reduction in N-P leaching. Subsequently, these SRFs were evaluated in a 6 month wheat (Triticum aestivum)) cultivation trial across different soil textures, demonstrating substantial enhancements in leaf area (150-200%), total root length (160%), biomass production (575%), grain yield (115-264%), and quality-related parameters. These findings highlight a robust solution for addressing nutrient deficiencies and promoting sustainable agricultural practices, especially for crops with extended growth cycles, while inspiring novel nanostructured coatings for broader applications.
Collapse
Affiliation(s)
- Fatima-Zahra El Bouchtaoui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Salma Mouhib
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Ihsane Kassem
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Iliass Kadmiri
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg 67000, France
| | - Zouhair Hanani
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660─Hay Moulay Rachid, Benguerir 43150, Morocco
| |
Collapse
|
2
|
Chen L, Zhang D, Yang F, Shi X, Jiang X, Hao T, Zhang Q, Hu Y, Wang S, Guo Z. Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel. Anal Chim Acta 2025; 1336:343516. [PMID: 39788670 DOI: 10.1016/j.aca.2024.343516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application. This study aims to overcome these limitations by developing a label-free magnetic relaxation switch (MRS) biosensor for the detection of VP, utilizing a photocleavable sol-gel phase transition system for improved efficiency and accuracy. RESULTS In this work, a tag-free magnetic relaxation switch (MRS) biosensor was designed for the detection of Vibrio parahaemolyticus (VP), based on a photocleavable sol-gel phase transition system. A large amount of lithium acyl hypophosphite (LAP), gold nanoparticles (AuNPs), and single-stranded DNA (ssDNA) loaded on the surface of Ti3C2Tx MXene acted as the signal unit LAP-MXene@AuNPs-ssDNA. The pipette tip served as a reaction vessel, and when VP was present, Apt specifically captured VP and released the signal units. The released signal units were then injected into the low-field nuclear magnetic resonance (LF-NMR) test solution, a gel formed by crosslinking of disulfide bonds. The gel was cleaved by LAPs on the signal units under ultraviolet (UV) irradiation, triggering a gel-sol phase transition, which increased transverse relaxation time (T2), thus enabling the detection of VP. Under the optimal experimental conditions, the linear range and detection limit for VP were 102 ∼ 108 CFU/mL and 10 CFU/mL, respectively. SIGNIFICANCE AND NOVELTY The simplified biometric identification process in the pipette tip reduces errors from multiple sample transfers, enhancing efficiency. The use of photocleavable hydrogel for signal output eliminates issues associated with magnetic material aggregation, significantly improving detection precision. The assay is of good selectivity, stability reproducibility, and convenience, having a broad application prospect in the rapid detection of pathogenic bacteria in the field.
Collapse
Affiliation(s)
- Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Fan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Xiaohua Jiang
- School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen, 518055, PR China.
