1
|
Irfan M, Nasir F, Naveed M, Javed S, Yousaf Z, Shafiq S, Munir H. Unlocking the potential of plant gums: Bioinformatics-driven insights into green synthesis and applications of metal-based nanoparticles. Int J Biol Macromol 2025; 308:142584. [PMID: 40154705 DOI: 10.1016/j.ijbiomac.2025.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Plant gums (PGs) are naturally occurring heteropolysaccharides that exude from different plants, typically from their stems, bark, and seeds. They are non-toxic, biodegradable, biocompatible, and cost-effective. PGs are commonly used as emulsifiers, stabilizers, and thickeners in the pharmaceutical, food, and cosmetics industries. Chemically, they are composed of complex sugars, with minor components including proteins, minerals, and flavonoids. Owing to their diverse phytochemical profiles, they have been comprehensively studied over the last couple of decades as reducing, capping, and stabilizing agents for the synthesis of metallic nanoparticles (NPs). Researchers have synthesized various eco-friendly metallic NPs from PGs for potential applications in environmental, industrial, and pharmaceutical domains. This review thoroughly covers the synthesis, characterization techniques, and diverse applications of PG-based metallic NPs. For the first time, using advanced informatics tools like PubChem, ChemSpider, and SwissADME, this study provides novel insights into the molecular interactions and stabilization of PG-based NPs. The review also analyzes the diverse composition of PGs and explores the unique reducing and capping potential of their phytochemicals in the green synthesis of metallic NPs. It also examines the potential drawbacks and proposes possible solutions related to PG-based metallic NP synthesis, along with discussing the future prospects of these nanomaterials.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan.
| | - Farwa Nasir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Sofia Javed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Zainab Yousaf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Sheeza Shafiq
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry, Govt. Women College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Shaibat Alhamd MA, Gawad OFA, Eldin ZE, Elzanaty AM, Arafa EG. Schiff's base transformation: Enhancing biological activity of xanthan gum by grafting with acrylonitrile. Int J Biol Macromol 2025; 307:142354. [PMID: 40120902 DOI: 10.1016/j.ijbiomac.2025.142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The graft copolymerization of acrylonitrile (ACN) onto xanthan gum (XG) was performed via free radical polymerization using ammonium persulfate (APS) as the initiator. Key parameters influencing the grafting process were optimized, and Schiff base derivatives were synthesized through reactions with aromatic aldehydes to modify the grafted copolymer further. The modified copolymers were characterized using FT-IR, X-ray diffraction, thermal analysis, and scanning electron microscopy. This study evaluated the antimicrobial and antifungal efficacy of Ethylene diamine-modified XG-g-PAN compounds. EDA XG-g-PAN V exhibited the strongest antibacterial activity against Gram-positive and Gram-negative bacteria, exhibiting the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. For antifungal activity against C. albicans, XG-g-PAN III and EDA XG-g-PAN V were most effective, with MIC values of 62.5 μg/mL and 83 μg/mL, respectively. EDA XG-g-PAN V significantly inhibited S. aureus growth over 24 h and demonstrated dose-dependent bacterial membrane disruption, as evidenced by protein leakage assays. The cytotoxic effects of EDA XG-g-PAN V were tested on HL-7702 liver cells, NIH3T3 fibroblast cells, and HaCaT keratinocytes, showing a concentration-dependent response. At lower doses (<125 μg/mL), cell viability exceeded 80 %, indicating good compatibility for biomedical use, whereas higher doses (>500 μg/mL) significantly reduced viability to around 60 %.
Collapse
Affiliation(s)
| | - Omayma Fawzy Abdel Gawad
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt; Petroleum Chemistry, Faculty of Basic Sciences, King Salman International University, South Saini, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ali M Elzanaty
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Esraa G Arafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt.
