1
|
Khainskaya K, Hileuskaya K, Nikalaichuk V, Ladutska A, Akhmedov O, Abrekova N, You L, Shao P, Odonchimeg M. Chitosan-gallic acid conjugate with enhanced functional properties and synergistic wound healing effect. Carbohydr Res 2025; 553:109496. [PMID: 40267696 DOI: 10.1016/j.carres.2025.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Chitosan-gallic acid conjugates were synthesized by carbodiimide method and characterized by physicochemical methods (UV-vis, FTIR, 1H NMR, TGA). The FTIR and NMR assays confirmed that the chemical interaction occurred solely due to the formation of an amide bond. It was established that by varying the ratio of the components during synthesis it is possible to obtain conjugates with desired conjugation ratio, grafting efficiency and gallic acid content up to 8.09 ± 1.72 %, 70.51 ± 9.45 % and 79.9 ± 2.4 μg gallic acid/mg chitosan, respectively. Chitosan-gallic acid conjugate with a 5 % conjugation ratio demonstrated excellent antioxidant properties: the IC50 value for ABTS radical scavenging activity was 0.0073 ± 0.0001 mg/mL. In vitro tests showed that conjugation of chitosan with gallic acid provided the antiglycemic activity of the material and its good biocompatibility. A low level of cytotoxicity was recorded in the HaCaT cell line model (IC50 was 1030.4 μg/mL). The received eco-friendly chitosan-gallic acid conjugate effectively inhibited the growth of thermophilic spore-forming bacteria G. thermodenitrificans and the resistant to classical antibiotics strain A. palidus. The results of an in vivo comparative analysis showed that chitosan-gallic acid conjugate had excellent wound healing properties due to the synergism of the polysaccharide and the natural antioxidant.
Collapse
Affiliation(s)
- Katsiaryna Khainskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus
| | - Alena Ladutska
- Institute of Microbiology of the National Academy of Sciences of Belarus, 2 Kuprevich str., 220084, Minsk, Belarus
| | - Oliy Akhmedov
- Institute of Bioorganic Chemistry of the Academy of Sciences of Uzbekistan, 83 M. Ulugbek str., 100125, Tashkent, Uzbekistan
| | - Nadjiye Abrekova
- Institute of Bioorganic Chemistry of the Academy of Sciences of Uzbekistan, 83 M. Ulugbek str., 100125, Tashkent, Uzbekistan
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, 18 Chao wang road, 310014, Hangzhou, China
| | - Munkhjargal Odonchimeg
- Institute of Chemistry and Chemical Technology of the Mongolian Academy of Sciences, MAS 4-th building Peace ave., 13330, Ulaanbaatar, Mongolia
| |
Collapse
|
2
|
Hileuskaya K, Kraskouski A, Ihnatsyeu-Kachan A, Saichuk A, Pinchuk S, Nikalaichuk V, Ladutska A, Kulikouskaya V, Neves MC, Freire MG, Kim S. New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity. Int J Biol Macromol 2025; 300:140077. [PMID: 39842576 DOI: 10.1016/j.ijbiomac.2025.140077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed. A comparative analysis of the physicochemical characteristics of the NCs with single-core-shell and multi-core-shell structures was carried out, and the "structure-property" relationship was revealed. The obtained NCs exhibited excellent antiradical properties, comparable to the activity of phenolic acids: the IC50 values were 0.051, 0.022, and 0.019 mg/mL for CS7, CS5, and caffeic acid, respectively. A mechanism for the antiradical activity of chitosan-Ag NCs was discussed. The redox activity of the NCs was found to be 11.4 and 2.3 mg ABTS per 1 mg of Ag in CS5 and CS7, respectively. The proposed environmentally friendly one-pot, one-step synthesis of silver nanoparticles inside chitosan "microreactors" represents an innovative approach to designing hybrid materials with nanoscale control of desired structure and properties. These findings pave the way for further optimization of biopolymer‑silver nanostructures for various biomedical and industrial applications, including the design of a new type of hybrid catalysts such as nanozymes.
Collapse
Affiliation(s)
- Kseniya Hileuskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Aliaksandr Kraskouski
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus.
| | - Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sergei Pinchuk
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Minsk, 27 Academicheskaya Str., Belarus
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Alena Ladutska
- Institute of Microbiology of National Academy of Sciences of Belarus, Minsk, 2 Kuprevich str., Belarus
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Márcia C Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Hyun DH, Shin HH, Seog DJH, Jang H, Choi J, Yoon G, Jin EJ, Park JS, Ryu JH. Gallol-containing chitosan/hyaluronic acid composite hydrogel patches as wound sealing and dressing materials. Int J Biol Macromol 2025; 306:141115. [PMID: 39978509 DOI: 10.1016/j.ijbiomac.2025.141115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Recently, various adhesive materials have been developed for versatile biomedical applications owing to their rapid and strong adhesion to tissues in water-rich environments. One such example is gallol-containing chitosan (CHI-G), which contains multiple gallol and amine groups in its backbone. However, the practical application of CHI-G alone is limited owing to its intrinsic mechanical strength and undesirable immune responses. In this study, we developed Ca2+ ions- and hyaluronic acid-containing CHI-G (CHC) patches to prevent anastomotic leakage and accelerate wound healing. CHC hydrogel patches showed increased elastic modulus values (809.4 ± 181.7 Pa) compared to that of CHI-G hydrogel patches (137.0 ± 16.3 Pa). In addition, the bursting pressure (78.2 ± 3.5 mmHg) of CHC hydrogel patch-applied porcine intestine was far higher than those of the control (4.13 ± 0.4 mmHg) and HA groups (14.5 ± 2.5 mmHg). CHC hydrogel patches showed suitable mechanical properties and biocompatibility for wound-sealing and dressing applications in water-rich environments. Notably, the CHC hydrogel patch-applied wound healing animal model exhibited a healing rate of over 90 % at 14 days post-surgery, notably higher than that of the control group (76 %). These findings suggest that CHC patches have considerable potential as effective wound dressings and sealing materials.
