1
|
Costa MP, Geronço MS, Ramos IFDS, Lucena MDA, Araújo R, Pinheiro IM, de Sousa RWR, Ferreira PMP, Osajima JA, Amorin M, Ramos Ó, Silva-Filho EC, Ribeiro AB, Rizzo MDS. Innovative properties of sustainable galactomannans from seeds of Adenanthera pavonina, Caesalpinia pulcherrima and Delonix regia. Carbohydr Polym 2025; 359:123580. [PMID: 40306786 DOI: 10.1016/j.carbpol.2025.123580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Given the importance of new renewable resources for the industrial sector, this study aimed to assess the innovative technological and biological properties of galactomannans derived from the seeds of Adenanthera pavonina (BioAp), Caesalpinia pulcherrima (BioCp), and Delonix regia (BioDr). The biopolymers were evaluated using various parameters, including texture, spreadability, cytocompatibility, hemocompatibility, antimicrobial assays, mucoadhesiveness, and irritation potential by HET-CAM test. The absence of cytotoxicity, hemolysis, and irritation showed the potential of the three biopolymers for applications in biomedical fields. BioAp and BioDr samples exhibited the most effective antimicrobial activity, with MICs of 512 μg mL-1 against Staphylococcus aureus, Escherichia coli, and Candida albicans strains. The BioDr sample would be ideal for developing mucoadhesives due to its superior mucoadhesiveness in both powder and colloidal dispersion forms, achieving the highest Fmax adhesion force values of 0.46 N and 0.08 N, respectively. These findings expand the range of applications for these biopolymers and highlight their potential for integration into innovative polymer products in the food, cosmetics, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Marcilia P Costa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| | - Maurycyo S Geronço
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Igor F da S Ramos
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Monalisa de A Lucena
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Ricardo Araújo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Iluska M Pinheiro
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Rayran Walter R de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI 64049-550, Brazil
| | - Paulo Michel P Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| | - Josy A Osajima
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| | - Manuela Amorin
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal..
| | - Óscar Ramos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal..
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| | - Alessandra B Ribeiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal..
| | - Marcia Dos S Rizzo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
2
|
Jarungsirawat R, Tabboon P, Limpongsa E, Sakloetsakun D, Pongjanyakul T, Jaipakdee N. Material properties, compressibility, and tabletability of planetary ball-milled glutinous rice starch and its application as a mucoadhesive disc for buccal delivery: Impact of milling duration. Int J Biol Macromol 2025; 306:141612. [PMID: 40024409 DOI: 10.1016/j.ijbiomac.2025.141612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
This study examined the material properties, compressibility, and tabletability characteristics of glutinous rice starch modified by planetary ball milling as a function of milling duration as well as the utilization of ball-milled glutinous rice starch (BMGS) as a mucoadhesive disc carrier for buccal delivery. Planetary ball milling caused crystallinity loss, which was accompanied by enhanced starch functionality. Prolonged milling significantly altered particle size, morphology, powder density, and compressibility index. The compressibility assessed using the Heckel and Kawakita models suggests that plastic deformation is a significant process during compression. The compressibility of the BMGS decreased with the milling time. Tabletability, assessed via tablet tensile strength (TS), was enhanced with BMGS compared with native starch. 60-min-BMGS displayed superior TS compared to the 30-min-BMGS. Active pharmaceutical ingredients (API) lowered the TS of starch tablets. 60-min-BMGS exhibited the greatest sensitivity to API loading. BMGS demonstrated efficacy as a mucoadhesive disc matrix for the delivery of both hydrophilic and hydrophobic APIs, displaying the capacity to modulate API release for up to 6 h. This investigation provides essential insights into ball milling as an approach for enhancing the material and tabletability of starch to produce an alternative pharmaceutical excipient.