| |
Collapse
|
3
|
Li D, Chen L, Qiu X. Rapid synthesis of ferulic acid-derived lignin coated silver nanoparticles with low cytotoxicity and high antibacterial activity. Int J Biol Macromol 2024; 277:134471. [PMID: 39102905 DOI: 10.1016/j.ijbiomac.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Antibiotic resistance and the rise of untreatable bacterial infections pose severe threats to human health. Silver nanoparticles (AgNPs) have emerged as a promising antibacterial solution due to their broad-spectrum effectiveness. However, their relatively high cytotoxicity has limited their widespread application. In this study, ferulic acid (FA) was used as a reducing agent, while silver oxide served as a silver precursor to rapidly prepare FA-derived lignin (FAL) coated AgNPs (AgNPs@FAL) with a size ranging from 34.8 to 77.1 nm. Density functional theory (DFT) calculations indicated that the coating of FAL endowed AgNPs@FAL with high stability, preventing the oxidation of AgNPs prior to antibacterial applications. Cell experiments further indicated that AgNPs@FAL exhibited lower cell toxicity (∼80 % viability of normal kidney cells cultured at 25 μg/mL AgNPs@FAL) compared to fully exposed commercially available citrate-modified AgNPs (AgNPs@CA). Antibacterial experiments revealed that the minimum inhibitory concentrations (MIC) of AgNPs@FAL against E. coli and S. aureus were 12.5 μg/mL and 25 μg/mL, respectively, surpassing the antibacterial effect of AgNPs@CA, as well as ampicillin and penicillin. Additionally, AgNPs@FAL was capable of disrupting E. coli and S. aureus biofilm formation. This novel AgNPs@FAL formulation presents a promising antibacterial solution, addressing limitations observed in conventional drugs.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
4
|
Sousa PSDA, Rodrigues RRL, Souza VMRD, Araujo SSDM, Franco MSCR, Santos LBPD, Ribeiro FDOS, Paiva Junior JR, Araujo-Nobre ARD, Rodrigues KADF, Silva DAD, Feitosa JPDA, Perfeito MLG, Véras LMC, Rocha JA. Antimicrobial activity of nanoparticles based on carboxymethylated cashew gum and epiisopiloturine: In vitro and in silico studies. Int J Biol Macromol 2024; 274:133048. [PMID: 38857734 DOI: 10.1016/j.ijbiomac.2024.133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Epiisopiloturine (EPI) is a compound found in jaborandi leaves with antiparasitic activity, which can be enhanced when incorporated into nanoparticles (NP). Cashew Gum (CG), modified by carboxymethylation, is used to produce polymeric nanomaterials with biological activity. In this study, we investigated the antimicrobial potential of carboxymethylated CG (CCG) NP containing EPI (NPCCGE) and without the alkaloid (NPCCG) against bacteria and parasites of the genus Leishmania. We conducted theoretical studies, carboxymethylated CG, synthesized NP by nanoprecipitation, characterized them, and tested them in vitro. Theoretical studies confirmed the stability of modified carbohydrates and showed that the EPI-4A30 complex had the best interaction energy (-8.47 kcal/mol). CCG was confirmed by FT-IR and presented DSabs of 0.23. NPCCG and NPCCGE had average sizes of 221.94 ± 144.086 nm and 247.36 ± 3.827 nm, respectively, with homogeneous distribution and uniform surfaces. No NP showed antibacterial activity or cytotoxicity to macrophages. NPCCGE demonstrated antileishmanial activity against L. amazonensis, both in promastigote forms (IC50 = 9.52 μg/mL, SI = 42.01) and axenic amastigote forms (EC50 = 6.6 μg/mL, SI = 60.60). The results suggest that nanostructuring EPI in CCG enhances its antileishmanial activity.
Collapse
Affiliation(s)
- Paulo Sérgio de Araujo Sousa
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Maranhão, UFMA, São Bernardo, Maranhão, MA, Brasil
| | - Raiza Raianne Luz Rodrigues
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Laboratório de Doenças Infecciosas, LADIC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Vanessa Maria Rodrigues de Souza
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Laboratório de Doenças Infecciosas, LADIC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Sansara Sanny de Mendonça Araujo
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | | | - Luma Brisa Pereira Dos Santos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Fábio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - José Ribamar Paiva Junior
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, UFC, Fortaleza, Ceará, CE, Brasil
| | - Alyne Rodrigues de Araujo-Nobre
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Klinger Antonio da Franca Rodrigues
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Laboratório de Doenças Infecciosas, LADIC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Durcilene Alves da Silva
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | | | - Márcia Luana Gomes Perfeito
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Leiz Maria Costa Véras
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, Piauí, PI, Brasil; Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Maranhão, UFMA, São Bernardo, Maranhão, MA, Brasil.
