1
|
Delaporte A, Paraskevopoulou A, Grisel M, Gore E. Animal-free coacervates: The combination of fungal chitosan-gum Arabic for the encapsulation of lipophilic compounds. Int J Biol Macromol 2025; 299:140003. [PMID: 39842567 DOI: 10.1016/j.ijbiomac.2025.140003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
In this study, fungal chitosan (FC) and gum Arabic (GA) were combined to develop non-animal complex coacervates for encapsulation. Optimal coacervate formation occurred at pH 5 with a 1:4 (FC:GA) weight ratio. Innovative complementary approaches, including rheology coupled with phase-contrast microscopy, revealed that FC-GA coacervates could withstand high shear rates, reverting to their original structure afterward, making them suitable for industrial applications. FTIR, DSC, and TGA analyses confirmed the electrostatic interactions and thermal stability, making them suitable for high-temperature procedures like spray-drying or extrusion. Higher GA concentrations increased coacervate hydrophilicity, while low-dielectric-constant liquids reduced particle size and disrupted coacervates. This study also explored interactions with solvents used in cosmetics, finding that isohexadecane, ethylhexyl stearate, and ethanol improved wetting properties by reducing electrostatic interactions, while polar solvents such as water and glycerol hindered them due to stronger interactions. The coacervates effectively encapsulated α-tocopherol, achieving an 82.6 % of encapsulation efficiency at a 1:1 (w/w) wall material-to-active ratio. These findings highlight the potential of FC-GA coacervates as stable, easy-to-prepare encapsulation materials for high-shear and high-temperature conditions, offering promising applications in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Adeline Delaporte
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Michel Grisel
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| | - Ecaterina Gore
- Université Le Havre Normandie, Normandie Univ, URCOM, UR 3221, Le Havre F-76600, France.
| |
Collapse
|
2
|
Joshi JS, Fladung L, Kruse O, Patel A. Novel Co-Cultivation Bioprocess with Immobilized Paenibacillus polymyxa and Scenedesmus obliquus for Lipid and Butanediol Production. Microorganisms 2025; 13:606. [PMID: 40142499 PMCID: PMC11945626 DOI: 10.3390/microorganisms13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Microalgal biotechnology is gaining attention due to its potential to produce pigments, lipids, biofuels, and value-added products. However, challenges persist in terms of the economic viability of microalgal lipid production in photobioreactors due to slow growth rates, expensive media, complex downstream processing, limited product yields, and contamination risks. Recent studies suggest that co-cultivating microalgae with bacteria can enhance the profitability of microalgal bioprocesses. Immobilizing bacteria offers advantages such as protection against shear forces, the prevention of overgrowth, and continuous product secretion. Previous work has shown that biopolymeric immobilization of Paenibacillus polymyxa enhances 2,3-butanediol production. In this study, a novel co-fermentation process was developed by exploiting the chemical crosstalk between a freshwater microalga Scenedesmus obliquus, also known as Tetradesmus obliquus, and an immobilized plant-growth-promoting bacterium, Paenibacillus polymyxa. This co-cultivation resulted in increased metabolite production, with a 1.5-fold increase in the bacterial 2,3-butanediol concentration and a 3-fold increase in the microalgal growth rates compared to these values in free-cell co-cultivation. Moreover, the co-culture with the immobilized bacterium exhibited a 5-fold increase in the photosynthetic pigments and a 3-fold increase in the microalgal lipid concentration compared to these values in free-cell co-cultivation. A fixed bed photobioreactor was further constructed, and the co-cultivation bioprocess was implemented to improve the bacterial 2,3-butanediol and microalgal lipid production. In conclusion, this study provides conclusive evidence for the potential of co-cultivation and biopolymeric immobilization techniques to enhance 2,3-butanediol and lipid production.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Laura Fladung
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Olaf Kruse
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Anant Patel
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
| |
Collapse
|
3
|
Li X, Shen A, Xiao M, Li S, Yang W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int J Biol Macromol 2025; 294:139516. [PMID: 39761889 DOI: 10.1016/j.ijbiomac.2025.139516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Sulfated polysaccharides refer to polysaccharides containing sulfate groups on sugar units. In nature, sulfated polysaccharides are widely distributed in marine organisms, and the variation in sulfation sites, monosaccharide composition, and branched chain distribution among different species results in differences in the physicochemical properties and biological activities. From the latest perspective, this review summarized the types, structural characteristics, and potential health benefits of sulfated polysaccharides in marine foods. In recent years, marine-derived sulfated polysaccharides have been widely used as stabilizers and antimicrobial agents applied in nutraceutical delivery systems and food packaging, which depend on their interactions with food components. Hence, we outlined the non-covalent/covalent interactions of marine-derived sulfated polysaccharides with food components (e.g., proteins, polysaccharides, and polyphenols) as well as the application in food industry. Additionally, the prospects and potential development for sulfated polysaccharides are concluded, aiming to provide a deep understanding of marine-derived sulfated polysaccharides to promote the industrial application in food health.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ao Shen
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Miaorong Xiao
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| | - Weiwei Yang
- Department of Food Science, Shenyang Medical college, Shenyang, Liao Ning 110034, PR China.