Collapse
Affiliation(s)
- Da Han Hyun
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41404, Republic of Korea; Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Hyun Ho Shin
- Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - David Jin Han Seog
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41404, Republic of Korea; Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Hyeonha Jang
- Medical Research Center, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jemin Choi
- Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ghilsuk Yoon
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Jung Jin
- Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jun Seok Park
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41404, Republic of Korea; Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu 41404, Republic of Korea.
| | - Ji Hyun Ryu
- Department of Biomedical Materials Science, Graduate School of JABA, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Department of Carbon Convergence Engineering, Department of Chemical Engineering, Smart Convergence Materials Analysis Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
4
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
5
|
Chen Z, Zhao X, Lin L, Cui Y, Cao D, Chen XL, Wang X. CaGA nanozymes with multienzyme activity realize multifunctional repair of acute wounds by alleviating oxidative stress and inhibiting cell apoptosis. Biomater Sci 2025; 13:422-433. [PMID: 39412895 DOI: 10.1039/d4bm01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuyu Cui
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
6
|
Pérez-Delgado FJ, García-Villa MD, Fernández-Quiroz D, Villegas-Ochoa M, Domínguez-Avila JA, Gonzalez-Aguilar GA, Ayala-Zavala JF, Martínez-Martínez A, Montiel-Herrera M. Clicking gallic acid into chitosan prolongs its antioxidant activity and produces intracellular Ca 2+ responses in rat brain cells. Int J Biol Macromol 2024; 277:134343. [PMID: 39097059 DOI: 10.1016/j.ijbiomac.2024.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gallic acid is a vegetable-derived and highly bioactive phenolic acid, but its antioxidant capacity is sensitive to environmental conditions. Chitosan is a biopolymer capable of exerting significant protection to various molecules, including phenolic compounds. A chitosan derivative that extends the antioxidant activity of gallic acid was synthesized by click chemistry and characterized by FT-IR, 1H NMR, and antioxidant capacity assays. Our results show that synthesized polymeric solutions and nanoparticles of N-(gallic acid) chitosan were both internalized by rat brain cells, processes that were modulated by extracellular Ca2+ and Na+. Their internalization was supported by dynamic light scattering and ζ-potential analyses, while Ca2+ imaging recordings performed in brain cells revealed the potential biological effect of N-(gallic acid) chitosan. We conclude that the synthesis of an N-(gallic acid) chitosan derivative through click chemistry is viable and may serve as strategy to prolong its antioxidant activity and to study its biological effects in vivo.
Collapse
Affiliation(s)
- Francisco Jonathan Pérez-Delgado
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico; Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Miriam Denise García-Villa
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Blvd. Luis Encinas and Rosales, S/N, Colonia Centro, CP 83000 Hermosillo, Sonora, Mexico
| | - Mónica Villegas-Ochoa
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Jesús Abraham Domínguez-Avila
- Cátedras CONACYT-Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Gustavo Adolfo Gonzalez-Aguilar
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Jesús Fernando Ayala-Zavala
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Alejandro Martínez-Martínez
- Department of Chemical Biological Sciences, Autonomous University of Ciudad Juárez, Anillo del Pronaf and Estocolmo S/N; Ciudad Juarez, CP 32300 Chihuahua, Mexico
| | - Marcelino Montiel-Herrera
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico.
| |
Collapse
|
7
|
Xue H, Du X, Fang S, Gao H, Xie K, Wang Y, Tan J. The interaction of polyphenols-polysaccharides and their applications: A review. Int J Biol Macromol 2024; 278:134594. [PMID: 39127285 DOI: 10.1016/j.ijbiomac.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Polyphenols, as important secondary metabolites in nature, are widely distributed in vegetables, fruits, grains, and other foods. Polyphenols have attracted widespread attention in the food industry and nutrition due to their unique structure and various biological activities. However, the health benefits of polyphenols are compromised owing to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides largely determined the stability and functional characteristics of polyphenols in food processing and storage. Thus, this topic has attracted widespread attention in recent years. The main purposes of this article are as follows: 1) to review the interaction mechanisms of polyphenols and polysaccharides including non-covalent and covalent bonds; 2) to comprehensively analyze the influencing factors of the interaction between polyphenols and polysaccharides, and introduce the effects of their interaction on the properties of polyphenols; 3) to systematically summarize the applications of interaction between polyphenols and polysaccharides. The findings can provide the important reference and theoretical support for the application of polyphenols and polysaccharides in food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaopeng Du
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
8
|
Harwansh RK, Deshmukh R, Shukla VP, Khunt D, Prajapati BG, Rashid S, Ali N, Elossaily GM, Suryawanshi VK, Kumar A. Recent Advancements in Gallic Acid-Based Drug Delivery: Applications, Clinical Trials, and Future Directions. Pharmaceutics 2024; 16:1202. [PMID: 39339238 PMCID: PMC11435332 DOI: 10.3390/pharmaceutics16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gallic acid (GA) is a well-known herbal bioactive compound found in many herbs and foods like tea, wine, cashew nuts, hazelnuts, walnuts, plums, grapes, mangoes, blackberries, blueberries, and strawberries. GA has been reported for several pharmacological activities, such as antioxidant, inflammatory, antineoplastic, antimicrobial, etc. Apart from its incredible therapeutic benefits, it has been associated with low permeability and bioavailability issues, limiting their efficacy. GA belongs to BCS (Biopharmaceutics classification system) class III (high solubility and low probability). In this context, novel drug delivery approaches played a vital role in resolving these GA issues. Nanocarrier systems help improve drug moiety's physical and chemical stability by encapsulating them into a lipidic or polymeric matrix or core system. In this regard, researchers have developed a wide range of nanocarrier systems for GA, including liposomes, transfersomes, niosomes, dendrimers, phytosomes, micelles, nanoemulsions, metallic nanoparticles, solid lipid nanoparticles (SLNs), nanoparticles, nanostructured lipid carriers, polymer conjugates, etc. In the present review, different search engines like Scopus, PubMed, ScienceDirect, and Google Scholar have been referred to for acquiring recent information on the theme of the work. Therefore, this review paper aims to emphasize several novel drug delivery systems, patents, and clinical updates of GA.