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Qingqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65754-65778. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
4
|
Sathiya K, Ganesamoorthi S, Mohan S, Shanmugavadivu A, Selvamurugan N. Natural polymers-based surface engineering of bone scaffolds - A review. Int J Biol Macromol 2024; 282:136840. [PMID: 39461639 DOI: 10.1016/j.ijbiomac.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Collapse
Affiliation(s)
- K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
5
|
Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging. Acta Biomater 2023; 171:440-450. [PMID: 37775077 DOI: 10.1016/j.actbio.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
The engineering of nanoparticles impacts the control of their nano-bio interactions at each level of the delivery pathway. Therefore, optimal nanoparticle physicochemical properties should be identified to favour on-target interactions and deliver efficiently active compounds to a specific target. To date, traditional batch processes do not guarantee the reproducibility of results and low polydispersity index of the nanostructures, while microfluidics has emerged as cost effectiveness, short-production time approach to control the nanoparticle size and size distribution. Several thermodynamic processes have been implemented in microfluidics, such as nanoprecipitation, ionotropic gelation, self-assembly, etc., to produce nanoparticles in a continuous mode and high throughput way. In this work, we show how the Artificial Neural Network (ANN) can be adopted to model the impact of microfluidic parameters (namely, flow rates and polymer concentrations) on the size of the nanoparticles. Promising results have been obtained, with the highest model accuracy reaching 98.9 %, thus confirming the proposed approach's potential applicability for an ANN-guided biopolymer nanoparticle design for biomedical applications. Nanostructures with different degrees of complexity are analysed, and a proof-of-concept machine learning approach is proposed to evaluate Hydrodenticity in biopolymer matrices. STATEMENT OF SIGNIFICANCE: Size, shape and surface charge determine nano-bio interactions of nanoparticles and their ability to target diseases. The ideal nanoparticle design avoids off-target interactions and favours on-target interactions. So, tools enabling the identification of the optimal nanoparticle physicochemical properties for delivery to a specific target are required. In this work, we evaluate the use of Artificial Neural Network (ANN) to analyse the role of microfluidic parameters in predicting the optimal size of the different hydrogel nanoparticles and their ability to trigger Hydrodenticity.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| |
Collapse
|
6
|
Smeraldo A, Ponsiglione AM, Soricelli A, Netti PA, Torino E. Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: A Systematic Review. Int J Nanomedicine 2022; 17:3343-3359. [PMID: 35937076 PMCID: PMC9346926 DOI: 10.2147/ijn.s362192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
The recent advancements in hybrid positron emission tomography–magnetic resonance imaging systems (PET/MRI) have brought massive value in the investigation of disease processes, in the development of novel treatments, in the monitoring of both therapy response and disease progression, and, not least, in the introduction of new multidisciplinary molecular imaging approaches. While offering potential advantages over PET/CT, the hybrid PET/MRI proved to improve both the image quality and lesion detectability. In particular, it showed to be an effective tool for the study of metabolic information about lesions and pathological conditions affecting the brain, from a better tumor characterization to the analysis of metabolic brain networks. Based on the PRISMA guidelines, this work presents a systematic review on PET/MRI in basic research and clinical differential diagnosis on brain oncology and neurodegenerative disorders. The analysis includes literature works and clinical case studies, with a specific focus on the use of PET tracers and MRI contrast agents, which are usually employed to perform hybrid PET/MRI studies of brain tumors. A systematic literature search for original diagnostic studies is performed using PubMed/MEDLINE, Scopus and Web of Science. Patients, study, and imaging characteristics were extracted from the selected articles. The analysis included acquired data pooling, heterogeneity testing, sensitivity analyses, used tracers, and reported patient outcomes. Our analysis shows that, while PET/MRI for the brain is a promising diagnostic method for early diagnosis, staging and recurrence in patients with brain diseases, a better definition of the role of tracers and imaging agents in both clinical and preclinical hybrid PET/MRI applications is needed and further efforts should be devoted to the standardization of the contrast imaging protocols, also considering the emerging agents and multimodal probes.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
| | - Andrea Soricelli
- Department of Motor Sciences and Healthiness, University of Naples “Parthenope”, Naples, 80133, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
- Correspondence: Enza Torino, Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, Naples, 80125, Italy, Tel +39-328-955-8158, Email
| |
Collapse
|
7
|
Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines 2021; 9:1551. [PMID: 34829780 PMCID: PMC8614968 DOI: 10.3390/biomedicines9111551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is emerging as a promising tool to control physicochemical properties of nanoparticles and to accelerate clinical translation. Indeed, microfluidic-based techniques offer more advantages in nanomedicine over batch processes, allowing fine-tuning of process parameters. In particular, the use of microfluidics to produce nanoparticles has paved the way for the development of nano-scaled structures for improved detection and treatment of several diseases. Here, ionotropic gelation is implemented in a custom-designed microfluidic chip to produce different nanoarchitectures based on chitosan-hyaluronic acid polymers. The selected biomaterials provide biocompatibility, biodegradability and non-toxic properties to the formulation, making it promising for nanomedicine applications. Furthermore, results show that morphological structures can be tuned through microfluidics by controlling the flow rates. Aside from the nanostructures, the ability to encapsulate gadolinium contrast agent for magnetic resonance imaging and a dye for optical imaging is demonstrated. In conclusion, the polymer nanoparticles here designed revealed the dual capability of enhancing the relaxometric properties of gadolinium by attaining Hydrodenticity and serving as a promising nanocarrier for multimodal imaging applications.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
8
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
9
|
Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA, Torino E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers (Basel) 2021; 13:cancers13030503. [PMID: 33525655 PMCID: PMC7865309 DOI: 10.3390/cancers13030503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive malignant brain tumor with poor patient prognosis. The presence of the blood-brain barrier and the complex tumor microenvironment impair the efficient accumulation of drugs and contrast agents, causing late diagnosis, inefficient treatment and monitoring. Functionalized theranostic nanoparticles are a valuable tool to modulate biodistribution of active agents, promoting their active delivery and selective accumulation for an earlier diagnosis and effective treatment, and provide simultaneous therapy and imaging for improved evaluation of treatment efficacy. In this work, we developed angiopep-2 functionalized crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and irinotecan (Thera-ANG-cHANPs) that were shown to boost relaxometric properties of Gd-DTPA by the effect of Hydrodenticity, improve the uptake of nanoparticles by the exploitation of angiopep-2 improved transport properties, and accelerate the therapeutic effect of Irinotecan. Abstract Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopep-2 (Thera-ANG-cHANPs), a dual-targeting peptide interacting with low density lipoprotein receptor related protein-1(LRP-1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptide-mediated uptake of Thera-cHANPs in U87 and GS-102 cells. Moreover, Thera-ANG-cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
| | - Giorgia Zambito
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Joost Haeck
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Laura Mezzanotte
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, 80125 Naples, Italy
- Correspondence:
| |
Collapse
|
10
|
Ponsiglione AM, Russo M, Torino E. Glycosaminoglycans and Contrast Agents: The Role of Hyaluronic Acid as MRI Contrast Enhancer. Biomolecules 2020; 10:biom10121612. [PMID: 33260661 PMCID: PMC7759866 DOI: 10.3390/biom10121612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
A comprehensive understanding of the behaviour of Glycosaminoglycans (GAGs) combined with imaging or therapeutic agents can be a key factor for the rational design of drug delivery and diagnostic systems. In this work, physical and thermodynamic phenomena arising from the complex interplay between GAGs and contrast agents for Magnetic Resonance Imaging (MRI) have been explored. Being an excellent candidate for drug delivery and diagnostic systems, Hyaluronic acid (HA) (0.1 to 0.7%w/v) has been chosen as a GAG model, and Gd-DTPA (0.01 to 0.2 mM) as a relevant MRI contrast agent. HA samples crosslinked with divinyl sulfone (DVS) have also been investigated. Water Diffusion and Isothermal Titration Calorimetry studies demonstrated that the interaction between HA and Gd-DTPA can form hydrogen bonds and coordinate water molecules, which plays a leading role in determining both the polymer conformation and the relaxometric properties of the contrast agent. This interaction can be modulated by changing the GAG/contrast agent molar ratio and by acting on the organization of the polymer network. The fine control over the combination of GAGs and imaging agents could represent an enormous advantage in formulating novel multifunctional diagnostic probes paving the way for precision nanomedicine tools.
Collapse
Affiliation(s)
- Alfonso Maria Ponsiglione
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Maria Russo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-328-955-8158
| |
Collapse
|
11
|
Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr Polym 2020; 245:116457. [PMID: 32718599 DOI: 10.1016/j.carbpol.2020.116457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.
Collapse
|