1
|
Song H, Zhang Y, Huang Q, Wang F, Wang L, Xiong L, Shen X. Extraction optimization, purification, characterization, and hypolipidemic activities of polysaccharide from pumpkin. Int J Biol Macromol 2025; 307:141907. [PMID: 40081709 DOI: 10.1016/j.ijbiomac.2025.141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Polysaccharides derived from pumpkin have garnered increasing interest due to their diverse biological activities. In this study, pumpkin polysaccharides were extracted using an ultrasound-assisted extraction method, optimized via response surface methodology. The optimal extraction conditions were identified as follows: a solid-liquid ratio of 1:60 (g/mL), an extraction time of 1.9 h, an extraction temperature of 62 °C, and an ultrasonic power of 286 W. Under these conditions, the total carbohydrate content in pumpkin polysaccharides reached 71.14 ± 1.53 %, closely aligning with the predicted value. Post extraction, the polysaccharides were purified using DEAE Sepharose Fast Flow and Sephadex G-100 columns, resulting in a pure fraction termed PPS3. Structural analysis revealed that PPS3, with a molecular mass of 5.96 × 104 Da, consisted of mannose, glucosamine hydrochloride, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose in a molar ratio of 0.005:0.004:0.041:0.013:0.545:0.004:0.241:0.147, respectively. The backbone primarily contained →4)-α-D-GalpA-6-OMe-(1→ residue with several branched chains. Functionally, PPS3 demonstrated potent in vitro hypolipidemic activities. These findings elucidated the structural characteristics of pumpkin polysaccharides and suggested their potential as natural hypolipidemic agents.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Yanhui Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qianqian Huang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
2
|
Liu D, Zhang L, Huang H, Fu C, Wei Y, Yu Z, Han C, Tang W. Preparation and structural characteristics of polysaccharides from loquat peel waste, and their preliminary bioactivities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1343-1355. [PMID: 39352009 DOI: 10.1002/jsfa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Loquat peel, often as food waste, is a valuable source of bioactive polysaccharides. However, study of such polysaccharides is insufficient, leaving a significant gap in understanding their preparation, structure and bioactivities. RESULTS In this study, three types of loquat peel polysaccharides (LPWP, LPHP and LPNP) were sequentially extracted using hot water, HCl and NaOH solutions, respectively. Among them, LPWP was the purest, with a yield of 3.4% and molecular weight of 470.6 kDa, and it differed from LPHP and LPNP in structure, as evidenced by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy, which demonstrated that LPWP consisted of more arabinose (Ara) but less galacturonic acid, rhamnose and galactose, with molar percentages of 71.3%, 23.3%, 3.5% and 1.9%, respectively. Besides, LPWP also exhibited superior antioxidant and antihyperglycemic activities in vitro, particularly in inhibiting α-amylase and α-glucosidase. Methylation and nuclear magnetic resonance analysis confirmed that LPWP was a methyl-esterified pectic polysaccharide rich in branched arabinan, as evidenced by the notable proportion of α-Ara residues, including T-α-Araf, 1,5-α-Araf and 1,2,3,5-α-Araf, with molar percentages of 27.1%, 23.1% and 10.2%, respectively. AFM imaging further revealed its branched-chain morphology and aggregation behavior. CONCLUSION This study highlights the potential of loquat peel polysaccharides as a bioactive ingredient with significant antioxidant and antihyperglycemic properties, particularly LPWP, which was found as a methyl-esterified pectic polysaccharide with abundant-branched arabinan. Our work provides valuable insights into the application of loquat peel polysaccharides in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Lingju Zhang
- Zhejiang Taizhou Yiguan Food Co., Ltd, Taizhou, People's Republic of China
| | - Hongge Huang
- Zhejiang Taizhou Yiguan Food Co., Ltd, Taizhou, People's Republic of China
| | - Changchun Fu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Yunxiao Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Zuolong Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Yang J, Song Y, Yu Y, Yang X, Zhang X, Zhang W. Research progress on extraction techniques, structure-activity relationship, and biological functional mechanism of berry polysaccharides: A review. Int J Biol Macromol 2024; 282:137155. [PMID: 39505177 DOI: 10.1016/j.ijbiomac.2024.