Collapse
Affiliation(s)
- Ranjit K. Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Vijay Pratap Shukla
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, India;
| | - Bhupendra Gopalbhai Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | | | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
9
|
Shin HH, Ryu JH. Bio-Inspired Self-Healing, Shear-Thinning, and Adhesive Gallic Acid-Conjugated Chitosan/Carbon Black Composite Hydrogels as Suture Support Materials. Biomimetics (Basel) 2023; 8:542. [PMID: 37999183 PMCID: PMC10669539 DOI: 10.3390/biomimetics8070542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive materials could be used to support suturing in surgical procedures, many complications caused by leakage from the anastomosis sites could be prevented. In this study, we have developed self-healing, shear-thinning, tissue-adhesive, carbon-black-containing, gallic acid-conjugated chitosan (CB/Chi-gallol) hydrogels as sealing materials to be used with suturing. The addition of CB into Chi-gallol solution resulted in the formation of a crosslinked hydrogel with instantaneous solidification. In addition, these CB/Chi-gallol hydrogels showed enhancement of the elastic modulus (G') values with increased CB concentration. Furthermore, these hydrogels exhibited excellent self-healing, shear-thinning, and tissue-adhesive properties. Notably, the hydrogels successfully sealed the incision site with suturing, resulting in a significant increase in the bursting pressure. The proposed self-healing and adhesive hydrogels are potentially useful in versatile biomedical applications, particularly as suture support materials for surgical procedures.
Collapse
Affiliation(s)
- Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Ji Hyun Ryu
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
10
|
Huang X, Shi L, Lin Y, Zhang C, Liu P, Zhang R, Chen Q, Ouyang X, Gao Y, Wang Y, Sun T. Pycnoporus sanguineus Polysaccharides as Reducing Agents: Self-Assembled Composite Nanoparticles for Integrative Diabetic Wound Therapy. Int J Nanomedicine 2023; 18:6021-6035. [PMID: 37908670 PMCID: PMC10614664 DOI: 10.2147/ijn.s427055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Diabetic foot ulcers (DFU) are severe complications of diabetes, posing significant health and societal challenges. Elevated levels of reactive oxygen species (ROS) at the ulcer site hinder wound healing in most patients, while individuals with diabetes are also more susceptible to bacterial infections. This study aims to synthesize a comprehensive therapeutic material using polysaccharides from Pycnoporus sanguineus to promote DFU wound healing, reduce ROS levels, and minimize bacterial infections. Methods Polysaccharides from P.sanguineus were employed as reducing and stabilizing agents to fabricate polysaccharide-based composite particles (PCPs) utilizing silver ions as templates. PCPs were characterized via UV-Vis, TEM, FTIR, XRD, and DLS. The antioxidant, antimicrobial, and cytotoxic properties of PCPs were assessed through in vitro and cellular experiments. The effects and mechanisms of PCPs on wound healing were evaluated using a diabetic ulcer mouse model. Results PCPs exhibited spherical particles with an average size of 57.29±22.41 nm and effectively combined polysaccharides' antioxidant capacity with silver nanoparticles' antimicrobial function, showcasing synergistic therapeutic effects. In vitro and cellular experiments demonstrated that PCPs reduced cellular ROS levels by 54% at a concentration of 31.25 μg/mL and displayed potent antibacterial activity at 8 μg/mL. In vivo experiments revealed that PCPs enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), promoting wound healing in DFUs and lowering the risk of bacterial infections. Conclusion The synthesized PCPs offer a novel strategy for the comprehensive treatment of DFU. By integrating antioxidant and antimicrobial functions, PCPs effectively promote wound healing and alleviate patient suffering. The present study demonstrates a new strategy for the integrated treatment of diabetic wounds and expands the way for developing and applying the polysaccharide properties of P. sanguineus.