| |
Collapse
|
4
|
Shmakov SL, Ushakova OS, Kalinicheva MA, Shipovskaya AB. Preparation and Properties of Glycerohydrogels Based on Silicon Tetraglycerolate, Chitosan Hydrochloride and Glucomannan. Gels 2025; 11:103. [PMID: 39996647 PMCID: PMC11854711 DOI: 10.3390/gels11020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Glycerohydrogels based on silicon glycerolate, chitosan (CS) and polyvinyl alcohol (PVA) are widely studied for use in biomedical applications. In line with the general trend of replacing synthetic polymers with natural ones in such compositions, it would be of interest to replace PVA with the polysaccharide glucomannan (GM), as well as to introduce functional additives to impart the desired properties, including gelation time, to the final hydrogel. In this work, a comprehensive study of the preparation conditions and properties of glycerohydrogels based on silicon tetraglycerolate, chitosan hydrochloride (CS·HCl) and GM was carried out. Viscometry was used to assess the conformational state of CS·HCl and GM macromolecules, and their associates in solution before gelation. Gelation was studied using the vessel inversion method. The mucoadhesive and the dermoadhesive properties of the glycerohydrogels obtained were assessed using the tearing off method from the model substrates simulating mucous and dermal tissues. The conformational state of the individual polymers and their mixed associates in solution before gelation was estimated; the intrinsic viscosity and the hydrodynamic radius of the macromolecular coils were calculated. The influence of various factors (addition of ε-aminocaproic and hydrochloric acids, sodium chloride, hydroxide and tetraborate to vary the acidity and ionic strength of the medium, as well as temperature) and the molecular weight of chitosan on the gelation time was studied. The gelation time achieved was less than 2 min, which is promising in practical terms, i.e., for creating liquid plasters. Our best samples are not inferior to the commercial preparation "Metrogyl Denta"® in terms of tearing force during mucoadhesion and dermoadhesion at short gelation times. Thus, the glycerohydrogels synthesized by us and based on silicon tetraglycerolate, CS·HCl and GM could find usage in new biopharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Sergei L. Shmakov
- Chair of Polymers, Institute of Chemistry, Saratov State University, 83 Astrakhanskaya St., 410012 Saratov, Russia; (O.S.U.); (M.A.K.); (A.B.S.)
| | | | | | | |
Collapse
|
5
|
Klein RS, de Almeida DA, de Oliveira AC, Bonafé EG, Monteiro JP, Sabino RM, Martins AF. Iota-Carrageenan/Chitosan Nanoparticles via Coacervation: Achieving Stability for Tiny Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:161. [PMID: 39940137 PMCID: PMC11819667 DOI: 10.3390/nano15030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the influence of parameters such as pH condition, polyelectrolyte concentration, polymer ratio, and order of addition of the commercial polyelectrolytes chitosan and iota-carrageenan (ι-carrageenan) on the formation of polymeric nanoparticles in suspension (coacervates). A preliminary purification step of the polymers was essential for obtaining stable nanoparticles with small sizes as impurities, particularly metal ions that interfere with complexation, are removed by dialysis. Microparticles (13.5 μm in dry diameter) are obtained when aliquots of chitosan solution are poured into the ι-carrageenan solution. In general, an excess of chitosan results in the formation of agglomerated particles. The addition of an aliquot of ι-carrageenan solution (30 mL at 0.6 mg/mL and pH 4.0) to the chitosan solution (6.0 mL at 0.3 mg/mL and pH 4.0) leads to dispersed nanoparticles with a hydrodynamic radius of 278 ± 5 nm, a zeta potential of -31 ± 3 mV, and an average dry diameter of 45 ± 11 nm. The hydrodynamic radius increases as the pH rises. The partial deprotonation of ι-carrageenan chains enhances the interaction with water molecules, causing the particles to swell. These findings contribute to the fundamental understanding of polyelectrolyte complexation processes in aqueous suspension and provide insights for developing stable nanomaterials for potential practical applications.
Collapse
Affiliation(s)
- Rosecler S. Klein
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Débora A. de Almeida
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Ariel C. de Oliveira
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
- Biomass, Bioproduct and Bioprocess Analysis, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 3000 Boul. de Université de Sherbrooke, Sherbrooke, QC J1K 0A5, Canada
| | - Elton G. Bonafé
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
| | - Johny P. Monteiro
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
| | - Roberta M. Sabino
- Department of Chemical and Biomedical Engineering, University of Wyoming (UW), Laramie, WY 82071, USA
| | - Alessandro F. Martins
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, PR, Brazil; (R.S.K.); (D.A.d.A.); (A.C.d.O.); (E.G.B.); (J.P.M.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| |
Collapse
|
6
|
Sabouri Moghadam A, Mirmohammad Meiguni MS, Salami M, Askari G, Emam-Djomeh Z, Miran M, Buttar HS, Brennan C. Characterization of physicochemical properties of mung bean protein isolate and κ-carrageenan hydrogel as a delivery system for propolis extract. Food Res Int 2024; 197:115221. [PMID: 39593305 DOI: 10.1016/j.foodres.2024.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
A wide range of protein and polysaccharide structures have been applied for the encapsulation of bioactive compounds. In this research, a hydrogel was prepared using mung bean protein isolate and κ-carrageenan as a copolymer. The obtained hydrogel was used for encapsulating propolis at 1 % and 3 % (w/v). The rheological properties and the elasticity of the hydrogel samples with different percentages of propolis was investigated to determine resilience of the hydrogel. The textural analysis illustrated that propolis encapsulation does not change the hydrogel's chewiness, adhesiveness, and hardness. Fluorescence spectroscopy, FTIR, and SDS-PAGE techniques were used to determine the interactions between κ-carrageenan and mung bean protein isolate. The results suggested that electrostatic interactions and covalent bindings are responsible for gel preparation. Hydrophobic interactions contributed to propolis encapsulation. The quenching of aromatic amino acid residue and the clear propolis peak observed in fluorescence spectroscopy represented the role of hydrophobic interactions in encapsulation and gel formation. The water holding capacity (WHC) of >99 % and syneresis of <0.03 % of κ-carrageenan and mung bean protein isolate hydrogel represented an efficient structure of the hydrogel. The peak shifts of κ-carrageenan and mung bean protein isolates illustrated in the FTIR spectra were in line with SDS-PAGE results and fluorescence spectroscopy. The significantly increased encapsulation efficiency of >99 %, release rate of >50 %, and antioxidant activity of propolis encapsulated in κ-carrageenan and mung bean protein isolate suggested that the κ-carrageenan and mung bean protein isolate hydrogel is a potential delivery system and carrier for hydrophobic bioactive compounds, especially propolis.
