1
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
2
|
Deng Z, Liu H, Chen G, Deng H, Dong X, Wang L, Tao F, Dai F, Cheng Y. Coaxial nanofibrous aerogel featuring porous network-structured channels for ovarian cancer treatment by sustained release of chitosan oligosaccharide. Int J Biol Macromol 2024; 276:133824. [PMID: 39002906 DOI: 10.1016/j.ijbiomac.2024.133824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Ovarian cancer, the deadliest gynecological malignancy, primarily treated with chemotherapy. However, systemic chemotherapy often leads to severe toxic side effects and chemoresistance. Drug-loaded aerogels have emerged as a promising method for drug delivery, as they can improve drug solubility and bioavailability, control drug release, and reduce drug distribution in non-targeted tissues, thereby minimizing side effects. In this research, chitosan oligosaccharide (COS)-loaded nanofibers composite chitosan (CS) aerogels (COS-NFs/CS) with a porous network structure were created using nanofiber recombination and freeze-drying techniques. The core layer of the aerogel has a COS loading rate of 60 %, enabling the COS-NFs/CS aerogel to significantly inhibit the migration and proliferation of ovarian cancer cells (resulting in a decrease in the survival rate of ovarian cancer cells to 33.70 % after 48 h). The coaxial fiber's unique shell-core structure and the aerogel's porous network structure enable the COS-NFs/CS aerogels to release COS steadily and slowly over 30 days, effectively reducing the initial burst release of COS. Additionally, the COS-NFs/CS aerogels exhibit good biocompatibility, degradability (only retaining 18.52 % of their weight after 6 weeks of implantation), and promote angiogenesis, thus promoting wound healing post-oophorectomy. In conclusion, COS-NFs/CS aerogels show great potential for application in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
3
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Liu Y, Zhang R, Zou J, Yin H, Zhao M, Zhao L. The impact of chitooligosaccharides with a certain degree of polymerization on diabetic nephropathic mice and high glucose-damaged HK-2 cells. Food Sci Nutr 2024; 12:4173-4184. [PMID: 38873468 PMCID: PMC11167136 DOI: 10.1002/fsn3.4078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a primary diabetic complication ascribed to the pathological changes in renal microvessels. This study investigated the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch ECH associating protein (Keap1)/antioxidant response element (ARE) signaling pathway impact of chitooligosaccharides (COS) with a certain degree of polymerization (DP) on DN mouse models and high glucose-damaged human kidney 2 (HK-2) cells. The findings indicated that COS effectively reduced the renal function indexes (uric acid [UA], urinary albumin excretion rate [UAER], urine albumin-to-creatinine ratio [UACR], blood urea nitrogen [BUN], and creatinine [Cre]) of DN mice. It increased (p < .05) the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) antioxidant enzyme activity in the serum and kidneys, and decreased (p < .05) the malondialdehyde (MDA) content. The mechanistic investigation showed that COS significantly increased (p < .05) Nrf2 and downstream target gene (GCLM, GCLC, HO-1, and NQO-1) expression, and substantially decreased (p < .05) Keap1 expression. The protein level was consistent with the messenger RNA (mRNA) level in in vitro and in vivo models. The docking data indicated that COS and Keap1 protein binding included six hydrogen bond formation processes (Gly364, Arg415, Arg483, His436, Ser431, and Arg380). The COS intervention mechanism may be related to the Nrf2/Keap1/ARE antioxidant pathway. Therefore, it provides a scientific basis for COS application in developing special medical food for DN patients.