Collapse
Affiliation(s)
- Rapee Jarungsirawat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peera Tabboon
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| | | | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Kapoor DU, Pareek A, Sharma M, Prajapati BG, Suttiruengwong S, Sriamornsak P. Exploring starch-based excipients in pharmaceutical formulations: Versatile applications and future perspectives. Eur J Pharm Biopharm 2025:114727. [PMID: 40286879 DOI: 10.1016/j.ejpb.2025.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/14/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Starch, a naturally abundant and biocompatible polysaccharide, serves as a key excipient in pharmaceutical formulations, enhancing drug stability, efficacy, and manufacturability. This review explores the properties, modifications, and diverse applications of starch-based excipients. Native starches from corn, potato, rice, and wheat are commonly used as disintegrants, binders, and fillers. Physical (e.g., pre-gelatinization), chemical (e.g., cross-linking, acetylation), and enzymatic modifications improve their functionality, such as enhanced stability and colon-specific drug delivery. Starch excels as a binder, improving tablet cohesion and strength, and as a disintegrant, promoting rapid drug release. It also supports controlled and sustained-release systems and advanced drug delivery methods, like nanoparticles and microparticles. Compared to other natural and synthetic excipients, starch offers advantages in biodegradability, non-toxicity, and cost-effectiveness, despite challenges like stability and batch variability. Innovations such as starch nanocrystals show promise in boosting drug solubility and bioavailability. Looking ahead, starch-based excipients hold potential for sustainable pharmaceutical development, personalized medicine, and 3D printing.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Anil Pareek
- Department of Pharmaceutics, Lachoo Memorial College of Science and Technology, Jodhpur, Rajasthan 342001, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, NMIMS, Shirpur, Dhule, Maharashtra 425405, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India,; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Supakij Suttiruengwong
- Sustainable Materials Laboratory, Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
4
|
Yue Q, Peng Y, Li Z, Deng Y, Yi J, Zhou L. High pressure processing of glutinous rice starch complexed with Buddleja officinalis Maxim. Extract: Structural stability and digestibility improvements. Int J Biol Macromol 2025; 311:143454. [PMID: 40280515 DOI: 10.1016/j.ijbiomac.2025.143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of high pressure processing (HPP) on yellow glutinous rice starch (Y-GRS) formed by glutinous rice starch (GRS) complexed with Buddleja officinalis Maxim. extract (BOME). Y-GRS at 500 MPa achieved the highest complex index (0.506), indicating stronger starch-BOME interactions. Particle size analysis revealed that Y-GRS exhibited superior resistance to swelling, with D[4,3] increasing by 18.97 μm for Y-GRS and 31.64 μm for GRS as the pressure increased from 400 to 600 MPa. Y-GRS retained higher thermal stability, with an enthalpy change of 1.55 J/g at 500 MPa, compared with 0.83 J/g for GRS. The relative crystallinity of Y-GRS was 8.81 % higher than that of GRS. Structural analyses confirmed BOME mitigated higher pressure-induced damage to starch granule, preserving double helix and crystal structure. Rheologically, Y-GRS exhibited stable peak viscosity, weaker shear thinning behavior, and greater resistance to deformation than GRS. Following HPP, Y-GRS contained lower levels of rapidly digestible starch (RDS) and higher levels of resistant starch (RS) than GRS. In conclusion, these findings highlight HPP as a promising strategy for enhancing the functional properties of Y-GRS, offering improved stability and digestibility for starch-based food applications.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Zi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yishu Deng
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming, Yunnan Province 650201, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
5
|
Han X, Guo KJ, Zhang XN, Chen Y, Wu CS, Zhang L, Qian JY. Two-ways regulation of the emulsion gel properties of curdlan by dry ball milling treatment and their relationships with the microstructures, emulsification characteristics and gel properties of ball milled curdlan. Food Chem 2025; 464:141355. [PMID: 39509894 DOI: 10.1016/j.foodchem.2024.141355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024]
Abstract
Ball milling treatment could affect the microstructures, improve the emulsification properties of curdlan (CL) and regulate the emulsion gel properties of CL based emulsion gel in two-ways. With increasing ball milling time (1 h-8 h), the particle size first decreased and then increased, the relative crystallinity decreased, and the contact angle increased. Ball milled curdlan (BMCL)-6 h showed the best emulsifying property and stability, which was the combined effects of decreased particle size and increased hydrophobic property. Ball milling 1 h and 2 h significantly improved the hardness and chewiness of CL-based emulsion gels, while, ball milling 4 h-8 h could make the emulsion gels much softer and ice cream-like. When the emulsion gels were heated twice consecutively, the visual appearance and texture properties did not change significantly, indicating the excellent thermal stability of these emulsion gels. The BMCL based emulsion gel with adjustable gel properties and good thermal stability has a wide range of uses in the food system.
Collapse
Affiliation(s)
- Xue Han
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ke-Jun Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Xiu-Nan Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Ying Chen
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chun-Sen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
6
|
Liang C, Han Y, Xu H, Liu D, Jiang C, Li Q, Hu Y, Xiang X. The high molecular weight and large particle size and high crystallinity of starch increase gelatinization temperature and retrogradation in glutinous rice. Carbohydr Polym 2025; 348:122756. [PMID: 39562053 DOI: 10.1016/j.carbpol.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 11/21/2024]
Abstract
The gelatinization and retrogradation properties of glutinous rice starch are important factors that affect its quality. In this study, the thermal properties, viscosity properties and retrogradation of starch from 152 natural glutinous varieties were investigated, and further explored the effects of starch structure on gelatinization temperature (GT) and retrogradation. The results demonstrated a strong positive linear correlation between thermal properties and retrogradation of glutinous rice. The high molecular weight, high crystallinity and large particle size of starch have significant positive effects on the thermal properties and retrogradation of amylopectin. Varieties of glutinous rice with high molecular weight starch, large starch particle sizes, and high crystallinity exhibited high GT and retrogradation rates (R%). Additionally, there was a significantly negative correlation between the range of gelatinization temperature and gelatinization enthalpy in raw starch, while a larger temperature range in retrograded starch corresponded to greater gelatinization enthalpy. The recrystallization of retrograded starch exhibited higher crystal heterogeneity and a broader range of melting points compared to raw glutinous starch. These findings provide valuable insights for breeding glutinous rice varieties with desirable retrogradation traits, particularly those with low R%.