Collapse
Affiliation(s)
- Amin Sabouri Moghadam
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran
| | - Maryam Sadat Mirmohammad Meiguni
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran.
| | - Gholamreza Askari
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran
| | - Mona Miran
- Department of Food Science, Engineering, and Technology, College of Agriculture and Natural Resources, Karaj Campus, University of Tehran, Karaj, Iran
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Sultan M, Youssef AM, Taha G. Potential antimicrobial cotton fabrics treated with cinnamaldehyde/chitosan-alginate nanocapsules for food packaging purposes. Int J Biol Macromol 2024; 279:135384. [PMID: 39245090 DOI: 10.1016/j.ijbiomac.2024.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In this study, cotton fabric was treated with chitosan/alginate nanocapsules containing cinnamaldehyde (CINA) as a natural antibacterial and antioxidant. Cinnamaldehyde was encapsulated into chitosan/alginate complex coacervate (CINA@CH/ALG). FTIR, XRD, TEM, and SEM were utilized to investigate the formation of CINA@CH/ALG nanocapsules. The weight ratios of chitosan, alginate, and the volume fractions of cinnamaldehyde have a considerable impact on the particle size of the CINA@CH/ALG nanocapsules but no significant effect on the zeta potential. The lowest particle size was 549.8 nm at a weight ratio of 1/1 and 712.6 nm for CH/ALG nanocapsules containing cinnamaldehyde oil fractions of 0.025 mL. The maximum encapsulation (91.4 %) and loading percentage (12.0 %) were achieved with 0.025 mL of cinnamaldehyde. The highest cumulative release was 50.76 % with 0.025 mL of cinnamaldehyde over 300 min. The releasing mechanism of CINA from CINA(0.025)@CH/AG follows the bi-exponential model. The maximum radical scavenging activity was 72.91 % with 0.1 mL of CINA. CINA@CH/ALG nanocapsules were applied to cotton fabric. All tested pathogen strains were sensitive to CINA@CH/ALG, with a CINA volume fraction of 0.025 representing the minimum inhibitory concentration (MIC). Salmonella Typhimurium is the pathogen most prone to cinnamaldehyde with an inhibition zone of 18 mm. The coating of cotton fabric with CINA@CH/ALG has implanted antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Gu R, Guo J, Zhang S, Zhou J, Wang J, Cohen Stuart MA, Wang M. Effects of catechol grafting on chitosan-based coacervation and adhesion. Int J Biol Macromol 2024; 267:131662. [PMID: 38636754 DOI: 10.1016/j.ijbiomac.2024.131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.
Collapse
Affiliation(s)
- Runkang Gu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jiangtao Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Shiting Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Yu H, Kim H, Chang PS. Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds. Food Chem 2024; 437:137927. [PMID: 37944393 DOI: 10.1016/j.foodchem.2023.137927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, incorporating a sodium caseinate-stabilized emulsion, was prepared using cold-set gelation under acidic conditions without crosslinking agents. Increasing the pectin concentration (0.75-1.50%, w/v) improved the mechanical strength and compactness of the EFH. The pH-responsive EFH retained the emulsion at pH 2.0 and released it at pH 7.4. In vitro digestion demonstrated that the EFH remained intact during oral and gastric stages, while the emulsion alone became destabilized. During intestinal digestion, the release of free fatty acids from the EFH decreased from 58.67% to 43.76% as the pectin concentration increased from 0.75% to 1.50%. EFH with 0.75% and 1.00% pectin significantly improved curcumin bioaccessibility compared to the emulsion alone. These findings demonstrate the potential of chitosan-pectin EFH as a novel carrier system for enhancing the bioaccessibility of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
| | - Huisu Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Liu C, Sun F, Tian Y, Jiang L, Wang Z, Zhou L. Recovery of soy whey protein from soy whey wastewater at various cavitation jet pretreatment time and their structural and emulsifying properties. Food Chem X 2024; 21:101122. [PMID: 38261844 PMCID: PMC10796266 DOI: 10.1016/j.fochx.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Protein-polysaccharide composite is of great significance for the development of soluble protein recovery process. This study investigated the effects of cavitation jet (CJ) pretreatment at different time (0, 60, 120, 180, 240, 300 s) intervals on the recovery of soy whey protein (SWP) from soy whey wastewater using chitosan (CH). In addition, the structure and properties of the SWP/CH complexes were examined. The results showed that the recovery yield of SWP reached 84.44 % when the CJ pretreatment time was 180 s, and the EAI and ESI values of the SWP/CH complex increased from 32.39 m2/g and 21 min to 48.47 m2/g and 32 min, respectively. In the CJ pretreatment process, SWP promotes the recombination with chitosan through electrostatic interaction and hydrogen bond, while hydrophobic interaction is also involved. This study has guiding significance for CJ technology in the recovery and utilization of protein in industrial wastewater.
Collapse
Affiliation(s)
- Caihua Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Meskelis L, F Agondi R, Duarte LGR, de Carvalho MD, Sato ACK, Picone CSF. New approaches for modulation of alginate-chitosan delivery properties. Food Res Int 2024; 175:113737. [PMID: 38129047 DOI: 10.1016/j.foodres.2023.113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Alginate is a biopolymer widely used on delivery systems when bioactive protection at acidic pH is required, while chitosan can enhance mucoadhesion and controlled release at alkaline pHs. In this work, alginate ionotropic gelation and electrostatic complexation to chitosan were evaluated concomitantly or in a two-step approach to improve the delivery properties of systems in different pHs. The effect of pH on alginate gelation and chitosan interactions were also evaluated. Alginate microspheres were prepared by ionotropic gelation in CaCl2 at different pH values (2.5 and 6.0) by extrusion. Complexation with chitosan was carried out during alginate ionotropic gelation (one-step approach) or after alginate gel formation (two-step approach). Alginate microparticles without chitosan showed larger pores and lower mechanical strength. Extruded microspheres at pH 6.0 were more stable to pH and showed smaller pores than the formed at pH 2.5. One-step production retained a large amount of bioactive at pH 7.0 and resulted in lower release at the pH of intestinal digestion. The two-step approach retained less amount of bioactive but confer more protection to the pH of the stomach phase and higher release in pH of the intestinal phase than one-step samples. These results indicate that the formation of alginate gels by ionotropic gelation followed by the complexation with chitosan (in two-step) is promising for the transport and delivery of bioactives into intestinal conditions, whereas the ionotropic gelation concomitantly to electrostatic complexation (one-step approach) is indicated to the delivery of bioactives into lower pH environments.