| |
Collapse
|
5
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
6
|
Seku K, Pejjai B, Osman AI, Hussaini SS, Al-Abri M, Swathi R, Hussain M, Kumar NS, Al-Fatesh AS, Bhagavanth Reddy G. Microwave-assisted synthesis of Limonia acidissima Groff gum stabilized palladium nanoparticles for colorimetric glucose sensing. J Colloid Interface Sci 2024; 659:718-727. [PMID: 38211489 DOI: 10.1016/j.jcis.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Herein, we present a novel microwave-assisted method for the synthesis of palladium nanoparticles (PdNPs) supported by Limonia acidissima Groff tree extract gum. The synthesized PdNPs were characterized using various analytical techniques, including FTIR, SEM, TEM, UV-visible, and powder XRD analyses. TEM and XRD analysis confirmed that the synthesized LAG-PdNPs are highly crystalline nature spherical shapes with an average size diameter of 7-9 nm. We employed these gum-capped PdNPs to investigate their peroxidase-like activity for colorimetric detection of hydrogen peroxide (H2O2) and glucose. The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, catalyzed by PdNPs, produces oxidation products quantified at 652 nm using spectrophotometry. The catalytic activity of PdNPs was optimized with respect to temperature and pH. The developed method exhibited a linear range of detection from 1 to 50 µm, with detection limits of 0.35 µm for H2O2 and 0.60 µm for glucose.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - R Swathi
- Department of Chemistry, KDR Govt Polytechnique College, Wanaparthi, Telangana 509103, India
| | - Mushtaq Hussain
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - G Bhagavanth Reddy
- Department of Chemistry, PG Centre Wanaparthy, Palamuru University, Telangana State 509103, India.
| |
Collapse
|
7
|
Chaves LS, Oliveira ACP, Pinho SS, Sousa GC, Oliveira AP, Lopes ALF, Pacheco G, Nolêto IRSG, Nicolau LAD, Ribeiro FOS, Sombra VG, Araújo TDS, Leite JRSA, Alves EHP, Vasconcelos DFP, Filho JDBM, Paula RCM, Silva DA, Medeiros JVR. Gastroprotective activity and physicochemical analysis of carboxymethylated gum from Anadenanthera colubrina. Int J Biol Macromol 2024; 260:129397. [PMID: 38219933 DOI: 10.1016/j.ijbiomac.2024.129397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Biotechnological advancements require the physicochemical alteration of molecules to enhance their biological efficacy for the effective treatment of gastric ulcers. The study aimed to produce a polyelectrolytic compound from red angico gum (AG) by carboxymethylation, evaluate its physicochemical characteristics and investigate gastric protection against ethanol-induced ulcers. AG and carboxymethylated angico gum (CAG) were characterized by Fourier transform infrared spectroscopy, determination of the degree of substitution and gel permeation chromatography (GPC) and 13C NMR techniques. The results demonstrated that the modification of the polymer was satisfactory, presenting conformational changes e improving the interaction with the gastric mucosa. AG and CAG reduced macroscopic and microscopic damage such as edema, hemorrhage and cell loss caused by exposure of the mucosa to alcohol. Both demonstrated antioxidant activity in vitro, and in vivo, pretreatment with gums led to the restoration of superoxide dismutase and glutathione levels compared to the injured group. Concurrently, the levels of malondialdehyde and nitrite decreased. Atomic force microscopy showed that CAG presented better conformational properties of affinity and protection with the gastric mucosa compared to AG in the acidic pH. Based on our findings, it is suggested that this compound holds promise as a prospective product for future biotechnological applications.