Collapse
Affiliation(s)
- Cheng Liang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Yiman Han
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Haoyang Xu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Dan Liu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Chunyan Jiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Qingyu Li
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Yungao Hu
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China.
| | - Xunchao Xiang
- Lab of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China; Rice Research Institute, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, China.
| |
Collapse
|
7
|
Sun C, Du K, He Z, Zhu Z, Hu Y, Wang C, Mei L, Xie Q, Chen Y, Liu Y, Luo G, Mustafa S, Chen X, Du X. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem 2025; 463:141148. [PMID: 39243611 DOI: 10.1016/j.foodchem.2024.141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effect of liquid nitrogen ball-milled mechanochemical treatment on multiscale structure and physicochemical properties of starches with typically selected A (rice starch, ReS), B (potato starch, PtS) and C (pea starch, PeS) crystal types. The morphology of starch samples changed from integral granules to irregular fragments, and the interaction between the exposure OH bonds led to a serious agglomeration. As the treatment times extended, the crystalline structure of starch samples was gradually destroyed, and the excessive treatment approached amorphization. Moreover, the thermal stability of starch samples showed the downward tendency; and with amorphization increased, the swelling power (SP), solubility (S), water absorption capacity (WAC), oil absorption capacity (OAC) and hydrolysis rate of starch samples gradually increased. The obtained results provided a theoretical foundation for broadening the application range of ball-milled starches with different crystal types.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, No. 193 Tunxi Road, Hefei University of Technology, Hefei 230009, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Chang T, Bian L, Li G, Zhang C. Action of microbial transglutaminase (MTGase) on the processing properties of glutinous rice flour and the quality attributes of sweet dumplings and in vitro digestion. Food Chem 2025; 462:140992. [PMID: 39208723 DOI: 10.1016/j.foodchem.2024.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The development and manufacture of high-quality starch are a new research focus in food science. Here, transglutaminase was used in the wet processing of glutinous rice flour to prepare customized sweet dumplings. Transglutaminase (0.2 %) lowered protein loss in wet processing and reduced the crystallinity and viscosity of glutinous rice flour. Moreover, it lowered the cracking and cooking loss of sweet dumplings after freeze-thaw cycles, and produced sweet dumplings with reduced hardness and viscosity, making them more suitable for people with swallowing difficulties. Additionally, in sweet dumplings with 0.2 % transglutaminase, the encapsulation of starch granules by the protein slowed down the digestion and reduced the final hydrolysis rate, which are beneficial for people with weight and glycemic control issues. In conclusion, this study contributes to the production of tasty, customized sweet dumplings.
Collapse
Affiliation(s)
- Tingting Chang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luyao Bian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
9
|
He R, Du C, Li S, Guo L, Wang K, Yang L. Structural-functional analysis of modified kudzu starch as a novel instant powder: Role of modified technology. Food Chem X 2024; 24:101912. [PMID: 39525054 PMCID: PMC11546534 DOI: 10.1016/j.fochx.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Adopting effective methods to modify starch structure for enhanced functional properties has become a pivotal pursuit within the realm of food science. This study investigated the physicochemical and structural properties of ball milling-modified kudzu starch (BS), extrusion puffing-modified kudzu starch (ES), alcohol-alkali-modified kudzu starch (ANS), urea-alkali-modified kudzu starch (UNS), pullulanase-modified kudzu starch (PS), and extrusion puffing-pullulanase-modified kudzu starch (EPS). The d (0.5) value increasing from 10.54 μm (NS) to 83.99 μm (ANS). The Small-angle X-ray scattering (SAXS) characteristic curve of other modified kudzu starch disappeared except for the UNS. The solubility of EPS was the highest, ranging from 73 % to 80 %, significantly higher than that of NS (0 %-1 %). The agglomeration rates of ES and EPS were 0.3 % and 0.6 %, respectively, at a stirring time of 30 s. indicating favorable hydration properties. Flavonoids content in ES increased to 0.1825 mg/g. Moreover, the resistant starch content of modified kudzu starch was increased, ranging from 58.50 %-86.87 %. This study is expected to provide a scientific foundation for selecting optimal modification methods for the production of instant kudzu powder.
Collapse
Affiliation(s)
- Ruidi He
- Key Laboratory of Whole Grain Nutrition and High Value Utilization in Anhui Province, School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Chuanlai Du
- Key Laboratory of Whole Grain Nutrition and High Value Utilization in Anhui Province, School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong, Academy of Sciences, Jinan, China
| | - Kaiyue Wang
- Key Laboratory of Whole Grain Nutrition and High Value Utilization in Anhui Province, School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- Key Laboratory of Whole Grain Nutrition and High Value Utilization in Anhui Province, School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
10
|
Kong XP, Yang Q, Wang QL, Chen HQ. Effects of ball milling treated wheat flour and maltodextrin on the texture and oil absorption properties of fried batter-coated cashews and almonds. Food Chem 2024; 460:140627. [PMID: 39089039 DOI: 10.1016/j.foodchem.2024.140627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
In this study, the effects of wheat flour treated with ball milling (BM) and maltodextrin on the oil absorption and textural characteristics of fried batter-coated cashews and almonds (BCAs) were investigated. The result showed that the crystallinity of the starch granules in wheat flour decreased after the BM treatment. Furthermore, the ΔH of the batter decreased as the BM time was elongated, but the addition of maltodextrin had no significant impact on ΔH. Both BM-treated wheat flour and maltodextrin increased the fracturability and decreased the oil content of the fried BCAs' batter. The addition of BM-treated wheat flour and maltodextrin decreased the oil content of the batter from 28.93% to 18.75% for batter-coated cashews and from 30.92% to 18.61% for batter-coated almonds. Overall, the addition of BM-treated wheat flour and maltodextrin in batter is an effective approach to decrease oil content and improve the textural quality of fried BCAs.