Collapse
Affiliation(s)
- Ludmilla Meskelis
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Raquel F Agondi
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Larissa G R Duarte
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Matheus D de Carvalho
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Ana Carla K Sato
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Carolina S F Picone
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Lobato-Guarnido I, Luzón G, Ríos F, Fernández-Serrano M. Synthesis and Characterization of Environmentally Friendly Chitosan-Arabic Gum Nanoparticles for Encapsulation of Oregano Essential Oil in Pickering Emulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2651. [PMID: 37836292 PMCID: PMC10574744 DOI: 10.3390/nano13192651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
The encapsulation of bioactive agents through the utilization of biodegradable nanoparticles is a topic of considerable scientific interest. In this study, microcapsules composed of chitosan (CS) and Arabic gum (GA) nanoparticles were synthesized, encapsulating oregano essential oil (OEO) through Pickering emulsions and subsequent spray drying. The optimization of hybrid chitosan and Arabic gum (CS-GA) nanoparticle formation was carried out via complex coacervation, followed by an assessment of their behavior during the formation of the emulsion. Measurements of the size, contact angle, and interfacial tension of the formed complexes were conducted to facilitate the development of Pickering emulsions for encapsulating the oil under the most favorable conditions. The chitosan-Arabic gum capsules were physically characterized using scanning electron microscopy and fitted to the Beerkan estimation of soil transfer (BEST) model to determine their size distribution. Finally, the OEO encapsulation efficiency was also determined. The optimum scenario was achieved with the CS-GA 1-2 capsules at a concentration of 2% wt, featuring a contact angle of 89.1 degrees, which is ideal for the formation of oil/water (O/W) emulsions. Capsules of approximately 2.5 μm were obtained, accompanied by an encapsulation efficiency of approximately 60%. In addition, the hybrid nanoparticles that were obtained showed high biodegradability. The data within our study will contribute fundamental insights into CS-GA nanoparticles, and the quantitatively analyzed outcomes presented in this study will hold utility for forthcoming applications in environmentally friendly detergent formulations.
Collapse
Affiliation(s)
- Ismael Lobato-Guarnido
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | - Germán Luzón
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | | | | |
Collapse
|
13
|
Yu G, Niu C, Liu J, Wu J, Jin Z, Wang Y, Zhao K. Preparation and Properties of Self-Cross-Linking Hydrogels Based on Chitosan Derivatives and Oxidized Sodium Alginate. ACS OMEGA 2023; 8:19752-19766. [PMID: 37305255 PMCID: PMC10249032 DOI: 10.1021/acsomega.3c01401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
A self-cross-linking and biocompatible hydrogel has wide application potential in the field of tissue engineering. In this work, an easily available, biodegradable, and resilient hydrogel was prepared using a self-cross-linking method. This hydrogel was composed of N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and oxidized sodium alginate (OSA). A stable and reversible cross-linking network was formed by the Schiff base self-cross-linked and hydrogen bonding. The addition of a shielding agent (NaCl) may weaken the intense electrostatic effect between HACC and OSA and solve the problem of flocculation caused by the rapid formation of ionic bonds, which provided an extended time for the Schiff base self-cross-linked reaction for forming a homogeneous hydrogel. Interestingly, the shortest time for the formation of the HACC/OSA hydrogel was within 74 s and the hydrogel had a uniform porous structure and enhanced mechanical properties. The HACC/OSA hydrogel withstood large compression deformation due to improved elasticity. What's more, this hydrogel possessed favorable swelling property, biodegradation, and water retention. The HACC/OSA hydrogels have great antibacterial properties against Staphylococcus aureus and Escherichia coli and demonstrated good cytocompatibility as well. The HACC/OSA hydrogels have a good sustained release effect on rhodamine (model drug). Thus, the obtained self-cross-linked HACC/OSA hydrogels in this study have potential applications in the field of biomedical carriers.
Collapse
Affiliation(s)
- Guiting Yu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Chunqing Niu
- Department
of Mechanical Engineering and Robotics, Faculty of Textile Science
and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Jiali Liu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Jue Wu
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Zheng Jin
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yiyu Wang
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Kai Zhao
- College
of Chemistry and Material Sciences & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
14
|
Li S, Xing W, Gang Y, Guo W, Zeng M, Wu H. Gum Arabic-Stabilized Ferric Oxyhydroxide Nanoparticles for Efficient and Targeted Intestinal Delivery of Bioavailable Iron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7058-7068. [PMID: 37104684 DOI: 10.1021/acs.jafc.3c02245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanostructured iron(III) compounds are promising food fortificants with desirable iron bioavailability and food compatibility. Here, gum arabic (GA) solubilized 252 mg of iron(III) per g at neutral pH in the form of GA-stabilized ferric oxyhydroxide nanoparticles (GA-FeONPs) with Z-average size of 142.7 ± 5.9 nm and ζ-potential of -20.50 ± 1.25 mV. Calcein-fluorescence-quenching assay revealed well-absorbed iron from GA-FeONPs by polarized Caco-2 cells due to efficient macropinocytic internalization and asialoglycoprotein receptor-mediated specific endocytosis facilitated by the polypeptide and arabinogalactan fractions of GA, respectively, with endocytosed GA-FeONPs being in part basolaterally transcytosed and in another part degraded into cellular labile iron pool. GA-FeONPs showed good colloidal stability under varied pH, gastrointestinal, thermal processing, and spray/freeze drying conditions and displayed remarkably weaker pro-oxidant activity than FeSO4 in glyceryl trilinoleate emulsion (P < 0.05). Oral pharmacokinetics unveiled desirable iron bioavailability of GA-FeONPs relative to FeSO4, i.e., 124.27 ± 5.91% in aqueous solution and 161.64 ± 5.01% in milk. Overall, GA-FeONPs are a promising novel iron fortificant with food-compatible, efficient, and targeted intestinal iron delivery and sustained iron-release properties.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wenshuo Xing
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxin Gang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wei Guo
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| |
Collapse
|
15
|
Schröder P, Cord-Landwehr S, Schönhoff M, Cramer C. Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration. Biomacromolecules 2023; 24:1194-1208. [PMID: 36779888 DOI: 10.1021/acs.biomac.2c01255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In this study, complex coacervates of the biopolyelectrolytes chitosan and gum arabic were investigated with respect to their composition and charge compensation depending on the pH and salt concentration. Individual polyelectrolyte yields were deduced from thermogravimetric analysis and chitosan quantification via enzymatic hydrolysis/HPLC-ELSD. The polyelectrolyte mass ratio in the complex coacervate is found to remain approximately constant irrespective of the pH, despite the latter's effect on the polyelectrolyte charge ratio. Two regimes are identified, including either chitosan charges in excess (at pH < 6.0) or gum arabic charges in excess (at pH > 6.0). The amount of extrinsic charge compensation in the complex coacervates is discussed in detail. We show for the first time that the doping level, a quantity traditionally used to describe salt-induced changes of the charge compensation in polyelectrolyte complexes, is also suitable for the description of pH-induced extrinsic charge compensation in such systems.