Collapse
Affiliation(s)
- Yuwen Liu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Jiaqi Zou
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Hao Yin
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismShanghaiChina
- Organ Transplant CenterShanghai Changzheng HospitalShanghaiChina
| |
Collapse
|
6
|
Xu S, Li Z, Xin X, An F. Curdepsidone A Induces Intrinsic Apoptosis and Inhibits Protective Autophagy via the ROS/PI3K/AKT Signaling Pathway in HeLa Cells. Mar Drugs 2024; 22:227. [PMID: 38786619 PMCID: PMC11123476 DOI: 10.3390/md22050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Among female oncology patients, cervical cancer stands as the fourth most prevalent malignancy, exerting significant impacts on their health. Over 600,000 women received the diagnosis of cervical cancer in 2020, and the illness claimed over 300,000 lives globally. Curdepsidone A, a derivative of depsidone, was isolated from the secondary metabolites of Curvularia sp. IFB-Z10. In this study, we revised the molecular structure of curdepsidone A and investigated the fundamental mechanism of the anti-tumor activity of curdepsidone A in HeLa cells for the first time. The results demonstrated that curdepsidone A caused G0/G1 phase arrest, triggered apoptosis via a mitochondrial apoptotic pathway, blocked the autophagic flux, suppressed the PI3K/AKT pathway, and increased the accumulation of reactive oxygen species (ROS) in HeLa cells. Furthermore, the PI3K inhibitor (LY294002) promoted apoptosis induced by curdepsidone A, while the PI3K agonist (IGF-1) eliminated such an effect. ROS scavenger (NAC) reduced curdepsidone A-induced cell apoptosis and the suppression of autophagy and the PI3K/AKT pathway. In conclusion, our results revealed that curdepsidone A hindered cell growth by causing cell cycle arrest, and promoted cell apoptosis by inhibiting autophagy and the ROS-mediated PI3K/AKT pathway. This study provides a molecular basis for the development of curdepsidone A as a new chemotherapy drug for cervical cancer.
Collapse
Affiliation(s)
- Sunjie Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (S.X.); (Z.L.); (X.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, No. 4, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| |
Collapse
|
7
|
Jiang Y, Xu S, Guo M, Lu Z, Wei X, An F, Xin X. DMC triggers MDA-MB-231 cells apoptosis via inhibiting protective autophagy and PI3K/AKT/mTOR pathway by enhancing ROS level. Toxicol In Vitro 2024; 97:105809. [PMID: 38521250 DOI: 10.1016/j.tiv.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
DMC, a kind of compound derived from the dry flower buds of Cleistocalyx operculatus, has been shown to inhibit the growth of various cancer cells, but research on triple-negative breast cancer cells remains scarce. To explore this issue, MDA-MB-231 cells were selected, and the results showed that DMC has strong proliferation inhibit effects on this kind of cells. The inhibit rate of 30 μM DMC incubated for 24 h was 56.25%, and 40.6% cells were arrested under the G2/M phase. The levels of pro-apoptosis protein Bax and active caspase-3, cleaved PARP and cell cycle related proteins, such as p21 and p27 increased, but apoptosis regulators, like Bcl-2, Cdc 2, Cyclin B1, and LC3 II decreased dramatically. In addition, DMC induced the accumulation of autophagosomes and autophagic substrates, and the combination of DMC with CQ promoted apoptosis of MDA-MB-231 cells, which suggested that DMC induced apoptosis partly by blocking autophagy flow. Moreover, the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and its mechanistic target of rapamycin kinase (mTOR) were also decreased after 30 μM DMC incubating for 24 h. The proteins play a critical role in cell proliferation, apoptosis, and autophagy modulation. The inhibition of autophagy flow and PI3K/AKT/mTOR pathway could be reversed after being treated with ROS scavenger NAC. Altogether, the results of the present study suggest that DMC effectively induces apoptosis and growth inhibition in MDA-MB-231 cells through blocking autophagy flow and regulating the PI3K/AKT/mTOR pathway by increasing ROS level.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sunjie Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miaomiao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing 100048, China
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Cosmetics Co. Ltd., 121 Chengyin Road, Shanghai 200083, China
| | - Xing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4 Lane 218, Haiji Sixth Road, Shanghai 201306, China.