Collapse
Affiliation(s)
- Xiaofei Huang
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Lihua Shi
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yin Lin
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Cong Zhang
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Penghui Liu
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Ran Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Qiqi Chen
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xudong Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Tongyi Sun
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
| |
Collapse
|
11
|
Shen J, Jiao W, Chen Z, Wang C, Song X, Ma L, Tang Z, Yan W, Xie H, Yuan B, Wang C, Dai J, Sun Y, Du L, Jin Y. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr Polym 2023; 316:121024. [PMID: 37321722 DOI: 10.1016/j.carbpol.2023.121024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Clinical wound management of combined radiation and burn injury (CRBI) remains a huge challenge due to serious injuries induced by redundant reactive oxygen species (ROS), the accompanying hematopoietic, immunologic suppression and stem cell reduction. Herein, the injectable multifunctional Schiff base cross-linked with gallic acid modified chitosan (CSGA)/oxidized dextran (ODex) hydrogels were rationally designed to accelerate wound healing through elimination of ROS in CRBI. CSGA/ODex hydrogels, fabricated by mixing solutions of CSGA and Odex, displayed good self-healing ability, excellent injectability, strong antioxidant activity, and favorable biocompatibility. More importantly, CSGA/ODex hydrogels exhibited excellent antibacterial properties, which is facilitated for wound healing. Furthermore, CSGA/ODex hydrogels significantly suppressed the oxidative damage of L929 cells in an H2O2-induced ROS microenvironment. The recovery of mice with CRBI in mice demonstrated that CSGA/ODex hydrogels significantly reduced the hyperplasia of epithelial cells and the expression of proinflammatory cytokine, and accelerated wound healing which was superior to the treatment with commercial triethanolamine ointment. In conclusion, the CSGA/ODex hydrogels as a wound dressing could accelerate the wound healing and tissue regeneration of CRBI, which provides great potential in clinical treatment of CRBI.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingshuang Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenyun Wang
- The Fourth Clinical Center Affiliated to Chinese PLA General Hospital, Beijing 100048, China
| | - Jing Dai
- Information Department, General Hospital of Western War Zone, Chengdu 610083, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China.
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
12
|
López-Valverde N, López-Valverde A, Montero J, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1226907. [PMID: 37600299 PMCID: PMC10435350 DOI: 10.3389/fbioe.2023.1226907] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Periodontal diseases (PD) are common chronic inflammatory oral pathologies that are strongly linked to others not found in the mouth cavity. The immune system mediates the host response, which includes the upregulation of proinflammatory cytokines, metalloproteinases, and reactive oxygen species (ROS); the latter may play an important role in the establishment and progression of inflammatory diseases, particularly periodontal disease, via the development of oxidative stress (OS). Natural antioxidants have powerful anti-inflammatory properties, and some can reduce serum levels of key PD indicators such tumor necrosis factor (TNF) and interleukin IL-1. This review compiles, through a thorough literature analysis, the antioxidant, anti-inflammatory, and antibacterial effects of a variety of natural products, as well as their therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Javier Montero
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
13
|
Bharathi D, Thiruvengadam Nandagopal JG, Lee J, Ranjithkumar R. Facile Synthesis and Characterization of Chitosan Functionalized Silver Nanoparticles for Antibacterial and Anti-Lung Cancer Applications. Polymers (Basel) 2023; 15:2700. [PMID: 37376346 DOI: 10.3390/polym15122700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In the treatment of bacterial contamination, the problem of multi-drug resistance is becoming an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth. The current work investigates the green production of chitosan functionalized silver nanoparticles (CS/Ag NPs) using Sida acuta and their inhibition efficacy against bacterial pathogens and lung cancer cells (A549). Initially, a brown color formation confirmed the synthesis, and the chemical nature of the synthesized NPs were examined by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). FTIR demonstrated the occurrence of CS and S. acuta functional groups in the synthesized CS/Ag NPs. The electron microscopy study exhibited CS/Ag NPs with a spherical morphology and size ranges of 6-45 nm, while XRD analysis demonstrated the crystallinity of Ag NPs. Further, the bacterial inhibition property of CS/Ag NPs was examined against K. pneumoniae and S. aureus, which showed clear inhibition zones at different concentrations. In addition, the antibacterial properties were further confirmed by a fluorescent AO/EtBr staining technique. Furthermore, prepared CS/Ag NPs exhibited a potential anti-cancer character against a human lung cancer cell line (A549). In conclusion, our findings revealed that the produced CS/Ag NPs could be used as an excellent inhibitory material in industrial and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Rajamani Ranjithkumar
- Viyen Biotech LLP, Coimbatore 641031, Tamil Nadu, India
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore 641006, Tamil Nadu, India
| |
Collapse
|
14
|
Lunkov A, Konovalova M, Shagdarova B, Zhuikova Y, Il'ina A, Varlamov V. Synthesis of Selenium Nanoparticles Modified by Quaternary Chitosan Covalently Bonded with Gallic Acid. Polymers (Basel) 2023; 15:polym15092123. [PMID: 37177269 PMCID: PMC10180991 DOI: 10.3390/polym15092123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Quaternary chitosan derivative with covalently bonded antioxidant (QCG) was used as media for synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized using AFM, TEM, and DLS methods. The data confirmed the formation of stable nanoparticles with a positive charge (34.86-46.73 mV) and a size in the range 119.5-238.6 nm. The antibacterial and fungicidal activity of SeNPs occurred within the range of values for chitosan derivatives. In all cases, the highest activity was against C. albicans (MIC 125 µg/mL). The toxicity of the modified selenium nanoparticles to eukaryotic cells was significantly higher. Among nanoparticle samples, SeNPs that were synthesized at 55 °C demonstrated the highest toxicity against Colo357 and HaCaT cell lines. Based on these results, SeNPs loaded with doxorubicin were obtained. DOX loading efficiency was about 18%. QCG-SeNPs loaded with DOX at a concentration of 1.25 μg/mL inhibited more than 50% of hepatocarcinoma (Colo 357) cells and about 70% of keratinocytes (HaCaT).