Collapse
Affiliation(s)
- Philipp Schröder
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Cornelia Cramer
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
16
|
Yang Z, Hu Y, Yue P, Li H, Wu Y, Hao X, Peng F. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr Polym 2023; 299:120219. [PMID: 36876820 DOI: 10.1016/j.carbpol.2022.120219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Selenium nanoparticles (SeNPs) have attracted widespread attention, but the poor water dispersibility restricted their applications seriously. Herein, Usnea longissima lichenan decorated selenium nanoparticles (L-SeNPs) were constructed. The formation, morphology, particle size, stability, physicochemical characteristics, and stabilization mechanism of L-SeNPs were investigated via TEM, SEM, AFM, EDX, DLS, UV-Vis, FT-IR, XPS, and XRD. The results indicated that the L-SeNPs displayed orange-red, amorphous, zero-valent, and uniform spherical nanoparticles with an average diameter of 96 nm. Due to the formation of CO⋯Se bonds or the hydrogen bonding interaction (OH⋯Se) between SeNPs and lichenan, L-SeNPs exhibited better heating and storage stability, which kept stable for more than one month at 25 °C in an aqueous solution. The decoration of the SeNPs surface with lichenan endowed the L-SeNPs with superior antioxidant capability, and their free radicals scavenging ability exhibited in a dose-dependent manner. Furthermore, L-SeNPs showed excellent selenium controlled-release performance. In simulated gastric liquids, selenium release kinetics from L-SeNPs followed the Linear superimposition model, which was governed by the polymeric network retardation of macromolecular, while in simulated intestinal liquids, it was well fitted to the Korsmeyer-Peppas model and followed a Fickian mechanism controlled by diffusion.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Panpan Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Huiling Li
- JALA Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Yuying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing 100083, China.
| |
Collapse
|
17
|
García-Jiménez A, Román-Guerrero A, Pérez-Alonso C, Fouconnier B. Liquid-liquid and liquid-solid separation in self-assembled chitosan-alginate and chitosan-pectin complexes. Int J Biol Macromol 2022; 223:1368-1380. [PMID: 36395941 DOI: 10.1016/j.ijbiomac.2022.11.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The complexation between two oppositely charged polyelectrolytes (PE) can lead liquid-liquid (complex coacervates, CC) or liquid-solid (solid precipitates, SP) phase separations. Herein, the effect of pH (2-11) and ionic strength (I, 0.05-1.0 M KCl) on the associative interactions between chitosan (QL)-alginate (SA) and QL-Pectin (Pec), polysaccharides widely used in biotechnology field, is described. pH and I, exhibited significant effect on the structure and phase transitions by modifying the ionization degree (α), pka, and associative interactions between PE. Onset of binding was established at pHc 9, while continued acidification (pHτ 5.8) led to simultaneous CC and SP exhibiting a maximum turbidity in both systems. At pHδ 4.0, QL-Pec showed preferably CC structures whereas QL-SA maintained the CC and SP structures. At pHω 2, the associative interactions were suppressed due to the low ionization of Pec and SA. I (1.0 M) significantly diminished the interactions in QL-Pec due to charge screening. Molecular weight, second virial coefficient, hydrodynamic size, ionizable groups, and persistence length of polyion, influenced on the phase behavior of QL-Pec and QL-SA systems. Therefore, CC and SP are found simultaneously in both systems, their transitions can be modulated by intrinsic and environmental conditions, expanding the functional properties of complexed polysaccharides.
Collapse
Affiliation(s)
- Abraham García-Jiménez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril de San Rafael Atlixco, 186, Col. Leyes de Reforma 1ª secc., C.P. 09340 Mexico City, Mexico
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. Ferrocarril de San Rafael Atlixco, 186, Col. Leyes de Reforma 1ª secc., C.P. 09340 Mexico City, Mexico.