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Karadeniz F, Kim SK. Phospho-Chitooligosaccharides below 1 kDa Inhibit HIV-1 Entry In Vitro. Curr Issues Mol Biol 2024; 46:3729-3740. [PMID: 38666962 PMCID: PMC11049328 DOI: 10.3390/cimb46040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Despite present antiviral agents that can effectively work against HIV-1 replication, side effects and drug resistance have pushed researchers toward novel approaches. In this context, there is a continued focus on discovering new and more effective antiviral compounds, particularly those that have a natural origin. Polysaccharides are known for their numerous bioactivities, including inhibiting HIV-1 infection and replication. In the present study, phosphorylated chitosan oligosaccharides (PCOSs) were evaluated for their anti-HIV-1 potential in vitro. Treatment with PCOSs effectively protected cells from HIV-1-induced lytic effects and suppressed the production of HIV-1 p24 protein. In addition, results show that PCOSs lost their protective effect upon post-infection treatment. According to the results of ELISA, PCOSs notably disrupted the binding of HIV-1 gp120 protein to T cell surface receptor CD4, which is required for HIV-1 entry. Overall, the results point out that PCOSs might prevent HIV-1 infection at the entry stage, possibly via blocking the viral entry through disruption of virus-cell fusion. Nevertheless, the current results only present the potential of PCOSs, and further studies to elucidate its action mechanism in detail are needed to employ phosphorylation of COSs as a method to develop novel antiviral agents.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, ERICA Campus, 55 Hanyangdae-ro, Ansan 11558, Republic of Korea
| |
Collapse
|
9
|
Bai J, Wang H, Li C, Liu L, Wang J, Sun C, Zhang Q. A novel mitochondria-targeting compound exerts therapeutic effects against melanoma by inducing mitochondria-mediated apoptosis and autophagy in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:2608-2620. [PMID: 37466182 DOI: 10.1002/tox.23896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Melanoma is the most invasive skin cancer, with a high mortality rate. However, existing therapeutic drugs have side effects, low reactivity, and lead to drug resistance. As the power source in cells, mitochondria play an important role in the survival of cancer cells and are an important target for tumor therapy. This study aimed to develop a new anti-melanoma compound that targets mitochondria, evaluate its effect on the proliferation and metastasis of melanoma cells, and explore its mechanism of action. The novel mitochondria-targeting compound, SCZ0148, was synthesized by modifying the structure of cyanine. Then, A375 and B16 cells were incubated with different concentrations of SCZ0148, and different doses of SCZ0148 were administered to A375 and B16 xenograft zebrafish. The results showed that SCZ0148 targeted mitochondria, had dose- and time-dependent effects on the proliferation of melanoma cell lines, and had no obvious side effects on normal cells. In addition, SCZ0148 induced melanoma cell apoptosis through the reactive oxygen species-mediated mitochondrial pathway of apoptosis and promoted autophagy. SCZ0148 significantly inhibited the migration of melanoma cells via a matrix metalloprotein 9-mediated pathway. Similarly, SCZ0148 inhibited melanoma cell proliferation in a concentration-dependent manner in vivo. In summary, SCZ0148 may be a novel anti-melanoma compound that targets mitochondria.
Collapse
Affiliation(s)
- Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Chenwen Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
11
|
MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast Cancer Res 2023; 25:3. [PMID: 36635685 PMCID: PMC9837947 DOI: 10.1186/s13058-022-01599-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The chemotherapy of triple-negative breast cancer based on doxorubicin (DOX) regimens suffers from great challenges on toxicity and autophagy raised off-target. In this study, a conjugate methotrexate-polyethylene glycol (shorten as MTX-PEG)-modified CG/DMMA polymeric micelles were prepared to endue DOX tumor selectivity and synergistic autophagic flux interference to reduce systematic toxicity and to improve anti-tumor capacity. The micelles could effectively promote the accumulation of autophagosomes in tumor cells and interfere with the degradation process of autophagic flux, collectively inducing autophagic death of tumor cells. In vivo and in vitro experiments showed that the micelles could exert improved anti-tumor effect and specificity, as well as reduced accumulation and damage of chemotherapeutic drugs in normal organs. The potential mechanism of synergistic autophagic death exerted by the synthesized micelles in MDA-MB-231 cells has been performed by autophagic flux-related pathway.
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
14
|
You J, Zhao M, Chen S, Jiang L, Gao S, Yin H, Zhao L. Effect of chitooligosaccharides with a specific degree of polymerization on multiple targets in T2DM mice. BIORESOUR BIOPROCESS 2022; 9:94. [PMID: 38647883 PMCID: PMC10992422 DOI: 10.1186/s40643-022-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Chitooligosaccharides (COS) are found naturally in the ocean and present a variety of physiological activities, of which hypoglycemic action has attracted considerable research attention. This study aimed to assess the therapeutic effect of COS on mice suffering from type 2 diabetes mellitus (T2DM). COS effectively reduced blood glucose and blood lipid levels and improved glucose tolerance. Furthermore, COS revealed strong inhibitory activity against α-glucosidase, reducing postprandial blood glucose levels. Molecular docking data showed that COS might interact with surrounding amino acids to form a complex and decrease α-glucosidase activity. Additionally, COS enhanced insulin signal transduction and glycogen synthesis while restricting gluconeogenesis in the liver and muscles, reducing insulin resistance (IR) as a result. Moreover, COS effectively protected and restored islet cell function to increase insulin secretion. These results indicated that COS exhibited a significant hypoglycemic effect with multi-target participation. Therefore, COS may serve as a new preventive or therapeutic drug for diabetes to alleviate metabolic syndrome.