Collapse
Affiliation(s)
- Alexey Lunkov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Balzhima Shagdarova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yuliya Zhuikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alla Il'ina
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
15
|
Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int J Biol Macromol 2023; 233:123395. [PMID: 36702225 DOI: 10.1016/j.ijbiomac.2023.123395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The present study proposes two unique systems using free radical-induced grafting reactions to combine Ag, chitosan (CS) and gallic acid (GA) into a single particulate nanostructure. GA-grafted-CS (GA-g-CS) was used to reduce Ag+ to Ag0, and producing Ag-GA-g-CSNPs (hybrid NPs I). Also, GA was grafted into CS-AgNPs, to form GA-g-CS AgNPs (hybrid NPs II). Although there were previous attempts to graft GA into CS, this is first time to graft GA into CS-AgNPs. The study aimed to enhance biocompatibility, antibacterial and antioxidant properties of CS-AgNPs via grafted GA. Grafting GA into CS-AgNPs was confirmed by UV-Vis, DLS, DSC/TGA, XRD, EDX and FTIR. The morphology and size of NPs were studied by TEM and SEM. The decrease of ζ-potential from +50 mV in CS-Ag NPs to +33 and + 29 mV, in the presented 2 nanoforms hybrid NPs I and II, respectively, is an indication for the successful GA graft. Among all samples, hybrid NPs II showed lower toxicity, higher antioxidant and antibacterial activity. The obtained results revealed that grafting GA to CS-AgNPs, as a new method to combine Ag, CS and GA in a uniparticulate structure, is a unique process which may deserve a more future consideration.
Collapse
|
16
|
Li H, Liang X, Chen Y, Liu K, Fu X, Zhang C, Wang X, Yang J. Synergy of antioxidant and M2 polarization in polyphenol-modified konjac glucomannan dressing for remodeling wound healing microenvironment. Bioeng Transl Med 2023; 8:e10398. [PMID: 36925701 PMCID: PMC10013815 DOI: 10.1002/btm2.10398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Effective skin wound healing and tissue regeneration remain a challenge. Excessive/chronic inflammation inhibits wound healing, leading to scar formation. Herein, we report a wound dressing composed of KGM-GA based on the natural substances konjac glucomannan (KGM) and gallic acid (GA) that accelerates wound healing without any additional drugs. An in vitro study showed that KGM-GA could not only stimulate macrophage polarization to the anti-inflammatory M2 phenotype but also decrease reactive oxygen species (ROS) levels, indicating excellent anti-inflammatory properties. Moreover, in vivo studies of skin wounds demonstrated that the KGM-GA dressing significantly improved wound healing by accelerating wound closure, collagen deposition, and angiogenesis. In addition, it was observed that KGM-GA regulated M2 polarization, reducing the production of intracellular ROS in the wound microenvironment, which was consistent with the in vitro experiments. Therefore, this study designed a multifunctional biomaterial with biological activity, providing a novel dressing for wound healing.
Collapse
Affiliation(s)
- Huiyang Li
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xue Fu
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
17
|
Aranaz I, Navarro-García F, Morri M, Acosta N, Casettari L, Heras A. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. Int J Biol Macromol 2023; 235:123849. [PMID: 36858087 DOI: 10.1016/j.ijbiomac.2023.123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this study, water-soluble chitosan salts (chitosan amine sulfopropyl salts) were prepared from chitosan samples with different molecular weights and deacetylation degrees. These soluble-in-water polymer salts allowed us to produce, in an eco-friendly and facile method, silver nanoparticles (AgNPs) with better control on size and polydispersity, even at large silver concentrations than their corresponding chitosan sample. Chitosan salt-based materials (films and scaffolds) were analyzed in terms of antibacterial properties against Staphylococcus aureus ATCC23915 or Pseudomonas aeruginosa ATCC 27853. 3D scaffolds enhanced the effect of the chitosan-AgNPs combination compared to the equivalent films.
Collapse
Affiliation(s)
- I Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain.
| | - F Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - M Morri
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - N Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| | - L Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - A Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| |
Collapse
|
18
|
YAN Y, LI F, GU C, SUN J, HAN Y, HUANGFU Z, SONG F, CHEN J. Structural and functional properties of two phenolic acid-chitosan derivatives and their application in the preservation of Saimaiti apricot fruit. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.106922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
| | | | | | | | - Yaru HAN
- Xinjiang Uygur Autonomous Region, China
| | | | | | | |
Collapse
|
19
|
Wang D, Sun Y, Zhang D, Kong X, Wang S, Lu J, Liu F, Lu S, Qi H, Zhou Q. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr Polym 2023; 299:120184. [PMID: 36876799 DOI: 10.1016/j.carbpol.2022.120184] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Tooth extraction commonly causes uncontrolled bleeding, loss of blood clots, and bacterial infection, leading to the dry socket and bone resorption. Thus, it is highly attractive to design a bio-multifunctional scaffold with outstanding antimicrobial, hemostatic, and osteogenic performances for avoiding dry sockets in clinical applications. Herein, alginate (AG)/quaternized chitosan (Qch)/diatomite (Di) sponges were fabricated via electrostatic interaction, Ca2+ cross-linking, as well as lyophilization methods. The composite sponges are facilely made into the shape of the tooth root, which could be well integrated into the alveolar fossa. The sponge shows a highly interconnected and hierarchical porous structure at the macro/micro/nano levels. The prepared sponges also possess enhanced hemostatic and antibacterial abilities. Moreover, in vitro cellular assessment indicates that the developed sponges have favorable cytocompatibility and significantly facilitate osteogenesis by upregulating the formation of alkaline phosphatase and calcium nodules. The designed bio-multifunctional sponges display great potential for trauma treatment after tooth extraction.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yinyin Sun
- Oral Medicine, The People's Hospital of Jimo, Qingdao, Qingdao 266200, China
| | - Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Sainan Wang
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Jinglin Lu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fengyuan Liu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shulai Lu
- Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
20
|
Ding X, Wang F, Hu H, Imhanria S, Wang W, Zhang J. Tea-polyphenol green fabricating catkin-like CuAg for electrochemical H 2O 2 detection. Colloids Surf B Biointerfaces 2022; 219:112827. [PMID: 36154997 DOI: 10.1016/j.colsurfb.2022.112827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Green fabrication of unique structural nanoparticles has always been of increasing interest in many fields. Herein, a facile and green strategy of fabricating catkin-like CuAg nanocomposites using tea-polyphenols as reduction agent is reported. As-prepared nanocomposites have been characterized by a series of analysis. Physical characterizations show the synthesised of nanocomposites whose catkin-like special morphology. The electrochemical detection hydrogen peroxide (H2O2) results show that, catkin-like CuAg nanocomposites have good sensitivity, stability and anti-interference and it could detect without any additional mediator or enzyme. Specifically, it shows good H2O2 sensitivity of 2.55 μA mM-1cm-2 with range of 0.1-120 mM. Therefore, the catkin-like CuAg nanocomposites prepared by an environmental-friendly synthetic strategy, would provide a good reference for other green syntheses in the future.