| | - César Pérez-Alonso
- Departamento de Ingeniería Química, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Residencial Colón, C.P. 50120 Toluca, State of Mexico, Mexico
| | - Benoit Fouconnier
- Facultad de Ciencias Químicas, Universidad Veracruzana, Av. Universidad Veracruzana Km. 7.5, Col. Santa Isabel, C.P. 96538 Coatzacoalcos, Veracruz, Mexico
| |
Collapse
|
18
|
Ćehić M, Brkljača Z, Filić Ž, Crnolatac I, Vujaklija D, Bakarić D. (Un)coupling the factors contributing to the interfacial activation of Streptomyces rimosus lipase: computational and spectrophotometric study. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2145304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mirsada Ćehić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Želimira Filić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dušica Vujaklija
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
19
|
The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr Polym 2022; 295:119851. [DOI: 10.1016/j.carbpol.2022.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
|
20
|
Mirmohammad Meiguni MS, Salami M, Rezaei K, Ghaffari SB, Aliyari MA, Emam-Djomeh Z, Barazandegan Y, Gruen I. Curcumin-loaded complex coacervate made of mung bean protein isolate and succinylated chitosan as a novel medium for curcumin encapsulation. J Food Sci 2022; 87:4930-4944. [PMID: 36190116 DOI: 10.1111/1750-3841.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
A novel complex coacervate based on mung bean protein (MBP) and succinylated chitosan (SC) was developed in order to encapsulate curcumin to enhance its antioxidant and release properties. The optimum pH and MBP/SC ratio for fabrication of the complex coacervate were determined as 5.5 and 3:1, respectively. The MBP/SC complexes exhibited high affinity toward curcumin with encapsulation efficiency of 89.65%. The curcumin-loaded MBP with succinyl chitosan (c-MBP/SC) exhibited antioxidant properties investigated by DPPH and reducing power assays. c-MBP/SC also showed significant photo stability and acceptable controlled release behavior in simulated gastrointestinal conditions. Fluorescence results indicated that curcumin interacted with the hydrophobic areas available in c-MBP/SC. FTIR results showed the successful encapsulation of curcumin in the hydrophobic core of the complex, followed by minor changes in MBP conformation. Analysis of zeta potential revealed that MBP/SC particles were synthesized successfully at the pH value of 5.5 due to conformational changes of MBP. The conformational changes in protein structure were confirmed by Nile Red fluorescence anisotropy. As a result, c-MBP/SC could be considered as a promising carrier for curcumin encapsulation in food formulations with enhanced dispersity characteristic.
Collapse
Affiliation(s)
- Maryam Sadat Mirmohammad Meiguni
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Maryam Salami
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Amin Aliyari
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Yasmin Barazandegan
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Ingolf Gruen
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
21
|
Zhang N, Han J, Chen F, Gao C, Tang X. Chitosan/gum arabic complexes to stabilize Pickering emulsions: Relationship between the preparation, structure and oil-water interfacial activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Conjugation Induced by Wet-Heating of Gelatin and Low Methoxyl Pectin Improves the Properties and Stability of Microcapsules Prepared by Complex Coacervation. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Impact of alginate block type on the structure and physicochemical properties of curcumin-loaded complex biopolymer nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Li KY, Zhang XR, Huang GQ, Teng J, Guo LP, Li XD, Xiao JX. Complexation between ovalbumin and gum Arabic in high total biopolymer concentrations and the emulsifying ability of the complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Masoomi Dezfooli S, Bonnot C, Gutierrez‐Maddox N, Alfaro AC, Seyfoddin A. Chitosan coated alginate beads as probiotic delivery system for New Zealand black footed abalone (
Haliotis iris
). J Appl Polym Sci 2022. [DOI: 10.1002/app.52626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Aquaculture Biotechnology Research Group, Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Chloe Bonnot
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Noemi Gutierrez‐Maddox
- School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| |
Collapse
|
26
|
Dos Santos Carvalho JD, Rabelo RS, Hubinger MD. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. Int J Biol Macromol 2022; 209:367-375. [PMID: 35413310 DOI: 10.1016/j.ijbiomac.2022.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
Thermal and rheological properties of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) hydrogels with chitosan (CHI) were investigated to verify the potential application of these blends as structured systems for oil transport (emulgel, oleogels, and bigels). FTIR confirmed hydrophobic interactions of cellulosic polymers with chitosan. In the temperature sweep, the thermosensitive hydrogels showed their reduced gel point compared to the original polymers. The gelation temperature was reduced from 66.9 °C for pure HPMC to 43.6 °C and 43.6 °C (MC pure polymer) to 39.3 °C when 30% CHI was added for both cases. The addition of 20 and 30% chitosan is enough to modify the extension of the gelation temperature of these polymers. These results indicate that the addition of chitosan enables MC and HPMC to form gels at lower temperatures, which could allow milder thermal conditions to be applied in processing oil carrier systems.
Collapse
Affiliation(s)
- Juliana Domingues Dos Santos Carvalho
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato Street, P.O. Box 6121, 13083-862, Campinas, SP, Brazil.
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil
| | - Miriam Dupas Hubinger
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato Street, P.O. Box 6121, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
27
|
ALSamman MT, Sánchez J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers (Basel) 2022; 14:polym14081498. [PMID: 35458248 PMCID: PMC9025658 DOI: 10.3390/polym14081498] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20–60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.
Collapse
|
28
|
Microencapsulation of Sichuan pepper essential oil in soybean protein isolate-Sichuan pepper seed soluble dietary fiber complex coacervates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Agostini SBN, Machado VLDS, Virtuoso LS, Nogueira DA, Pereira GR, Carvalho FC. Influence of the ionic strength on the physicochemical properties of methotrexate-loaded chitosan polyelectrolyte complexes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
30
|
Composite biopolymer films based on a polyelectrolyte complex of furcellaran and chitosan. Carbohydr Polym 2021; 274:118627. [PMID: 34702453 DOI: 10.1016/j.carbpol.2021.118627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
The aim of research was to develop biopolymer films based on natural polysaccharides. For the first time, biodegradable films were obtained on the basis of a furcellaran-chitosan polyelectrolyte complex. The conditions for its formation were determined by measuring the zeta potential as a function of colloid pH, the size of pure components and their mixtures. The structure and morphology of the prepared films were characterised by FT-IR and AFM analysis. The lowest WVTR values were observed for the FUR and the CHIT-FUR films at the ratio of 9:1. The mechanical, water and rheological properties depend on the weight ratio of furcellaran to chitosan in the mixture. The thermal stability has been improved in CHIT-FUR films at the 9:1 ratio. The results obtained create the possibility of successfully using CHIT-FUR films in the development of biodegradable packaging materials.