Collapse
Affiliation(s)
- Jiangshan You
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shumin Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Shuhong Gao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
15
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
16
|
Chen H, Han X, Fu Y, Dai H, Wang H, Ma L, Zhang Y. Compartmentalized chitooligosaccharide/ferritin particles for controlled co-encapsulation of curcumin and rutin. Carbohydr Polym 2022; 290:119484. [DOI: 10.1016/j.carbpol.2022.119484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
|
17
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
18
|
Tian Y, Huang X, Cheng Y, Niu Y, Meng Q, Ma J, Zhao Y, Kou X, Ke Q. Preparation of self‐adhesive microcapsules and their application in functional textiles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulei Tian
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
| | - Ying Cheng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
| | - Jiajia Ma
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University Shanghai China
| | - Yi Zhao
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University Shanghai China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University Shanghai China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics Shanghai Research Institute of Fragrance & Flavor Industry, School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai China
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University Shanghai China
| |
Collapse
|
19
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The human intestine is characterized by an abundance of nutrients and a complex microbiota that make crucial contributions to overall health. These nutrients facilitate the adaptation of resident commensals to extreme environments and the development of a robust ecological network in host species. Long-term deprivation of microbiota-accessible carbohydrates (MACs) in the gut results in a loss of bacterial diversity, disruption of intestinal barrier function, and inflammatory diseases. Functional oligosaccharides are excellent MACs possessing important prebiotic properties for intestinal health through their fermentation in the gut. Its mechanism of action is predominantly attributed to acting as carbon sources for specific probiotics, promoting short-chain fatty acids production, and regulating the gut microbiota. In this review, we describe the source and structural characteristics of functional oligosaccharides, provide a framework for strategies to improve intestinal health by oligosaccharide fermentation and discuss structural determinants influencing the functional properties of oligosaccharides.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
20
|
Sadoughi F, Asemi Z, Yousefi B, Mansournia MA, Hallajzadeh J. Cervical cancer and novel therapeutic and diagnostic approaches using chitosan as a carrier: A review. Curr Pharm Des 2022; 28:1966-1974. [PMID: 35549863 DOI: 10.2174/1381612828666220512101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
In our knowledge, using appropriate carriers in delivery of chemotherapeutic drugs, would result in better targeting and therefore it would increase the effectiveness and decrease the side effects of drugs. Chitosan, a natural polymer derived from chitin, has attracted the attention of pharmaceutical industries recently. New research show that chitosan not only can be used in drug delivery but it can also have some usages in prevention and diagnosis of cancer. This means that using chitosan Nanoformulations can be a promising approach for prevention, diagnosis, and specially treatment of cervical cancer, fourth common cancer among the women of the world. We aim to investigate the related papers to find a novel method and preventing more women from suffering.
Collapse
Affiliation(s)
| | - Zatollah Asemi
- Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | | | | |
Collapse
|
21
|
Liu Y, Li H, Zheng Z, Niu A, Liu S, Li W, Ren P, Liu Y, Inam M, Guan L, Ma H. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway. Int J Biol Macromol 2022; 212:257-274. [DOI: 10.1016/j.ijbiomac.2022.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
|
22
|
Chen J, Zhou Z, Zheng C, Liu Y, Hao R, Ji X, Xi Q, Shen J, Li Z. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. Carbohydr Polym 2022; 277:118869. [PMID: 34893274 DOI: 10.1016/j.carbpol.2021.118869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiqi Hao
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaolin Ji
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiaoer Xi
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
23
|
Ji X, Zhu L, Chang K, Zhang R, Chen Y, Yin H, Jin J, Zhao L. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro. Carbohydr Polym 2022; 275:118716. [PMID: 34742440 DOI: 10.1016/j.carbpol.2021.118716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023]
Abstract
Consumption of chitooligosaccharides (COS) prevents intestinal microecological disorder. The mechanisms for the effects of different COS on the gut microbiota are currently unclear. This study examined the impact of COS with different degrees of polymerization (DPs) on the gut microbial community and metabolic profile. COS significantly promoted the growth of Bacteroidetes, and inhibited that of Proteobacteria, which were significantly correlated with DPs. COS3 and COS2 enriched the butyrate production in microbial communities composed of Clostridium and Parabacteroides. Microbial communities enriched by DPs 4-6 COS displayed increased diversity in differential metabolite function. Several biomarkers were distinguished significantly, including unsaturated fatty acids, bile acids, indoles and amines, which are mainly related to processes such as fatty acid synthesis and decomposition, bile acid modification, and tryptophan metabolism. The results display the relationship among COS structure-gut microbes-metabolomics, providing a new perspective for COS as a functional food to improve intestinal health.