Collapse
Affiliation(s)
- Xiang-Ping Kong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Qin Yang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Qing-Lian Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
11
|
Wang M, Zhang G, Guo J, He X, Zhang L, Liu F. Study on the physicochemical properties and gut microbiota regulation of Poria cocos pachyman treated by ball milling. Int J Biol Macromol 2024; 277:134399. [PMID: 39098682 DOI: 10.1016/j.ijbiomac.2024.134399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The effect of ball milling on the physicochemical properties and gut microbiota regulation of Poria cocos pachyman (PAC) was investigated. Ball milling reduced the particle size of PAC from 102 μm to 25.19 μm after 12 h, resulting in increasing particle uniformity. Scanning electron microscopy (SEM) revealed surface roughening and fragmentation of PAC after ball milling. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated reduced crystallinity and increased hydroxyl group exposure in ball-milled PAC (BMP). Thermogravimetric analysis (TGA) showed decreased thermal stability in BMP. The optimal ball milled time was 7 h. Moisture contents in PAC and BMP-7 h were 10.30 ± 0.47 % and 10.72 ± 0.12 %, and carbohydrate contents were 81.02 ± 2.27 % and 74.54 ± 1.46 %. In vivo studies on mice demonstrated that both PAC and BMP-7 h increased diversity and reshaped the composition of gut microbiota, with BMP-7 h showing a more pronounced effect. BMP-7 h reduced the Firmicutes/Bacteroidetes ratio, and raised the abundance of Bacteroides, suggesting enhanced prebiotic potential. These findings highlight the role of ball milling in improving the physicochemical properties and prebiotic potential of water-insoluble polysaccharides and provide a theoretical basis for its broader application in the food and biopharmaceutical industries.
Collapse
Affiliation(s)
- Mengjiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhong Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jinbiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xihong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Feng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Kumar R, Kumar KJ. Exploring effect of uniform dry ball-milling duration on pasting and rheological properties of pink potato and maize starch mixtures. Int J Biol Macromol 2024; 273:132900. [PMID: 38838891 DOI: 10.1016/j.ijbiomac.2024.132900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
This study examined the potential effect of ball milling on maize starch (MS), pink potato starch (PPS), and their blends in various ratios (90:10, 80:20, and 70:30) on the pasting and rheological properties. Ball-milling led to changes in the particle size, ranging from 652.9 to 6488 nm, and a decrease in relative crystallinity (RC), as confirmed by XRD. Ball-milling increased amylose concentration in blend with the ratio of 90:10 up to 32.53 %, indicating structural alterations and molecular interactions. FESEM analysis confirms significant changes in the surface and particle sizes and starch gels with honeycomb structures. FTIR and Raman spectroscopy revealed a decrease in the intensity of the 1044 cm-1 and 480 cm-1 bands, respectively, signifying structural changes. Pasting parameters like peak viscosity and gelatinization behavior varied with PPS incorporation. The 80:20 blend had the highest viscosity, demonstrating PPS's capacity for high-viscosity starch paste. Rheological measurements of starch blends exhibited shear-thinning behavior, whereas the viscoelastic properties of the blends are influenced by particle size and the ratio of pink potato starch. Ball-milling treatment affects the granules and causes molecular-level interactions between the particles. This results in unique rheological properties of the starch blends, making them suitable for various applications.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
13
|
Sun C, Hu Y, Zhu Z, He Z, Mei L, Wang C, Xie Q, Chen X, Du X. Starch nanoparticles with predictable size prepared by alternate treatments of ball milling and ultrasonication. Int J Biol Macromol 2024; 272:132862. [PMID: 38838880 DOI: 10.1016/j.ijbiomac.2024.132862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
In this study, starch nanoparticles (SNPs) were prepared by alternate treatments of liquid nitrogen ball milling and ultrasonication. The impact, shear and friction forces produced by ball milling, and acoustic cavitation and shear effects generated by ultrasonication disrupted starch granules to prepare SNPs. The SNPs possessed narrow particle size distribution (46.91-210.52 nm) and low polydispersity index (0.28-0.45). Additionally, the SNPs exhibited the irregular fragments with good uniformity. The relative crystallinity decreased from 34.91 % (waxy corn starch, WCS) to 0-25.91 % (SNPs), and the absorbance ratios of R1047/1022 decreased from 0.81 (WCS) to 0.60-0.76 (SNPs). The SNPs had lower thermal stability than that of WCS, characterized by a decrease in Td (temperature at maximum weight loss) from 309.39 °C (WCS) to 300.39-305.75 °C (SNPs). Furthermore, the SNPs exhibited excellent swelling power (3.48-28.02 %) and solubility (0.34-0.97 g/g). Notably, oil absorption capacity of the SNPs (9.77-15.67 g/g) was rather greater than that of WCS (1.33 g/g). Furthermore, the SNPs possessed the lower storage modulus (G'), loss modulus (G″) and viscosity than that of WCS. The SNPs with predictable size and high dispersion capability prepared in this study lay a foundation for expanding the application of SNPs.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuqing Hu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijie Zhu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liping Mei
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qingling Xie
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Chen
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Xianfeng Du
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
14
|
Liang Y, Zheng L, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starch. Int J Biol Macromol 2024; 264:130462. [PMID: 38423435 DOI: 10.1016/j.ijbiomac.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.