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In recent years, polysaccharides extracted from berries have received great attention due to their various bioactivities. However, the preparation and application of berry polysaccharides have been greatly limited due to the lack of efficient extraction techniques, unclear structure-activity relationships, and ambiguous functional mechanisms. This review discusses the technological progress in solvent extraction, assisted extraction, critical extraction, and combination extraction. The structure-activity relationship and functional mechanism (antioxidation, hypoglycemic, immunoregulation etc.) of berry polysaccharides are reviewed. After systematic exploration, we believe that industrial production is more suitable for using efficient and low-cost extraction methods, such as ultrasonic assisted extraction and microwave assisted extraction. And some of the bioactivities (antioxidant activity, hypoglycemic activity, etc.) of berry polysaccharides are closely related to their structure (molecular weight, monosaccharide composition, branching structure, etc.). Besides, berry polysaccharides exhibit bioactivities by regulating enzyme activity, cellular metabolism, gene expression, and other pathways to exert their effects on the body. These findings indicate the potential of berry polysaccharides as functional foods and drugs. This paper will contribute to the preparation, bioactivity research, and application of berry polysaccharides.
Collapse
Affiliation(s)
- Jun Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Yao Song
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
4
|
Chandrasekar CM, Carullo D, Saitta F, Krishnamachari H, Bellesia T, Nespoli L, Caneva E, Baschieri C, Signorelli M, Barbiroli AG, Fessas D, Farris S, Romano D. Valorization of citrus peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: An in-depth investigation. Carbohydr Polym 2024; 344:122539. [PMID: 39218557 DOI: 10.1016/j.carbpol.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.
Collapse
Affiliation(s)
- Chandra Mohan Chandrasekar
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Daniele Carullo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Francesca Saitta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | | | - Tommaso Bellesia
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Luca Nespoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Carlo Baschieri
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Alberto Giuseppe Barbiroli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
5
|
Wang XY, Hao M, Li YP, Zhang J, Xu QS, Yang F, Yang ZC, Xiong YR, Gong ES, Luo JH, Zou Q. Structural characteristics of a purified Evodiae fructus polysaccharide and its gastroprotection and relevant mechanism against alcohol-induced gastric lesions in rats. Int J Biol Macromol 2024; 281:136410. [PMID: 39395514 DOI: 10.1016/j.ijbiomac.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Evodiae fructus polysaccharide (EFP) has been previously shown to protect against alcohol-induced gastric lesions. However, which and how active fractions in EFP exert gastroprotection remains unclear. This study aimed to characterize the structure of the purified fraction (EFP-2-1) of EFP, and investigate its gastroprotection and underlying mechanisms. EFP-2-1 was obtained through column chromatography, and was characterized using instrumental analytical techniques. Gastroprotective effect of EFP-2-1 was evaluated using alcohol-induced gastric lesions in rats, and its mechanism was explored through proteomics, metabolomics and diversity sequencing. Results showed that EFP-2-1 had a molecular weight of 7.3 kDa, and consisted mainly of rhamnose, galacturonic acid, galactose and arabinose. Its backbone contained HG and RG-I domains, and branched with →5)-α-l-Araf-(1→, α-l-Araf-(1→ and →4)-β-d-Galp-(1→ residues. EFP-2-1 reduced gastric lesions and the levels of MDA, TNF-α and IL-6, activated PPARγ, primarily altered protein digestion and absorption and bile secretion metabolic pathways, regulated gut microbiota like Faecalibaculum and Lachnoclostridium, and increased short-chain fatty acids production. Correlations were observed among the gut microbiota, metabolites and biochemical indexes influenced by EFP-2-1. These findings suggest that EFP-2-1 is an active fraction of EFP for protecting against alcohol-induced gastric lesions, which may be linked to PPARγ activation, gut microbiota and serum metabolism.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Hao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Quan-Sheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Zi-Chao Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yu-Rou Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Zhang S, Li W, Ding C, Ma L, Zhao T, Liu X, Wang Z, Ding Q, Zhang L, Zhao C, Liu W. Preparation of sulfated arabinogalactan-loaded hydrogel for wound healing in mouse burn model. Int J Biol Macromol 2024; 279:135310. [PMID: 39270904 DOI: 10.1016/j.ijbiomac.2024.