Collapse
Affiliation(s)
- Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liangliang Zhu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Yijia Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Chang-Zheng Hospital, Shanghai 200003, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
24
|
Kumar M, Madhuprakash J, Balan V, Kumar Singh A, Vivekanand V, Pareek N. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase. BIORESOURCE TECHNOLOGY 2021; 337:125399. [PMID: 34147005 DOI: 10.1016/j.biortech.2021.125399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study a two-step chemoenzymatic method for production of short chain chitooligosaccharides. Chitin was chemically pretreated using sulphuric acid, sodium hydroxide and two different ionic liquids, 1-Ethyl-3-methylimidazolium bromide and Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate under mild processing conditions. Pretreated chitin was further hydrolyzed employing purified chitinase from Thermomyces lanuginosus ITCC 8895. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate treated chitin appeared amorphous and resulted in generation of 1.10 ± 0.89 mg ml-1 of (GlcNAc)2 and 1.07 ± 0.92 mg ml-1 of (GlcNAc)3. Further derivation of optimum conditions through two-factor-9 run experiments resulted in to 1.5 and 1.3 fold increments in (GlcNAc)2 and (GlcNAc)3 production, respectively. 0.1 g of both (GlcNAc)2 and (GlcNAc)3 has been purified from the Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate pretreated chitin (1 g) employing cation exchange chromatography. The present study will lay the foundation for development of a green sustainable solution for cost effective upcycling of coastal residual resources to chito-bioactives.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad 500046, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Amit Kumar Singh
- Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
25
|
Zhang Y, Liu Y, Zhou Y, Zheng Z, Tang W, Song M, Wang J, Wang K. Lentinan inhibited colon cancer growth by inducing endoplasmic reticulum stress-mediated autophagic cell death and apoptosis. Carbohydr Polym 2021; 267:118154. [PMID: 34119128 DOI: 10.1016/j.carbpol.2021.118154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Lentinan (SLNT) has been shown to be directly cytotoxic to cancer cells. However, this direct antitumour effect has not been thoroughly investigated in vivo, and the mechanism remains unclear. We aimed to examine the direct antitumour effect of SLNT on human colon cancer and the mechanism in vivo and in vitro. SLNT significantly inhibited tumour growth and induced autophagy and endoplasmic reticulum stress (ERS) in HT-29 cells and tumour-bearing nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Experiments with the autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) showed that autophagy facilitated the antitumour effect of SLNT. Moreover, ERS was identified as the common upstream regulator of SLNT-induced increases in Ca2+concentrations, autophagy and apoptosis by using ERS inhibitors. In summary, our study demonstrated that SLNT exerted direct antitumour effects on human colon cancer via ERS-mediated autophagy and apoptosis, providing a novel understanding of SLNT as an anti-colon cancer therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenqi Tang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
26
|
Chen C, Gao H, Su X. Autophagy-related signaling pathways are involved in cancer (Review). Exp Ther Med 2021; 22:710. [PMID: 34007319 PMCID: PMC8120650 DOI: 10.3892/etm.2021.10142] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a self-digestion process in cells that can maintain energy homeostasis under normal circumstances. However, misfolded proteins, damaged mitochondria and other unwanted components in cells can be decomposed and reused via autophagy in some specific cases (including hypoxic stress, low energy states or nutrient deprivation). Therefore, autophagy serves a positive role in cell survival and growth. However, excessive autophagy may lead to apoptosis. Furthermore, abnormal autophagy may lead to carcinogenesis and promote tumorigenesis in normal cells. In tumor cells, autophagy may provide the energy required for excessive proliferation, promote the growth of cancer cells, and evade apoptosis caused by certain treatments, including radiotherapy and chemotherapy, resulting in increased treatment resistance and drug resistance. On the other hand, autophagy leads to an insufficient nutrient supply in cancer cells and the destruction of energy homeostasis, thereby inducing cancer cell apoptosis. Therefore, understanding the mechanism of the double-edged sword of autophagy is crucial for the treatment of cancer. The present review summarizes the signaling pathways and key factors involved in autophagy and cancer to provide possible strategies for treating tumors.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Hui Gao