Collapse
Affiliation(s)
- Yonglun Liang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
15
|
Chen Y, Han X, Chen DL, Ren YP, Yang SY, Huang YX, Yang J, Zhang L. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties. Foods 2024; 13:431. [PMID: 38338566 PMCID: PMC10855821 DOI: 10.3390/foods13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This research supplied a "cleaner-production" way to produce "clean-label" quinoa starch-based Pickering emulsifier with excellent emulsifying properties. The effects of dry ball-milling time and speed on the multi-scale structures and emulsifying properties of quinoa starch were studied. With increasing ball-milling time and speed, particle size first decreased and then increased, the crystallinity, lamellar structure and short-range ordered structure gradually decreased, and contact angle gradually increased. The increased contact angle might be related to the increased oil absorption properties and the decreased water content. The emulsification properties of ball-milled quinoa starch (BMQS)-based Pickering emulsions increased with the increase in ball-milling time and speed, and the emulsions of BMQS-4 h, 6 h, 8 h, and 600 r reached the full emulsification state. After 120 days' storage, the oil droplets of BMQS-2 h (BMQS-400 r) deformed, the oil droplets increased, and the emulsification index decreased. The emulsification index and the oil droplets of BMQS-4 h, 6 h, 8 h and 600 r-based emulsions did not show obvious changes after storage, indicating the good emulsifying stability of these BMQS-based emulsions, which might be because that the relatively larger amount of starch particles that dispersed in the voids among the oil droplets could act as stronger network skeletons for the emulsion gel. This Pickering emulsifier was easily and highly efficiently produced and low-cost, having great potential to be used in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, China; (Y.C.); (X.H.); (D.-L.C.); (Y.-P.R.); (S.-Y.Y.); (Y.-X.H.); (J.Y.)
| |
Collapse
|
16
|
Wang Q, Duan Y, Huang Y, Teng Y, Li C, Tao Y, Lu J, Du J, Wang H. Multifunctional soybean protein isolate-graft-carboxymethyl cellulose composite as all-biodegradable and mechanically robust mulch film for "green" agriculture. Carbohydr Polym 2024; 323:121410. [PMID: 37940245 DOI: 10.1016/j.carbpol.2023.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Multifunctional mulch films with robust mechanical behaviors of biopolymer-based biodegradable mulch materials were highly demanded in promoting the development of "green" agriculture. Herein, a sort of mechanically robust and all-biodegradable soybean protein isolate-graft‑sodium carboxymethyl cellulose composite mulch film was innovatively proposed through the amidation reactions between -COOH on protonated sodium carboxymethyl cellulose and -NH2 on soybean protein isolate. Arising from the reinforced intermolecular interactions upon chemical covalent bonds and physical hydrogen bonds, the maximum tensile strength and the elongation at break were increased from 10.61 MPa and 20.67 % for sodium carboxymethyl cellulose film to 42.15 MPa and 24.8 % for the optimized soybean protein isolate-graft‑sodium carboxymethyl cellulose composite mulch film, respectively. In addition, experimental results showed that the optimized soybean protein isolate-graft‑sodium carboxymethyl cellulose composite mulch film possesses soil moisture retention and controlled urea release properties. When employed as mulch film in practice, the cabbage seed presents higher germination when soil was covered with this versatile mulch film compared to commercial low-density polyethylene mulch film. Our discoveries build a prototype for the manufacture of eco-friendly mulch films with high mechanical strength, soil moisture retention, controlled urea release features.
Collapse
Affiliation(s)
- Qiansen Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yujia Duan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Huang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yilin Teng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Du M, Chen L, Din ZU, Zhan F, Chen X, Wang Y, Zhuang K, Wang G, Cai J, Ding W. Structure and surface properties of ozone-conjugated octenyl succinic anhydride modified waxy rice starch: Towards high-stable Pickering emulsion. Int J Biol Macromol 2023; 253:126895. [PMID: 37709233 DOI: 10.1016/j.ijbiomac.2023.126895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In the present work, a dual-modified waxy rice starch (OOWRS) fabricated with OSA and ozone was successfully used to stabilize the O/W Pickering emulsion. The molecular structure, surface properties, and underlying stabilizing mechanism were systematically investigated. The results showed that oxidation occurring on the surface of OSA-modified waxy rice starch (OSAWRS) resulted in the presence of indentations and cracks. The relative crystallinity of starch was generally decreased with increasing degree of oxidation. Due to the introduction of carbonyl and the variation in surface structure, the hydrophobicity and acidity of OSAWRS were significantly enhanced after the ozone treatment. Remarkably, OOWRS stabilized Pickering emulsion exhibited a feature of typical O/W emulsion, and the 0.5 h and 1 h OOWRS emulsion exhibited a more uniform droplet size as well as a higher surface potential. We also noted that a weak-gel network was formed within the OOWRS emulsion system as the hydrophilic starch chains played a bridging role. Two reasons for the improved stability of the emulsion were the special gel structure and the enhanced electrical repulsion among the droplets. This research provides that ozone-conjugated OSA modification is a promising strategy for improving the emulsion ability of starch-based Pickering emulsions.