Collapse
Affiliation(s)
- Xu Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Fengxia Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| | - Hui Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Sarah Imhanria
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
21
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
22
|
Il’ina AV, Shagdarova BT, Varlamov VP. Prospects for the Use of Metal Nanoparticles and Chitosan Nanomaterials with Metals to Combat Phytopathogens. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Qi Z, Xue X, Zhou H, Yuan H, Li W, Yang G, Xie P, Wang C. The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chem 2021; 376:131924. [PMID: 34968917 DOI: 10.1016/j.foodchem.2021.131924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
To valorise olive mill wastewater phenols (OPs) potentially applied in food preservation, a novel stable and regularly spherical OPs-AgNPs (Davg = 78 nm) were successfully assembled in aqueous solution under the optimized conditions (pH 8.0, 5 mM AgNO3, 35C and 30 min). The results of antimicrobial zone diameters indicated that 50 μg/mL of promising OPs-AgNPs presented excellent antimicrobial effects. Especially, the cell wall damages of E. coli ATCC 23,815 were caused when OPs-AgNPs concentration was exceeded its MIC (8.58 μg/mL). Also, a significant down-regulating of the Ca2+-ATPase activity in E. coli was revealed, and the intracellular Ca2+ concentrations were thus decreased from 12.5 to 1.35 µg/mL after a treatment for 3 h. The apoptosis level of E. coli was significantly increased more than the control (55.13% of OPs-AgNPs vs 9.90% of control). In sum, OPs exerts enhanced antimicrobial function via penetrating cell membrane and targeting Ca2+-ATPase after chelated with AgNPs.
Collapse
Affiliation(s)
- Zhiwen Qi
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingying Xue
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hao Zhou
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hua Yuan
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Wenjun Li
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, Hunan, People's Republic of China.
| | - Pujun Xie
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China.
| | - Chengzhang Wang
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Shagdarova B, Konovalova M, Zhuikova Y, Lunkov A, Zhuikov V, Khaydapova D, Il’ina A, Svirshchevskaya E, Varlamov V. Collagen/Chitosan Gels Cross-Linked with Genipin for Wound Healing in Mice with Induced Diabetes. MATERIALS (BASEL, SWITZERLAND) 2021; 15:15. [PMID: 35009173 PMCID: PMC8745956 DOI: 10.3390/ma15010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.K.); (E.S.)
| | - Yuliya Zhuikova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Alexey Lunkov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Dolgor Khaydapova
- Faculty of Soil Science, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Alla Il’ina
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.K.); (E.S.)
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (B.S.); (Y.Z.); (A.L.); (V.Z.); (A.I.)
| |
Collapse
|
25
|
Zhao B, Zhou Q, Lou C, Jin X, Li W. Synthesis of chitosan/silver nanocomposites by phase inversion with the assistance of carbon dioxide. Int J Biol Macromol 2021; 193:287-292. [PMID: 34688679 DOI: 10.1016/j.ijbiomac.2021.10.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Carbon dioxide (CO2) assisted synthesis of water-soluble silver nanoparticle with a narrow particle size distribution is reported here based on the phase-inversion procedure. Bio-derived chitosan (CS) is used to stabilize the metal nanoparticles according to its abundant functional groups. Formic acid is employed as both a solvent (for the polymer) and a reductant for in-situ reducing the silver precursor along with the solvent evaporation. CO2 is utilized to combine with the amino groups of CS, reducing the viscosity of chitosan/formic acid solution and limiting the formation of hydrogen bonds. This promotes the stabilization and reduction efficiency of silver nanoparticles. In particular, 100% of Ag metal nanoparticles with the size of 7.5 ± 2.3 nm is successfully synthesized with the assistance of CO2. Interestingly, the synthesized CS/Ag nanocomposites are water-soluble owing to the formation of carbamate groups. This water-soluble silver nanoparticle presents an exceptional performance in the selective reduction of 4-nitrophenol, where the turnover frequency (TOF = 599 h-1) is even double with respect to the CO2 free system.