- Department of Thoracic Surgery, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, Inner Mongolia 010020, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
27
|
Preparation and characterization of chitosan oligosaccharide derivatives containing cinnamyl moieties with enhanced antibacterial activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Ji XG, Chang KL, Chen M, Zhu LL, Osman A, Yin H, Zhao LM. In vitro fermentation of chitooligosaccharides and their effects on human fecal microbial community structure and metabolites. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Chen X, Bremner DH, Ye Y, Lou J, Niu S, Zhu LM. A dual-prodrug nanoparticle based on chitosan oligosaccharide for enhanced tumor-targeted drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|
31
|
Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym 2021; 258:117596. [DOI: 10.1016/j.carbpol.2020.117596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
|
32
|
Zheng Q, Meng X, Cheng M, Li Y, Liu Y, Chen X. Cloning and Characterization of a New Chitosanase From a Deep-Sea Bacterium Serratia sp. QD07. Front Microbiol 2021; 12:619731. [PMID: 33717008 PMCID: PMC7943732 DOI: 10.3389/fmicb.2021.619731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Chitosanase is a significant chitosan-degrading enzyme involved in industrial applications, which forms chitooligosaccharides (COS) as reaction products that are known to have various biological activities. In this study, the gene csnS was cloned from a deep-sea bacterium Serratia sp. QD07, as well as over-expressed in Escherichia coli, which is a new chitosanase encoding gene. The recombinant strain was cultured in a 5 L fermenter, which yielded 324 U/mL chitosanases. After purification, CsnS is a cold-adapted enzyme with the highest activity at 60°C, showing 37.5% of the maximal activity at 0°C and 42.6% of the maximal activity at 10°C. It exhibited optimum activity at pH 5.8 and was stable at a pH range of 3.4–8.8. Additionally, CsnS exhibited an endo-type cleavage pattern and hydrolyzed chitosan polymers to yield disaccharides and trisaccharides as the primary reaction products. These results make CsnS a potential candidate for the industrial manufacture of COS.
Collapse
Affiliation(s)
- Qiuling Zheng
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Mingyang Cheng
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanfeng Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuanpeng Liu
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Zhu C, Zhao M, Fan L, Cao X, Xia Q, Zhou J, Yin H, Zhao L. Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial mediated apoptosis and suppressing protective autophagy. BIORESOUR BIOPROCESS 2021; 8:4. [PMID: 38650195 PMCID: PMC10992246 DOI: 10.1186/s40643-020-00358-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/23/2020] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadliest cancers. In this study, the anti-tumor effect of singular degree of polymerization (DP) chitooligosaccharides (COS) (DP 2-5) and the underlay molecular mechanisms were investigated on HCC cell line HepG2. MTT assay showed that (GlcN)5 have the best anti-proliferation effect among the different DP of COS (DP2-5). Furthermore, the administration of (GlcN)5 could decrease mitochondrial membrane potential, release cytochrome c into cytoplasm, activate the cleavage of Caspases9/3, thus inducing mitochondrial-mediated apoptosis in HepG2 cells (accounting for 24.57 ± 2.25%). In addition, (GlcN)5 treatment could increase the accumulation of autophagosomes. Further investigation showed that (GlcN)5 suppressed protective autophagy at the fusion of autophagosomes and lysosomes. Moreover, the inhibition of protective autophagy flux by (GlcN)5 could further decrease cell viability and increase the apoptosis rate. Our findings suggested that (GlcN)5 suppressed HepG2 proliferation through inducing apoptosis via the intrinsic pathway and impairing cell-protective autophagy. COS might have the potential to be an agent for lowering the risk of HCC.