Collapse
Affiliation(s)
- Meng Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, PR China
| | - Xi Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kun Zhuang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
18
|
Li D, Li H, Tao Y, Li G, Xu E, Han Y, Ding Y. Static magnetic field improvement of the quality of rice dumpling subjected to freeze-thaw cycles: Roles of phase transition of water and changes in structural and physicochemical properties of glutinous rice flour. Food Res Int 2023; 174:113663. [PMID: 37981365 DOI: 10.1016/j.foodres.2023.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to investigate the effect of static magnetic field (SMF, 0-10 mT) on the quality of rice dumplings subjected to 7, 14, 21, and 28 freeze-thaw cycles. The underlying mechanism was explored by monitoring changes in water phase transition, water distribution, and structural and physicochemical properties of rice flour. Results suggested that SMF enables the formation of small ice crystals by accelerating freezing rate, shortening phase transition time, and increasing bound water content, which attributes to reducing the mechanical damage on starch granules and thus improves the quality of frozen rice dumpling. After 7-28 freeze-thaw cycles, SMF treatment increased the whiteness by 0.08-1.58, reduced the cracking ratio by 1.67 %-8.34 %, decreased the water loss ratio by 0-0.75 %, and significantly improved the texture of cooked rice dumplings. This study confirmed the feasibility of SMF in improving the quality of rice dumpling, which contributes to expanding the applications of magnetic freezer in the preservation of starch-based foods.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Haifei Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ganghua Li
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang University, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Yanfeng Ding
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
19
|
He R, Li S, Zhao G, Zhai L, Qin P, Yang L. Starch Modification with Molecular Transformation, Physicochemical Characteristics, and Industrial Usability: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2935. [PMID: 37447580 DOI: 10.3390/polym15132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Peng Qin
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
20
|
Vasquez-Martínez N, Guillen D, Andrea Moreno-Mendieta S, Medina-Granados P, Guadalupe Casañas-Pimentel R, San Martín-Martínez E, Ángel Morales M, Sanchez S, Rodríguez-Sanoja R. In vivo tracing of immunostimulatory raw starch microparticles after mucosal administration. Eur J Pharm Biopharm 2023; 187:96-106. [PMID: 37094693 DOI: 10.1016/j.ejpb.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Raw starch microparticles (SMPs) proved efficient antigen carriers with adjuvant properties when administered via the mucosal route; however, the underlying mechanisms associated with this bioactivity are unknown. In the present study, we explored the mucoadhesion properties, fate, and toxicity of starch microparticles after mucosal administration. Nasally administered microparticles were mainly retained in nasal turbinates, reaching the nasal-associated lymphoid tissue; this step is facilitated by the ability of the microparticles to penetrate through the mucous epithelium. Likewise, we found intraduodenally administered SMPs on the small intestinal villi, follicle-associated epithelium, and Peyer's patches. Furthermore, under simulated gastric and intestinal pH conditions, we detected mucoadhesion between the SMPs and mucins, regardless of microparticle swelling. SMPs' mucoadhesion and translocation to mucosal immune responses induction sites explain the previously reported role of these microparticles as vaccine adjuvants and immunostimulants.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México; Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México. Circuito de Posgrado, C.U, Coyoacán, 04510, CDMX, México.
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México.
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México; Consejo Nacional de Ciencia y Tecnología (CONACyT).
| | - Pedro Medina-Granados
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México.
| | - Rocío Guadalupe Casañas-Pimentel
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Irrigación, Miguel Hidalgo, 11500, Ciudad de México, México.
| | - Eduardo San Martín-Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Irrigación, Miguel Hidalgo, 11500, Ciudad de México, México.
| | - Miguel Ángel Morales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México.
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México.
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
21
|
Bangar SP, Singh A, Ashogbon AO, Bobade H. Ball-milling: A sustainable and green approach for starch modification. Int J Biol Macromol 2023; 237:124069. [PMID: 36940765 DOI: 10.1016/j.ijbiomac.2023.124069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Ball-milling is a low-cost and green technology that offers mechanical actions (shear, friction, collision, and impact) to modify and reduce starch to nanoscale size. It is one of the physical modification techniques used to reduce the relative crystallinity and improve the digestibility of starch to their better utility. Ball-milling alters surface morphology, improving the overall surface area and texture of starch granules. This approach also can improve functional properties, including swelling, solubility, and water solubility, with increased energy supplied. Further, the increased surface area of starch particles and subsequent increase in active sites enhance chemical reactions and alteration in structural transformations and physical and chemical properties. This review is about current information on the impact of ball-milling on the compositions, fine structures, morphological, thermal, and rheological characteristics of starch granules. Furthermore, ball-milling is an efficient approach for the development of high-quality starches for applications in the food and non-food industries. There is also an attempt to compare ball-milled starches from various botanical sources.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, SC, USA.