Collapse
|
31
|
Dong X, Li Y, Huang G, Xiao J, Guo L, Liu L. Preparation and characterization of soybean Protein isolate/chitosan/sodium alginate ternary complex coacervate phase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Zheng J, Gao Q, Ge G, Wu J, Tang CH, Zhao M, Sun W. Heteroprotein Complex Coacervate Based on β-Conglycinin and Lysozyme: Dynamic Protein Exchange, Thermodynamic Mechanism, and Lysozyme Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7948-7959. [PMID: 34240870 DOI: 10.1021/acs.jafc.1c02204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heteroprotein complex coacervate (HPCC) is a liquid-like protein concentrate produced by liquid-liquid phase separation. We revealed the protein dynamic exchange and thermodynamic mechanism of β-conglycinin/lysozyme coacervate, and clarified the effect of HPCC on protein structure and activity. β-conglycinin and lysozyme assembled into coacervate at pH 5.75-6.5 and assembled into amorphous precipitates at higher pH. As the pH dropped from 8 to 6, the number of binding sites of the complex decreased in half, and the desolvation degree corresponding to the entropy gain was greatly reduced, conducing to the formation of coacervates rather than precipitates. The coacervates achieved the unique dynamic exchange by exchanging proteins with the diluted phase, making the uniform distribution of proteins in coacervates. The lysozyme activity was completely retained in β-conglycinin/lysozyme coacervates. These results proved that β-conglycinin-based heteroprotein complex coacervate is a feasible method to encapsulate and enrich active proteins in a purely aqueous environment.
Collapse
Affiliation(s)
- Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qing Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ge Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chuan-He Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
33
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
34
|
Choudhary H, Rudy MB, Dowling MB, Raghavan SR. Foams with Enhanced Rheology for Stopping Bleeding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13958-13967. [PMID: 33749251 DOI: 10.1021/acsami.0c22818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bleeding from injuries to the torso region is a leading cause of fatalities in the military and in young adults. Such bleeding cannot be stopped by applying direct pressure (compression) of a bandage. An alternative is to introduce a foam at the injury site, with the expansion of the foam counteracting the bleeding. Foams with an active hemostatic agent have been tested for this purpose, but the barrier created by these foams is generally not strong enough to resist blood flow. In this paper, we introduce a new class of foams with enhanced rheological properties that enable them to form a more effective barrier to blood loss. These aqueous foams are delivered out of a double-barrelled syringe by combining precursors that produce bubbles of gas (CO2) in situ. In addition, one barrel contains a cationic polymer (hydrophobically modified chitosan, hmC) and the other an anionic polymer (hydrophobically modified alginate, hmA). Both these polymers function as hemostatic agents due to their ability to connect blood cells into networks. The amphiphilic nature of these polymers also enables them to stabilize gas bubbles without the need for additional surfactants. hmC-hmA foams have a mousse-like texture and exhibit a high modulus and yield stress. Their properties are attributed to the binding of hmC and hmA chains (via electrostatic and hydrophobic interactions) to form a coacervate around the gas bubbles. Rheological studies are used to contrast the improved rheology of hmC-hmA foams (where a coacervate arises) with those formed by hmC alone (where there is no such coacervate). Studies with animal wound models also confirm that the hmC-hmA foams are more effective at curtailing bleeding than the hmC foams due to their greater mechanical integrity.
Collapse
Affiliation(s)
- Hema Choudhary
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael B Rudy
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew B Dowling
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
35
|
Li Z, Lin Q, McClements DJ, Fu Y, Xie H, Li T, Chen G. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Food Chem 2021; 355:129686. [PMID: 33799264 DOI: 10.1016/j.foodchem.2021.129686] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
In this study, core-shell biopolymer nanoparticles were fabricated for the encapsulation and delivery of curcumin using a pH-driven method. The influences of the coating composition on the physicochemical properties and curcumin release characteristics of the core-shell nanoparticles were studied. Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that curcumin was encapsulated in an amorphous state inside the nanoparticles. Particle size and ζ-potential measurements indicated that the biopolymer nanoparticles were relatively stable under different environmental conditions: long term storage, heating, pH changes and salt. The DPPH radical scavenging activity of the curcumin was increased after encapsulation within the nanoparticles, whereas the gastrointestinal release of curcumin was prolonged. These results were attributed to the ability of alginate and NaCas to form a thick layer around the nanoparticles, which increased the steric and electrostatic repulsion between them, as well as inhibiting the release of curcumin.
Collapse
Affiliation(s)
- Zhenpeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Quanquan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - David Julian McClements
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Teng Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Guowen Chen
- Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou, 311508, China
| |
Collapse
|
36
|
Sun R, Zhu J, Wu H, Wang S, Li W, Sun Q. Modulating layer-by-layer assembled sodium alginate-chitosan film properties through incorporation of cellulose nanocrystals with different surface charge densities. Int J Biol Macromol 2021; 180:510-522. [PMID: 33745975 DOI: 10.1016/j.ijbiomac.2021.03.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
In this work, 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanocrystals (TOCNs) were loaded into sodium alginate/chitosan multilayer film as nanofillers to investigate the modulation of the surface charge density of TOCNs on the film properties. First, the surface charge density of TOCNs was controlled by adjusting the carboxyl content and morphological size by varying the oxidant dosage. After oxidation, TOCN with higher surface charge density was observed to display a higher crystallinity, a more open internal structure, a better dispersibility and a slightly weaker thermal stability. In addition, a 15-layer film composed of sodium alginate and chitosan, called (SA/CH)15, was constructed by layer-by-layer assembly. Both in situ deposition monitoring and free-standing multilayer film formation indicated that TOCNs relied on strong electrostatic interactions and hydrogen bonding to achieve a compact and uniform interlayer and a thinner thickness of (SA/CH)15, which was more evident at a high surface charge density. The addition of TOCNs also enhanced the mechanical properties, thermal stability, hydrophobicity, and barrier properties of (SA/CH)15. In particular, the resulting sodium alginate/chitosan multilayer film exhibited an improved packaging performance when nanocomposite was performed using TOCN with a surface charge density of 3.22 ± 0.11 e nm-2.