Collapse
Affiliation(s)
- Chunfeng Zhu
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Xuni Cao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Quanming Xia
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Jiachun Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
34
|
Bi R, Yue L, Niazi S, Khan IM, Sun D, Wang B, Wang Z, Jiang Q, Xia W. Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydr Polym 2021; 251:117099. [DOI: 10.1016/j.carbpol.2020.117099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
35
|
Chitooligosaccharides-modified PLGA nanoparticles enhance the antitumor efficacy of AZD9291 (Osimertinib) by promoting apoptosis. Int J Biol Macromol 2020; 162:262-272. [DOI: 10.1016/j.ijbiomac.2020.06.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
|
36
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
37
|
Elbehairi SEI, Alfaifi MY, Shati AA, Alshehri MA, Elshaarawy RF, Hafez HS. Role of Pd(II)–chitooligosaccharides–Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chem Biol Drug Des 2020; 96:1148-1161. [DOI: 10.1111/cbdd.13703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Serag Eldin I. Elbehairi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
- Cell Culture Lab Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) Giza Egypt
| | - Mohammad Y. Alfaifi
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | - Ali A. Shati
- Biology Department Faculty of Science King Khalid University Abha Saudi Arabia
| | | | - Reda F.M. Elshaarawy
- Chemistry Department Faculty of Science Suez University Suez Egypt
- Institut für Anorganische Chemie und Strukturchemie Heinriche‐Heine‐Universität Düsseldorf DÜSSELDORF Germany
| | - Hani S. Hafez
- Zoology Department Faculty of Science Suez University Suez Egypt
| |
Collapse
|
38
|
Kumar M, Rajput M, Soni T, Vivekanand V, Pareek N. Chemoenzymatic Production and Engineering of Chitooligosaccharides and N-acetyl Glucosamine for Refining Biological Activities. Front Chem 2020; 8:469. [PMID: 32671017 PMCID: PMC7329927 DOI: 10.3389/fchem.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Chitooligosaccharides (COS) and N-acetyl glucosamine (GlcNAc) are currently of enormous relevance to pharmaceutical, nutraceutical, cosmetics, food, and agriculture industries due to their wide range of biological activities, which include antimicrobial, antitumor, antioxidant, anticoagulant, wound healing, immunoregulatory, and hypocholesterolemic effects. A range of methods have been developed for the synthesis of COS with a specific degree of polymerization along with high production titres. In this respect, chemical, enzymatic, and microbial means, along with modern genetic manipulation techniques, have been extensively explored; however no method has been able to competently produce defined COS and GlcNAc in a mono-system approach. Henceforth, the chitin research has turned toward increased exploration of chemoenzymatic processes for COS and GlcNAc generation. Recent developments in the area of green chemicals, mainly ionic liquids, proved vital for the specified COS and GlcNAc synthesis with better yield and purity. Moreover, engineering of COS and GlcNAc to generate novel derivatives viz. carboxylated, sulfated, phenolic acid conjugated, amino derived COS, etc., further improved their biological activities. Consequently, chemoenzymatic synthesis and engineering of COS and GlcNAc emerged as a useful approach to lead the biologically-active compound-based biomedical research to an advanced prospect in the forthcoming era.
Collapse
Affiliation(s)
- Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Meenakshi Rajput
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
39
|
Inhibitory activity of biofunctionalized silver-capped N-methylated water-soluble chitosan thiomer for microbial and biofilm infections. Int J Biol Macromol 2020; 152:709-717. [PMID: 32119949 DOI: 10.1016/j.ijbiomac.2020.02.284] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
One of the most important self-defense strategies employed by bacteria to resist the action of antibiotics is a biofilm formation upon the infected surface. Thus, there is an urgent need to explore novel candidates that have potent antibacterial and anti-biofilm effects to tackle this challenge. In this endeavor, we have transformed shrimp shell wastes to N-methylated water-soluble chitosan thiomer (MWSCT) which was used as either a chelating agent or bio-reductant and capping agent for Ag(I) ions in the preparation of a Ag(I)MWSCT complex or silver nanocomposite (Ag(0)MWSCT), for targeting antibacterial and anti-biofilm applications. The antibacterial and anti-biofilm performance of the new methylated chitosan thiomer (MWSCT) and its silver architectures (Ag(I)MWSCT, Ag(0)MWSCT) were assessed in vitro against E. coli and S. aureus. These new materials have significant capacities to synergistically inhibit the proliferation of the targeted bacterial cells and biofilm formation, in a structure- and species-dependent manner. Ag(0)MWSCT emerged as the most potent compound in inhibiting the growth of bacterial strains (MICE. coli/ MICS. aureus = 0.05/ 0.34 μg/mL, 1.6-/ 2.5-times lower than that recorded for the clinical drug (ciprofloxacin, Cipro). Also, this nanocomposite showed the highest anti-biofilm effects (only 1.7% E. coli biofilm growth; 11.8% staphylococcal biofilm growth).
Collapse
|