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | | | - Hanuman Bobade
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
22
|
Lyophilized Progenitor Tenocyte Extracts: Sterilizable Cytotherapeutic Derivatives with Antioxidant Properties and Hyaluronan Hydrogel Functionalization Effects. Antioxidants (Basel) 2023; 12:antiox12010163. [PMID: 36671025 PMCID: PMC9854832 DOI: 10.3390/antiox12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Cultured primary progenitor tenocytes in lyophilized form were previously shown to possess intrinsic antioxidant properties and hyaluronan-based hydrogel viscosity-modulating effects in vitro. The aim of this study was to prepare and functionally characterize several stabilized (lyophilized) cell-free progenitor tenocyte extracts for inclusion in cytotherapy-inspired complex injectable preparations. Fractionation and sterilization methods were included in specific biotechnological manufacturing workflows of such extracts. Comparative and functional-oriented characterizations of the various extracts were performed using several orthogonal descriptive, colorimetric, rheological, mechanical, and proteomic readouts. Specifically, an optimal sugar-based (saccharose/dextran) excipient formula was retained to produce sterilizable cytotherapeutic derivatives with appropriate functions. It was shown that extracts containing soluble cell-derived fractions possessed conserved and significant antioxidant properties (TEAC) compared to the freshly harvested cellular starting materials. Progenitor tenocyte extracts submitted to sub-micron filtration (0.22 µm) and 60Co gamma irradiation terminal sterilization (5−50 kGy) were shown to retain significant antioxidant properties and hyaluronan-based hydrogel viscosity modulating effects. Hydrogel combination products displayed important efficacy-related characteristics (friction modulation, tendon bioadhesivity) with significant (p < 0.05) protective effects of the cellular extracts in oxidative environments. Overall, the present study sets forth robust control methodologies (antioxidant assays, H2O2-challenged rheological setups) for stabilized cell-free progenitor tenocyte extracts. Importantly, it was shown that highly sensitive phases of cytotherapeutic derivative manufacturing process development (purification, terminal sterilization) allowed for the conservation of critical biological extract attributes.
Collapse
|
23
|
Electron beam irradiation regulates the structure and functionality of ball-milled corn starch: The related mechanism. Carbohydr Polym 2022; 297:120016. [DOI: 10.1016/j.carbpol.2022.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
|
24
|
Bioadhesive Perivascular Microparticle-Gel Drug Delivery System for Intimal Hyperplasia Prevention: In Vitro Evaluation and Preliminary Biocompatibility Assessment. Gels 2022; 8:gels8120776. [PMID: 36547300 PMCID: PMC9778534 DOI: 10.3390/gels8120776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Intimal hyperplasia (IH) is an undesirable pathology occurring after peripheral or coronary bypass surgery. It involves the proliferation and migration of vascular smooth muscle cells, leading to a reduction in the diameter of the vascular lumen, which can lead to stenosis and graft failure. Topically applied atorvastatin (ATV) has been shown to slow down this process. To be effective, the drug delivery system should remain at the perivascular site for 5-8 weeks, corresponding to the progression of IH, and be capable of releasing an initial dose of the drug followed by a sustained release. Ideally, bioadhesion would anchor the gel to the application site. To meet these needs, we encapsulated ATV in a 2-component system: a hyaluronic acid-dopamine bioadhesive gel for rapid release and biodegradable microparticles for sustained release. The system was characterized by scanning electron microscopy, rheology, bioadhesion on porcine arteries, and a release profile. The rheological properties were adequate for perivascular application, and we demonstrated superior bioadhesion and cohesion compared to the control HA formulations. The release profile showed a burst, generated by free ATV, followed by sustained release over 8 weeks. A preliminary evaluation of subcutaneous biocompatibility in rats showed good tolerance of the gel. These results offer new perspectives on the perivascular application towards an effective solution for the prevention of IH.
Collapse
|
25
|
Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
27
|
Han N, Fan JL, Chen N, Chen HQ. Effect of ball milling treatment on the structural, physicochemical and digestive properties of wheat starch, A- and B-type starch granules. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
29
|
Limpongsa E, Soe MT, Jaipakdee N. Modification of release and penetration behavior of water-soluble active ingredient from ball-milled glutinous starch matrix via carboxymethylcellulose blending. Int J Biol Macromol 2021; 193:2271-2280. [PMID: 34785201 DOI: 10.1016/j.ijbiomac.2021.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
This present work describes the possible advantages of carboxymethylcellulose (CMC) blending with ball-milled glutinous starch (BMGS) on the modification of release and penetration of model water-soluble active ingredient, lidocaine hydrochloride, from the blended matrix. The 20-67% CMC mass containing CMC-BMGS matrices were fabricated by casting the aqueous dispersion of CMC-BMGS onto the tray and oven-dried. BMGS and CMC were compatible as revealed by SEM and ATR-FTIR. Irrespective of the CMC mass, all CMC-BMGS matrices showed comparable matrix mass, thickness, moisture content, moisture absorption as well as mechanical and mucoadhesive properties. The surface pH of CMC-BMGS tended to increase with the CMC mass. Depends on CMC mass, matrix properties, release, and penetration rates were modulated significantly. CMC had shown a substantial role in the swelling and erosion behaviors of BMGS films, and thus modulated the release and penetration significantly. The release and penetration mechanisms of active ingredient from the CMC-BMGS matrices were Fickian diffusion-controlled, with rates of release and penetration ranging from 2.05 ± 0.21 to 7.55 ± 1.08%/min½, and from 3.48 ± 0.28 to 8.04 ± 0.64 μg/cm2/min½, respectively. The capability of CMC-BMGS matrices as mucoadhesive delivery systems to provide sustained delivery of water-soluble active ingredients was disclosed.
Collapse
Affiliation(s)
- Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathumthani 12000, Thailand..
| | - May Thu Soe
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand..