Collapse
Affiliation(s)
- Binqing Zhao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China; Department of Polymer Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Qi Zhou
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China.
| | - Chenxi Lou
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China; Department of Polymer Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xinpeng Jin
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China
| | - Wei Li
- Department of Polymer Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| |
Collapse
|
26
|
Synthesis of ferrocene/chitosan-AgNPs films and application in plasmonic color-switching and antimicrobial materials. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Madhan G, Begam AA, Varsha LV, Ranjithkumar R, Bharathi D. Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. Int J Biol Macromol 2021; 190:259-269. [PMID: 34419540 DOI: 10.1016/j.ijbiomac.2021.08.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
In this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD. Morphological analysis through FE-SEM and TEM showed a rod like appearance for ZnO NPs and agglomerated grains with rod shaped morphology was observed for the CS/ZnO nanocomposite. The peaks around 400-800 cm-1 in the IR spectrum of nanocomposite indicated the vibrations of metal-oxygen (ZnO), whereas bands at 1659 cm-1 and 1546 cm-1 indicated the presence of amine groups, which confirms the CS in the synthesized CS/ZnO nanocomposite. The CS/ZnO nanocomposite exhibited remarkable growth inhibition activity against B. subtilis and E. coli with 22 ± 0.3 and 16.5 ± 0.5 mm zone of inhibitions. In addition, CS/ZnO nanocomposite treated cotton fabrics also exhibited antibacterial activity against B. subtilis and E. coli. Furthermore, the ZnO NPs and nanocomposite showed time depended photodegradation activity and revealed 76% and 91% decomposition of CR under sunlight irradiation. In conclusion, our study revealed that the functionalization of biopolymer CS to the inorganic ZnO enhances the bio and catalytic properties.
Collapse
Affiliation(s)
- Gunasekaran Madhan
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - A Ayisha Begam
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - L Vetri Varsha
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | | | - Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India.
| |
Collapse
|
28
|
Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Bombesin Peptide Conjugated Water-Soluble Chitosan Gallate-A New Nanopharmaceutical Architecture for the Rapid One-Pot Synthesis of Prostate Tumor Targeted Gold Nanoparticles. Int J Nanomedicine 2021; 16:6957-6981. [PMID: 34675516 PMCID: PMC8520890 DOI: 10.2147/ijn.s327045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We report herein bombesin peptide conjugated water-soluble chitosan gallate as a template for rapid one-pot synthesis of gold nanoparticles (AuNPs) with capabilities to target receptors on prostate cancer cells. METHODS Water-soluble chitosan (WCS), anchored with gallic acid (GA) and LyslLys3 (1,4,7,10-tetraazacyclo dodecane-1,4,7,10-tetraacetic acid) bombesin 1-14 (DBBN) peptide, provides a tumor targeting nanomedicine agent. WCS nanoplatforms provide attractive strategies with built-in capabilities to reduce gold (III) to gold nanoparticles with stabilizing and tumor-targeting capabilities. WCS-GA-DBBN encapsulation around gold nanoparticles affords optimum in vitro stability. RESULTS The DBBN content in the WCS-GA-DBBN sample was ~27%w/w. The antioxidant activities of WCS-GA and WCS-GA-DBBN nanocolloids were enhanced by 12 times as compared to the nascent WCS. AuNPs with a desirable hydrodynamic diameter range of 40-60 nm have been efficiently synthesized using WCS-GA and WCS-GA-DBBN platforms. The AuNPs were stable over 4 days after preparation and ~3 days after subjecting to all relevant biological fluids. The AuNPs capped with WCS-GA-DBBN peptide exhibited superior cellular internalization into prostate tumor (PC-3) cells with evidence of receptor mediated endocytosis. CONCLUSION The AuNPs capped with WCS-GA-DBBN exhibited selective affinity toward prostate cancer cells. AuNPs conjugated with WCS-GA-DBBN serve as a new generation of theranostic agents for treating various neoplastic diseases, thus opening-up new applications in oncology.
Collapse
Affiliation(s)
- Theeranan Tangthong
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Thananchai Piroonpan
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| | - Velaphi C Thipe
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kavita Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65211, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
29
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
30
|
Lee S, Zhang M, Wang G, Meng W, Zhang X, Wang D, Zhou Y, Wang Z. Characterization of polyvinyl alcohol/starch composite films incorporated with p-coumaric acid modified chitosan and chitosan nanoparticles: A comparative study. Carbohydr Polym 2021; 262:117930. [PMID: 33838808 DOI: 10.1016/j.carbpol.2021.117930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
In this paper, polyvinyl alcohol/starch composite films with p-coumaric acid modified chitosan (P-CS) and chitosan nanoparticles (P-CSNPs) at different concentrations were successfully prepared. The films were compared for their mechanical, thermal, physical, antioxidant, antibacterial, cytotoxicity and optical barrier properties. The results suggested that P-CS could significantly increase the tensile strength (TS) of the film from 15.67 MPa to a maximum of 24.32 MPa. The compact structure of P-CSNPs film prevented water diffusion, reducing the water amount within. Both films showed a reduction in water solubility, the extent of swelling, and water vapor transmittance. Specifically, P-CSNPs films showed better thermal stability while P-CS films revealed higher antioxidant activity. Besides, the P-CS films exhibited excellent transparency and good ultraviolet-barrier at 200-280 nm. P-CSNPs films demonstrated higher antibacterial activity on both Gram-negative and Gram-positive bacteria. Additionally, P-CS films were less cytotoxic compared to P-CSNPs films.