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Sulfation of polysaccharides can affect their biological activity by introducing sulfate groups. Skin burns occur regularly and have a great impact on normal survival. In this study, sulfated arabinogalactan (SAG) was prepared by sulfation, and polyvinyl alcohol (PVA) was used to prepare hydrogels for the treatment of scalded skin in mouse. The results show that the main chain of SAG consists of →3-β-D-Galactose (Gal)-(1, →3, 6)-β-D-Gal-(1 and →4)-β-d-Glucose (Glc)-(1. The chain is a neutral polysaccharide composed of T-β-L-Arabinose (Araf)-(1→, with a molecular weight of 17.9 kDa. At the same time, PVA + SAG hydrogel can promote the scald repair of mouse skin by promoting collagen deposition and angiogenesis, and regulating the TLR4/MyD88/NF-κB signaling pathway. Interestingly, the effect of SAG on promoting the repair of scald wounds is enhanced after AG is derivatized by sulfation. Therefore, the preparation of SAG by sulfation can promote scald repair, and has great application potential in the field of food and medicine.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Ting Zhao
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Xinglong Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Chunli Zhao
- College of Forestry and Grassology, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
7
|
Ren X, Hu J, Hong Y, Guo Y, Liu Q, Yang R. Extraction, separation and efficacy of yam polysaccharide. Int J Biol Macromol 2024; 281:136167. [PMID: 39357699 DOI: 10.1016/j.ijbiomac.2024.136167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Yam is used as common herbal remedy in traditional Chinese medicine and is grown all over Asia. According to previous research, one of the primary bioactive components of yam is yam polysaccharide. To shed light on the mechanism of yam polysaccharide in ulcerative colitis (UC), a yam heteropolysaccharide named CYP-3a was isolated and purified using ultrasonic extraction, the trichloroacetic acid technique, DEAE cellulose-52 and a Sephadex G75 column. CYP-3a comprises rhamnus: arabinose:galactose:mannose:galacturonic acid glucuronic acid, with a molar ratio of 2.25:4.17:3.30:0.09:0.13:0.26. CCK-8 and ELISA analysis results showed that CYP-3a increased the number of dextran sodium sulphate (DSS)-induced Caco-2 cells and could reduce and inhibit their inflammatory response by lowering the amounts of secreted TNF-α and IL-6. Western blot data demonstrated that CYP-3a at various doses could suppress the endoplasmic reticulum stress-mediated apoptotic pathway generated by DSS-induced UC and down-regulate the protein levels of GRP78, CHOP and NF-κB.
Collapse
Affiliation(s)
- Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ran Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Li Y, Mei M, Wang Q, Gen L, Hao K, Zhong R, Mo T, Jiang J, Zhu W. Structural characteristics and anti-photoaging effect of Pyracantha fortuneana fruit polysaccharides in vitro and in vivo. Int J Biol Macromol 2024; 278:134123. [PMID: 39053831 DOI: 10.1016/j.ijbiomac.2024.134123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyracantha fortuneana is a cultivated pant extensively cultivated worldwide for its ornamental value and ecological benefits. In this study, a polysaccharide with anti-photoaging activity was extracted and purified from P. fortuneana fruit (PPFP). The structural constitution of PPFP was elucidated by molecular weight determination, FT-IR, monosaccharide composition analysis, smith degradation, methylation, and NMR spectroscopy. The results revealed that PPFP is a macromolecular polysaccharide with a weight-average molecular weight of 70,895 Da. The PPFP is predominantly characterized by →3,6)-β-Galp-(1→, →5,3)-α-Araf-(1 → and →4,2)-α-Xylp-(1→, →4)-β-Galp-(1 → and →4)-β-GalpA-(1 → glycosidic linkages, with t-α-Araf-(1 → and t-α-Glcp-(1 → terminal units. The anti-photoaging activity and potential mechanism of action of PPFP was investigated in vitro and in vivo. Results showed that PPFP exerted anti-photoaging effect on UVB-damaged HaCaT cells by ameliorating cell apoptosis, regulating the mitochondrial membrane potential and oxidative stress level, alleviating the phosphorylation level of the proteins in MAPK pathways, and repairing the expression of tight junction proteins. Moreover, PPFP enhanced the lifespan and diminished the oxidative stress in UVB-injured Caenorhabditis elegans. Collectively, this study comprehensively elucidates the anti-photodamaging potential of P. fortuneana fruit polysaccharide and offers a novel plant-derived adjuvant therapy for the treating photodamage.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Manxue Mei
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qianhui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Longmei Gen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kexin Hao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxin Mo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528329, China.