Collapse
Affiliation(s)
- Letícia S Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antonio C P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Samara S Pinho
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle C Sousa
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - André L F Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela R S G Nolêto
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucas A D Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio O S Ribeiro
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasília, Brasília, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Venicios G Sombra
- University of International Integration of Afro-Brazilian Lusophony (UNILAB), Redenção, Ceará, Brazil
| | - Thais D S Araújo
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - José R S A Leite
- Center for Research in Applied Morphology and Immunology, NuPMIA, University of Brasília, Brasília, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Even H P Alves
- Laboratory of Analysis and Histological Processing (LAPHIS), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Daniel F P Vasconcelos
- Laboratory of Analysis and Histological Processing (LAPHIS), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - José D B M Filho
- Laboratory of Culture Cells Delta (LCCDelta), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Regina C M Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand V R Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Delta do Parnaíba, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
8
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
9
|
Recent Progress on Modified Gum Katira Polysaccharides and Their Various Potential Applications. Polymers (Basel) 2022; 14:polym14173648. [PMID: 36080723 PMCID: PMC9460252 DOI: 10.3390/polym14173648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gum katira polysaccharide is biocompatible and non-toxic, and has antioxidant, anti-microbial, and immunomodulatory properties. It is a natural polysaccharide and exudate derived from the stem bark of Cochlospermum reliogosum Linn. Additionally, it has many traditional medicinal uses as a sedative and for the treatment of jaundice, gonorrhea, syphilis, and stomach ailments. This article provides an overview of gum katira, including its extraction, separation, purification, and physiochemical properties and details of its characterization and pharmacognostic features. This paper takes an in-depth look at the synthetic methods used to modify gum katira, such as carboxymethylation and grafting triggered by free radicals. Furthermore, this review provides an overview of its industrial and phytopharmacological applications for drug delivery and heavy metal and dye removal, its biological activities, its use in food, and the potential use of gum katira derivatives and their industrial applications. We believe researchers will find this paper useful for developing techniques to modify gum katira polysaccharides to meet future demands.
Collapse
|
10
|
Landeros-Páramo L, Saavedra-Molina A, Gómez-Hurtado MA, Rosas G. The effect of AgNPS bio-functionalization on the cytotoxicity of the yeast Saccharomyces cerevisiae. 3 Biotech 2022; 12:196. [PMID: 35928500 PMCID: PMC9343563 DOI: 10.1007/s13205-022-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
This work used Sedum praealtum leaf extract to synthesize silver nanoparticles (AgNPs) in a single step. The cytotoxicity of AgNPs was studied with the yeast Saccharomyces cerevisiae W303-1. In addition, the antioxidant activity of the DPPH radical was studied both in the extract of S. praealtum and in the AgNPs. UV-Vis spectroscopy determined the presence of AgNPs by the location of the surface plasmon resonance (SPR) band at 434 nm. TEM and XRD analyzes show AgNPs with fcc structure and hemispherical morphology. Also, AgNPs range in size from 5 to 25 nm and have an average size of 14 nm. 1H NMR, FTIR, and UV-Vis spectroscopy techniques agreed that glycosidic compounds were the main phytochemical components responsible for the reduction and stabilization of AgNPs. In addition, AgNPs presented a maximum of 12% toxicity in yeast attributed to the generation of ROS. Consequently, there was low bioactivity because glycoside compounds cover the biosynthesized AgNPs from S. praealtum. These findings allow applications of AgNPs involving contact with mammals and higher organisms.
Collapse
Affiliation(s)
- L. Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - A. Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| |
Collapse
|
11
|
Amaral RG, de Andrade LRM, Andrade LN, Loureiro KC, Souto EB, Severino P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. MICROMACHINES 2022; 13:mi13071137. [PMID: 35888956 PMCID: PMC9315767 DOI: 10.3390/mi13071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022]
Abstract
Natural polysaccharides are structures composed of highly diversified biological macromolecules whose properties have been exploited by a diversity of industries. Until 2018, the polysaccharides market raised more than US $ 12 billion worldwide, while an annual growth forecast of 4.8% is expected by 2026. The food industry is largely responsible for the consumption of this plant-source material, produced by microbiological fermentation. Among the used polysaccharides, gums are hydrocolloids obtained from a variety of sources and in different forms, being composed of salts of calcium, potassium, magnesium and sugar monomers. Their non-toxicity, hydrophilicity, viscosity, biodegradability, biocompatibility and sustainable production are among their main advantages. Although Brazil is amongst the largest producers of cashew gum, reaching 50 tons per year, the polysaccharide is not being used to its full potential, in particular, with regard to its uses in pharmaceuticals. Cashew gum (CG), obtained from Anacardium occidentale L., caught the attention of the industry only in 1970; in 1990, its production started to grow. Within the Brazilian academy, the groups from the Federal University of Ceará and Piauí are devoting the most efforts to the study of cashew gum, with a total of 31 articles already published. The number of patents in the country for innovations containing cashew tree gum has reached 14, including the technological process for the purification of cashew tree gum, comparison of physical and chemical methods for physicochemical characterizations, and optimum purification methodology. This scenario opens a range of opportunities for the use of cashew gum, mainly in the development of new pharmaceutical products, with a special interest in nanoparticles.