Collapse
Affiliation(s)
- Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenqiao Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Yue Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China; Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhonghua Wang
- Yantai Taparan Advanced Manufacturing Technology Co., Ltd., People's Republic of China
| |
Collapse
|
31
|
Wang B, Li T, Guo W, Wang R, Li Y, Zhu X, Song P, He Y. Synthesis of Ag@chitosan/copolymer with dual-active centers for high antibacterial activity. Int J Biol Macromol 2021; 174:198-206. [PMID: 33516853 DOI: 10.1016/j.ijbiomac.2021.01.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
The prevention and treatment of microorganism contamination on substrate surfaces have recently generated significant concern of scientists. In this paper, a novel diblock copolymer containing antibacterial quaternary ammonium groups as pendant groups, poly(3-(methacryloylamino) propyltrimethyl ammonium chloride)-b-poly(styrene) (PMS), was synthesized by interfacial polymerization. Also, PMS anisotropic particles (APs) could be successfully obtained based on different assembly behaviors by adjusting the ratios of monomers and the toluene/styrene (Tol/St). Moreover, silver loaded chitosan (Ag@CS) and PMS APs were combined to prepare natural/synthetic polymer antibacterial materials with dual-active centers (Ag@CS/PMS-4 APs), aiming to expand the application of carbohydrate polymers and improve the antibacterial activity of composite materials. Remarkably, the resulting series of PMS particles, especially worm-like PMS-4 APs, and Ag@CS/PMS-4 APs composite film ((Ag@CS/PMS-4 APs)-F) exhibited excellent antibacterial properties, which can be employed as interface materials to prevent the transmission of infectious diseases caused by microorganism contamination.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenling Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yue Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinhua Zhu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
32
|
Nandana CN, Christeena M, Bharathi D. Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01947-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Begum I, Ameen F, Soomro Z, Shamim S, AlNadhari S, Almansob A, Al-Sabri A, Arif A. Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101231. [DOI: 10.1016/j.jksus.2020.101231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
34
|
Klebowski B, Depciuch J, Stec M, Krzempek D, Komenda W, Baran J, Parlinska-Wojtan M. Fancy-Shaped Gold-Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21249610. [PMID: 33348549 PMCID: PMC7766784 DOI: 10.3390/ijms21249610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Enhancing the effectiveness of colorectal cancer treatment is highly desirable. Radiation-based anticancer therapy—such as proton therapy (PT)—can be used to shrink tumors before subsequent surgical intervention; therefore, improving the effectiveness of this treatment is crucial. The addition of noble metal nanoparticles (NPs), acting as radiosensitizers, increases the PT therapeutic effect. Thus, in this paper, the effect of novel, gold–platinum nanocauliflowers (AuPt NCs) on PT efficiency is determined. For this purpose, crystalline, 66-nm fancy shaped, bimetallic AuPt NCs were synthesized using green chemistry method. Then, physicochemical characterization of the obtained AuPt NCs by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDS), and UV-Vis spectra measurements was carried out. Fully characterized AuPt NCs were placed into a cell culture of colon cancer cell lines (HCT116, SW480, and SW620) and a normal colon cell line (FHC) and subsequently subjected to proton irradiation with a total dose of 15 Gy. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test, performed after 18-h incubation of the irradiated cell culture with AuPt NCs, showed a significant reduction in cancer cell viability compared to normal cells. Thus, the radio-enhancing features of AuPt NCs indicate their potential application for the improvement in effectiveness of anticancer proton therapy.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Dawid Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Wiktor Komenda
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence: (J.B.); (M.P.-W.)
| | - Magdalena Parlinska-Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
- Correspondence: (J.B.); (M.P.-W.)
| |
Collapse
|
35
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164:2726-2744. [PMID: 32841671 DOI: 10.1016/j.ijbiomac.2020.08.153] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
In this era, there is a global concern in the use of bioactive molecules such as chitosan in the field of antimicrobial and antioxidant benefits. Because of its biodegradability, biological compatibility, antimicrobial, antioxidants activity, and high safety, chitosan could be used in a large number of applications. It could exist in many forms, such as fibers, gels, films, sponges, nanoparticles, and beads. The different biological activities of chitosan and its products are extensively investigated to broaden the application fields in several areas. Chitosan's natural properties depend strongly on water and other solvent solubility. Consequently, the chitosan oligosaccharides with a low polymerization degree are getting significant attention in the pharmaceutical and medical applications because they have lower viscosity and higher water solubility than chitosan. The objective of this review article is to put the antioxidant and antimicrobial properties of chitosan and its derivatives under the spotlight. The impacts of chitosan on physicochemical parameters like molecular weight and deacetylation degree on its bioactivities are also identified. Additionally, other applications of chitosan and its derivatives, including wound healing products, wastewater treatment, and cosmetics, have also been highlighted.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M Zabermawi
- Department of Biological Sciences, Microbiology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Gaber Elsaber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555 Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | | | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
36
|
Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Khayrova A, Lopatin S, Varlamov V. Obtaining chitin, chitosan and their melanin complexes from insects. Int J Biol Macromol 2020; 167:1319-1328. [PMID: 33202268 DOI: 10.1016/j.ijbiomac.2020.11.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Interest in insects as a source of valuable biologically active substances has significantly increased over the past few years. Insects serve as an alternative source of chitin, which forms up to 40% of their exoskeleton. Chitosan, a deacetylated derivative of chitin, attracts the attention of scientists due to its unique properties (sorption, antimicrobial, film-forming, wound healing). Furthermore, some insect species are unique and can be used to obtain chitin- and chitosan-melanin complexes in the later stages of ontogenesis. Due to the synergistic effect, chitosan and melanin can enhance each other's biological activity, providing a wide range of potential applications.
Collapse
Affiliation(s)
- Adelya Khayrova
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia.
| | - Sergey Lopatin
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia
| | - Valery Varlamov
- Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia
| |
Collapse
|
38
|
Tang Q, Chen C, Jiang Y, Huang J, Liu Y, Nthumba PM, Gu G, Wu X, Zhao Y, Ren J. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. J Mater Chem B 2020; 8:5756-5764. [DOI: 10.1039/d0tb00726a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adhesives developed possess a good hemostatic effect. Attractively, agents loaded into the adhesives could exert sustained excellent antibacterial properties.
Collapse
|