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand..
| |
Collapse
|
30
|
Andonegi M, Carranza T, Etxabide A, de la Caba K, Guerrero P. 3D-Printed Mucoadhesive Collagen Scaffolds as a Local Tetrahydrocurcumin Delivery System. Pharmaceutics 2021; 13:pharmaceutics13101697. [PMID: 34683989 PMCID: PMC8540040 DOI: 10.3390/pharmaceutics13101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Native collagen doughs were processed using a syringe-based extrusion 3D printer to obtain collagen scaffolds. Before processing, the rheological properties of the doughs were analyzed to determine the optimal 3D printing conditions. Samples showed a high shear-thinning behavior, reported beneficial in the 3D printing process. In addition, tetrahydrocurcumin (THC) was incorporated into the dough formulation and its effect on collagen structure, as well as the resulting scaffold's suitability for wound healing applications, were assessed. The denaturation peak observed by differential scanning calorimetry (DSC), along with the images of the scaffolds' surfaces assessed using scanning electron microscopy (SEM), showed that the fibrillar structure of collagen was maintained. These outcomes were correlated with X-ray diffraction (XRD) results, which showed an increase of the lateral packaging of collagen chains was observed in the samples with a THC content up to 4%, while a higher content of THC considerably decreased the structural order of collagen. Furthermore, physical interactions between collagen and THC molecules were observed using Fourier transform infrared (FTIR) spectroscopy. Additionally, all samples showed swelling and a controlled release of THC. These results along with the mucoadhesive properties of collagen suggested the potential of these THC-collagen scaffolds as sustained THC delivery systems.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (A.E.)
| | | | - Alaitz Etxabide
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (A.E.)
| | - Koro de la Caba
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (A.E.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: (K.d.l.C.); (P.G.)
| | - Pedro Guerrero
- BIOMAT Research Group, Escuela de Ingeniería de Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; (M.A.); (A.E.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Correspondence: (K.d.l.C.); (P.G.)
| |
Collapse
|
31
|
Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03797-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
33
|
Aalim H, Luo Z. Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Charoensri K, Rodwihok C, Wongratanaphisan D, Ko JA, Chung JS, Park HJ. Investigation of Functionalized Surface Charges of Thermoplastic Starch/Zinc Oxide Nanocomposite Films Using Polyaniline: The Potential of Improved Antibacterial Properties. Polymers (Basel) 2021; 13:425. [PMID: 33525720 PMCID: PMC7865346 DOI: 10.3390/polym13030425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Improving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique. The PANI functionalization of ZnO successfully increased the positive surface charge of the ZnO NPs. In addition, PANI-functionalized ZnO improved mechanical properties and thermal stability. Besides those properties, the water permeability of the bionanocomposite films was decreased due to their increased hydrophobicity. PANI-functionalized ZnO NPs were applied to thermoplastic starch (TPS) films for physical properties and antibacterial studies using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The PANI-functionalized ZnO bionanocomposite films exhibited excellent antibacterial activity for both E. coli (76%) and S. aureus (72%). This result suggests that PANI-functionalized ZnO NPs can improve the antibacterial activity of TPS-based bionanocomposite films.
Collapse
Affiliation(s)
- Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| | - Chatchai Rodwihok
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea;
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jung A. Ko
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| | - Jin Suk Chung
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea;
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (K.C.); (J.A.K.)
| |
Collapse
|
35
|
Li D, Huang Y, Tao Y, Xu E, Zhang R, Han Y. Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Res Int 2020; 137:109707. [PMID: 33233281 DOI: 10.1016/j.foodres.2020.109707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to evaluate the effects of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field (MEF) by monitoring changes in hydrolysis efficiency, temperature, α-amylase activity, starch-metal ion interaction, and the structural and physicochemical properties of hydrolysates. Results showed that metal salts affected the hydrolysis mainly by altering α-amylase activity rather than by inducing thermal effect or interacting with starch. Reducing sugar content reached 125.0 g/L, while α-amylase activity increased by 18.16% when treated with 0.12 mmol/L Ca2+. Holes on hydrolysates treated with Ca2+ and Mg2+ were larger than those treated with Mn2+ and Cu2+. No M-O bond was formed after the hydrolysis. The crystallinity was slightly increased with the hydrolysis and the values for Ca2+- and Mg2+-treated samples were larger. The water and oil absorption capacity of the hydrolysate treated with Ca2+ was the highest. This study extended the knowledge of the roles of metal ions on MEF-assisted enzymatic hydrolysis and will contribute to the development of an innovative technology for starch modification.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yi Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Rongguang Zhang
- Graduate Workstation of Nanjing Grain Group Co., Ltd., Nanjing 210012, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
36
|
Soe MT, Pongjanyakul T, Limpongsa E, Jaipakdee N. Films Fabricated with Native and Ball‐Milled Modified Glutinous Rice Starch: Physicochemical and Mucoadhesive Properties. STARCH-STARKE 2020. [DOI: 10.1002/star.202000012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- May Thu Soe
- Graduate School Khon Kaen University Khon Kaen 40002 Thailand
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
| | - Ekapol Limpongsa
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
- College of Pharmacy Rangsit University Pathumthani 12000 Thailand
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
37
|
Modified glutinous rice starch-chitosan composite films for buccal delivery of hydrophilic drug. Carbohydr Polym 2020; 245:116556. [DOI: 10.1016/j.carbpol.2020.116556] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/24/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
|
38
|
Limpongsa E, Jaipakdee N. Physical modification of Thai rice starch and its application as orodispersible film former. Carbohydr Polym 2020; 239:116206. [DOI: 10.1016/j.carbpol.2020.116206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
|