Collapse
Affiliation(s)
- Ricardo G. Amaral
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil;
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil;
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe, Lagarto, Sergipe 49400-000, Brazil;
| | - Kahynna C. Loureiro
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.B.S.); (P.S.)
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
- Correspondence: (E.B.S.); (P.S.)
| |
Collapse
|
12
|
Badwaik HR, Kumari L, Maiti S, Sakure K, Ajazuddin, Nakhate KT, Tiwari V, Giri TK. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int J Biol Macromol 2022; 209:2197-2212. [PMID: 35508229 DOI: 10.1016/j.ijbiomac.2022.04.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Diverse properties of natural gums have made them quite useful for various pharmaceutical applications. However, they suffer from various problems, including unregulated hydration rates, microbial degradation, and decline in viscosity during warehousing. Among various chemical procedures for modification of gums, carboxymethylation has been widely studied due to its simplicity and efficiency. Despite the availability of numerous research articles on natural gums and their uses, a comprehensive review on carboxymethylation of natural gums and their applications in the pharmaceutical and other biomedical fields is not published until now. This review outlines the classification of gums and their derivatization methods. Further, we have discussed various techniques of carboxymethylation, process of determination of degree of substitution, and functionalization pattern of substituted gums. Detailed information about the application of carboxymethyl gums as drug delivery carriers has been described. The article also gives a brief account on tissue engineering and cell delivery potential of carboxymethylated gums.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India.
| | - Leena Kumari
- School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaibhav Tiwari
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
13
|
Green synthesis of silver nanoparticles using sodium alginate and tannic acid: characterization and anti-S. aureus activity. Int J Biol Macromol 2022; 195:515-522. [PMID: 34920064 DOI: 10.1016/j.ijbiomac.2021.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
Multi-drug resistance and biofilm formation are a growing problem in the treatment of Staphylococcus aureus contamination. Advances in nanotechnology allow the synthesis of metal nanoparticles that can be assembled into complex architectures for controlling bacterial growth. This study aims to investigate the ultrasonic-assisted green synthesis of silver nanoparticles (AgNPs) by tannic acid (TA) and sodium alginate (Na-Alg) as the reducing and stabilizing agents, respectively, and evaluation of their antibacterial and antibiofilm activities. The UV-Vis spectroscopy and transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zetasizer, FT-IR spectroscopy, and X-ray diffraction (XRD) studies showed that the optimum produces were spherical, stable, and monodispersed AgNPs with an average size of particle sizes of 18.52 ± 0.07 nm. The antibacterial and antibiofilm activities of the AgNPs loaded TA/Na-Alg constructs against S. aureus ATCC 6538 were investigated. The minimum inhibitory concentration (MIC) of the AgNPs was 31.25 μg/mL. After exposure to the AgNPs, planktonic S. aureus showed irreversible cell membrane damage, decreased cell viability, and changes in cellular morphology. In addition, the AgNps significantly inhibited S. aureus biofilm formation at 1/32 MIC. The biofilm elimination rate was 58.87% after exposure to MIC AgNPs. The results suggested that the development of AgNPs loaded TA/Na-Alg constructs with biomedical potentialities obtained through a simple, green, and cost-effective approach, may be suitable for the formulation of a new strategy for combating S. aureus.
Collapse
|
14
|
Nanoemulsion of cashew gum and clove essential oil (Ocimum gratissimum Linn) potentiating antioxidant and antimicrobial activity. Int J Biol Macromol 2021; 193:100-108. [PMID: 34627848 DOI: 10.1016/j.ijbiomac.2021.09.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.