Collapse
Affiliation(s)
- Ruonan Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, People's Republic of China.
| | - Shiqing Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| |
Collapse
|
37
|
Song X, Chen Y, Sun H, Liu X, Leng X. Physicochemical stability and functional properties of selenium nanoparticles stabilized by chitosan, carrageenan, and gum Arabic. Carbohydr Polym 2021; 255:117379. [DOI: 10.1016/j.carbpol.2020.117379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
|
38
|
Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106381] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Gallegos Soto AS, Rabelo RS, Vélez-Erazo EM, de Souza Silveira PT, Efraim P, Hubinger MD. Application of Complex Chitosan Hydrogels Added With Canola Oil in Partial Substitution of Cocoa Butter in Dark Chocolate. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.559510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complexation of polymeric materials can be an alternative to trapping oil in a physical network for formulating foods with reduced saturated fat content. In this research, we have evaluated the use of different polymer ratios of Sodium Alginate (ALG), Carrageenan predominance iota (CR1) and Carrageenan predominance kappa (CR2) complexed with Chitosan (CHI) at a fixed polymer concentration (2% w/v) to formulate complex hydrogels and assess their oil holding capacity. The objective was to determine the polymer ratios of CHI to anionic polysaccharides (75:25, 50:50, and 25:75), determining the oil retention capacity in different ratios, and how this can affect the stability, microstructure and rheology of to produce low saturated chocolate with trapped canola oil. The stability of the hydrogels was characterized, considering the water retention and retention of canola oil in polysaccharides complexes. The more stable system was the hydrogel CHI:CR2 in a polymer ratio of 25:75. This formulation, when added of 20% of canola oil presented an apparent viscosity of 0.631 Pa.s at 300 s−1, and its use as replacer of saturated fat allowed the production of dark chocolate with 16% reduction in fat content and 80% of added cocoa butter. Stability studies showed that polysaccharides complexes network can retain the edible oil in chocolate formulation for 60 days. It has been proven that polysaccharides complexes can be incorporated to partially replace the fatty phase in chocolates without considerable changes in relevant characteristics as consumer acceptance evaluated by sensory tests and rheological properties.
Collapse
|
40
|
Yin X, Xie H, Li R, Yan S, Yin H. Regulating association strength between quaternary ammonium chitosan and sodium alginate via hydration. Carbohydr Polym 2020; 255:117390. [PMID: 33436219 DOI: 10.1016/j.carbpol.2020.117390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Studies on interactions between oppositely charged polysaccharides have gathered great interest. We proposed that the association between oppositely charged polymers could be regulated via hydration. A comparison study was carried out by using quaternary chitosan with different counterions(Cl-, Ac-, OH-) and sodium alginate. The results showed that the association between quaternary chitosan with less hydrated counter anion Cl- and sodium alginate was weaker than that between quaternary chitosan with more hydrated counter anion Ac- and sodium alginate. There was a pH transition point of thermal change of association between oppositely charged polymers, as the solution's pH had more effect on the hydration of polymers than counter ions. Further studies showed that a fraction of Cl- was still attracted by polycation in the complex and competed with the interaction of polyanion after complexation. The competitive combination was critical for the property (such as self healing behavior) of the carbohydrate polymer complex.
Collapse
Affiliation(s)
- Xiao Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Hongguo Xie
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Ruixin Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Institute of Environmental Systems Biology, Dalian Maritime University, Dalian, 116026, China
| | - Shenggang Yan
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
41
|
Hernández-Fernández MÁ, García-Pinilla S, Ocampo-Salinas OI, Gutiérrez-López GF, Hernández-Sánchez H, Cornejo-Mazón M, Perea-Flores MDJ, Dávila-Ortiz G. Microencapsulation of Vanilla Oleoresin ( V. planifolia Andrews) by Complex Coacervation and Spray Drying: Physicochemical and Microstructural Characterization. Foods 2020; 9:foods9101375. [PMID: 32992589 PMCID: PMC7599886 DOI: 10.3390/foods9101375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Vanilla is one of the most popular species in the world. Its main compound, vanillin, is responsible for its characteristic aroma and flavor and its antioxidant and biological properties. Vanillin is very unstable in the presence of oxygen, light, and humidity, which complicates its use and preservation. Therefore, to solve this problem, this study aimed to develop vanilla oleoresin microcapsules. Vanilla oleoresin was obtained with supercritical carbon dioxide and microencapsulated by complex coacervation and subsequent spray drying (100 °C/60 °C inlet/outlet temperature). The optimal conditions for the complex coacervation process were 0.34% chitosan, 1.7% gum Arabic, 5.29 pH, and an oleoresin:wall material ratio of 1:2.5. Fourier Transform Infrared Spectroscopy (FT-IR) analysis of the coacervates before and after spray drying revealed the presence of the functional group C=N (associated with carbonyl groups of vanillin and amino groups of chitosan), indicating that microencapsulation by complex coacervation-spray drying was successful. The retention and encapsulation efficiencies were 84.89 ± 1.94% and 69.20 ± 1.79%. The microcapsules obtained from vanilla oleoresin had high vanillin concentration and the presence of other volatile compounds and essential fatty acids. All this improves the aroma and flavor of the product, increasing its consumption and application in various food matrices.
Collapse
Affiliation(s)
- Miguel Ángel Hernández-Fernández
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico; (M.Á.H.-F.); (S.G.-P.); (G.F.G.-L.); (H.H.-S.)
| | - Santiago García-Pinilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico; (M.Á.H.-F.); (S.G.-P.); (G.F.G.-L.); (H.H.-S.)
- Facultad de Ingeniería de Alimentos, Fundación Universitaria Agraria de Colombia–Uniagraria, Calle 170 # 54a–10, Bogotá C.P. 111166, Colombia
| | - Oswaldo Israel Ocampo-Salinas
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Carboneras Mineral de la Reforma, Hidalgo C.P. 42184, Mexico;
| | - Gustavo Fidel Gutiérrez-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico; (M.Á.H.-F.); (S.G.-P.); (G.F.G.-L.); (H.H.-S.)
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico; (M.Á.H.-F.); (S.G.-P.); (G.F.G.-L.); (H.H.-S.)
| | - Maribel Cornejo-Mazón
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico;
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Gloria Dávila-Ortiz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, S/N Santo Tomás, Mexico City C.P. 11340, Mexico; (M.Á.H.-F.); (S.G.-P.); (G.F.G.-L.); (H.H.-S.)
- Correspondence: ; Tel.: +52-(55)-5729-6000 (ext. 57870)
| |
Collapse
|