Collapse
|
15
|
das Graças Nascimento Amorim A, Sánchez-Paniagua M, de Oliveira TM, Mafud AC, da Silva DA, de Souza de Almeida Leite JR, López-Ruiz B. Synthesis, characterization and use of enzyme cashew gum nanoparticles for biosensing applications. J Mater Chem B 2021; 9:6825-6835. [PMID: 34369539 DOI: 10.1039/d1tb01164b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research reports, for the first time, the immobilization of an enzyme - Rhus vernificera laccase - on cashew gum (CG) nanoparticles (NPs) and its application as a biological layer in the design and development of an electrochemical biosensor. Laccase-CG nanoparticles (LacCG-NPs) were prepared by the nanoprecipitation method and characterized by UV-Vis spectrophotometry, atomic force microscopy, scanning electron microscopy, attenuated total reflectance-Fourier-transform infrared spectroscopy, circular dichroism, cyclic voltammetry, and electrochemical impedance spectroscopy. The average size and stability of the NPs were predicted by DLS and zeta potential. The ATR-FTIR results clearly demonstrated an interaction between -NH and -OH groups to form LacCG-NPs. The average size found for LacCG-NPs was 280 ± 53 nm and a polydispersity index of 0.309 ± 0.08 indicated a good particle size distribution. The zeta potential shows a good colloidal stability. The use of a natural product to prepare the enzymatic nanoparticles, its easy synthesis and the immobilization efficiency should be highlighted. LacCG-NPs were successfully applied as a biolayer in the development of an amperometric biosensor for catechol detection. The resulting device showed a low response time (6 s), good sensitivity (7.86 μA μM-1 cm-2), wide linear range of 2.5 × 10-7-2.0 × 10-4 M, and low detection limit (50 nM).
Collapse
|
16
|
Silva SMF, Ribeiro HL, Mattos ALA, Borges MDF, Rosa MDF, de Azeredo HMC. Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1979-1986. [PMID: 33897034 DOI: 10.1007/s13197-020-04709-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Cashew is a major crop in several tropical countries. Its cultivation is mostly aimed to the production of cashew nuts, whereas its byproducts (including cashew tree gum and cashew apples) are underutilized. In this study, cashew tree gum (CG) has been combined to nanofibrillated bacterial cellulose (NFBC) produced from cashew apple juice, at different ratios (from CG-only to NFBC-only), to produce edible films. While the CG-only dispersion (at 1 wt%) behaved as a quasi-Newtonian fluid, the addition of NFBC provided a shear-thinning behavior, making the dispersions easier to process, especially to cast. Moreover, the films containing increasing NFBC contents exhibited better physico-mechanical performance. When compared to the CG-only film, the films containing at least 25% NFBC presented remarkably higher strength and modulus (even similar to some conventional petroleum-derived polymers), lower water vapor permeability (WVP), and lower water solubility, although at the expense of lower elongation and higher opacity values. The combined use of both polysaccharides was demonstrated to be useful to overcome the limitations of both CG-only films (very low viscosity, poor tensile properties and very high WVP) and NFBC-only films (very high viscosity, making the dispersions difficult to mix and spread). Moreover, the use of different NFBC/CG ratios allow properties to be tuned to meet specific demands for different food packaging or coating purposes. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Sarah Maria Frota Silva
- Chemical Engineering Department, Federal University of Ceara, Campus Pici, Fortaleza, CE 60455-760 Brazil
| | - Hálisson Lucas Ribeiro
- Chemical Engineering Department, Federal University of Ceara, Campus Pici, Fortaleza, CE 60455-760 Brazil
| | | | - Maria de Fátima Borges
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110 Brazil
| | | | - Henriette Monteiro Cordeiro de Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110 Brazil
- Embrapa Instrumentação, R. 15 de novembro, 1452, São Carlos, SP 13560-970 Brazil
| |
Collapse
|
17
|
Arsène MMJ, Podoprigora IV, Davares AKL, Razan M, Das MS, Senyagin AN. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Vet World 2021; 14:1330-1341. [PMID: 34220139 PMCID: PMC8243687 DOI: 10.14202/vetworld.2021.1330-1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND AIM The gradual loss of efficacy of conventional antibiotics is a global issue. Plant material extracts and green-synthesized nanoparticles are among the most promising options to address this problem. Therefore, the aim of this study was to assess the antibacterial properties of aqueous and hydroalcoholic extracts of grapefruit peels as well as their inclusion in green-synthesized silver nanoparticles (AgNPs). MATERIALS AND METHODS Aqueous and hydroalcoholic extracts (80% v/v) were prepared, and the volume and mass yields were determined. The synthesis of AgNPs was done in an eco-friendly manner using AgNO3 as a precursor. The nanoparticles were characterized by ultraviolet-vis spectrometry and photon cross-correlation spectroscopy. The antibacterial activity of the extracts was tested on three Gram-positive bacteria (Staphylococcus aureus ATCC 6538, clinical Enterococcus faecalis, and S. aureus) and two Gram-negative bacteria (two clinical Escherichia coli) using various concentrations of extracts (100, 50, 25, 12, and 5 mg/mL and 5% dimethyl sulfoxide as negative control). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microdilution method. Modulation of cefazoline and ampicillin on resistant E. coli and S. aureus strains was added to the mixture design response surface methodology with extreme vertices design, with the diameters of inhibition and the fractional inhibitory concentration index as responses and factors, respectively. The antibiotic, the ethanolic extract, and water varied from 0.1 MIC to 0.9 MIC for the first two and from 0 to 0.8 in proportion for the third. Validating the models was done by calculating the absolute average deviation, bias factor, and accuracy factor. RESULTS The volume yield of the EE and aqueous extract (AE) was 96.2% and 93.8% (v/v), respectively, whereas their mass yields were 7.84% and 9.41% (m/m), respectively. The synthesized AgNPs were very uniform and homogeneous, and their size was dependent on the concentration of AgNO3. The antibacterial activity of the two extracts was dose-dependent, and the largest inhibition diameter was observed for the Gram-positive bacteria (S. aureus ATCC 6538; AE, 12; EE, 16), whereas AgNPs had a greater effect on Gram-negative bacteria. The MICs (mg/mL) of the AEs varied from 3.125 (S. aureus ATCC 6538) to 12.5 (E. coli 1 and E. coli 2), whereas the MICs of the EEs varied from 1.5625 (S. aureus 1, S. aureus ATCC 6538, and E. faecalis) to 6.25 (E. coli 1). There was a significant difference between the MICs of AEs and EEs (p=0.014). The MBCs (mg/mL) of the AEs varied from 12.5 (S. aureus ATCC 6538) to 50 (S. aureus 1), whereas those of the EEs varied from 6.25 (S. aureus 1) to 25 (E. coli 1 and E. faecalis). Ethanolic grapefruit extracts demonstrated an ability to modulate cefazolin on E. coli and S. aureus but were completely indifferent to ampicillin on E. coli. CONCLUSION Grapefruit peel extracts and their AgNPs exhibit antibacterial properties that can be exploited for the synthesis of new antimicrobials and their EEs may be efficiently used synergistically with other antibiotics against bacteria with intermediate susceptibility.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - I. V. Podoprigora
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University Ngaoundere, Cameroon
| | - Marouf Razan
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - M. S. Das
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - A. N. Senyagin
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
18
|
Wang X, Wang Z, Wang X, Shi L, Ran R. Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydr Polym 2021; 257:117665. [PMID: 33541668 DOI: 10.1016/j.carbpol.2021.117665] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
As a smart wearable sensor device, the mildew of the biocompatible hydrogel limits its application. In this paper, silver nanoparticles were prepared by solid-state reduction of hydroxyethyl cellulose and compounded into a chemically cross-linked hydrogel as an antibacterial, flexible strain sensor. Because the high surface energy of silver nanoparticles can quench free radicals, we designed three initiators to synthesize hydrogels: ammonium persulfate (APS), 2,2'-Azobis(2-methylpropionitrile) (AIBN) and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA). Impressively, silver nanoparticles composite hydrogel could only be successfully fabricated and triggered by the AIBN. The mechanical property of the composite hydrogel (0.12 MPa at 704.33 % strain) was significantly improved because of dynamic crosslinking point by HEC. Finally, the composite hydrogels are applied to the field of antibacterial strain sensor and the highest Gauge Factor (GF) reached 4.07. This article proposes a novel, green and simple strategy for preparing silver nanoparticles and compounding them into a hydrogel system for antibacterial strain sensor.
Collapse
Affiliation(s)
- Xiangdong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhisen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lingying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Montes-García V, Squillaci MA, Diez-Castellnou M, Ong QK, Stellacci F, Samorì P. Chemical sensing with Au and Ag nanoparticles. Chem Soc Rev 2021; 50:1269-1304. [PMID: 33290474 DOI: 10.1039/d0cs01112f] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.
Collapse
Affiliation(s)
- Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
20
|
Iravani S. Plant gums for sustainable and eco-friendly synthesis of nanoparticles: recent advances. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1719155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|