| |
Collapse
|
9
|
Zhao B, Zhang C, Guo T, Wei Y. Punica granatum L. polysaccharides: A review on extraction, structural characteristics and bioactivities. Carbohydr Res 2024; 544:109246. [PMID: 39178695 DOI: 10.1016/j.carres.2024.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Punica granatum L., commonly known as pomegranate, is native to Afghanistan and Iran, and today widely cultivated all over the world. Pomegranate polysaccharides are one of the most important bioactive components of P. granatum, which have a wide range of beneficial biological activities, such as anticancer, immunostimulatory, hepatoprotection, anti-psoriasis and antioxidation. Hot water extraction is currently the most commonly used method to isolate pomegranate polysaccharides. The structural characteristics of pomegranate polysaccharides have been extensively investigated through various advanced modern analytical techniques. This review focuses on the extraction, purification, structural characteristics, biological activities and structure-activity relationships of polysaccharides from Punica granatum. The aim of this article is to comprehensively and systematically summarize recent information of polysaccharides from Punica granatum and to serve as a basis for further research and development as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Bin Zhao
- School of Health Management, Shenyang Polytechnic College, Shenyang, 110045, PR China.
| | - Chunying Zhang
- School of Health Vocational, He University, Shenyang, 110163, PR China.
| | - Tianshi Guo
- School of Science and Technology, Shenyang Polytechnic College, Shenyang, 110045, PR China.
| | - Yan Wei
- School of Health Management, Shenyang Polytechnic College, Shenyang, 110045, PR China.
| |
Collapse
|
10
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
11
|
Huang J, Wang H, Chen H, Liu Z, Zhang X, Tang H, Wei S, Zhou W, Yang X, Liu Y, Zhao L, Yuan Q. Structural analysis and in vitro fermentation characteristics of an Avicennia marina fruit RG-I pectin as a potential prebiotic. Carbohydr Polym 2024; 338:122236. [PMID: 38763717 DOI: 10.1016/j.carbpol.2024.122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal β-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-β-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.
Collapse
Affiliation(s)
- Jinwen Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huiqi Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaqun Chen
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zidong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuedong Zhang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hao Tang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shiying Wei
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Qingxia Yuan
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
12
|
Feng S, Li K, Lv W, Wen Y, Qin X, Li Z, Du Y. Extraction, characterization, antioxidation and anti-inflammatory activity of polysaccharides from Bupleurum chinense based on different molecular weights. Nat Prod Res 2024:1-11. [PMID: 38824676 DOI: 10.1080/14786419.2024.2357667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Bupleurum chinense polysaccharide has a wide range of biological activities. In this study, Bupleurum chinense polysaccharides (BPs), BPs-1 (30 kDa) and BPs-2 (2000 kDa) with different molecular weights were isolated and prepared by ultrafiltration interception method. The structures of BPs, BPs-1 and BPs-2 were characterised by monosaccharide composition, GC-MS, Fourier transform infra-red spectroscopy and nuclear magnetic resonance. The results showed that the monosaccharide composition of BPs with different molecular weights was the same, but the proportion was different. BPs, BPs-1 and BPs-2 were mainly connected by Glup-(1→,→2,4)-Araf-(1→,→6)-Glup-(1→). The anti-inflammatory activity screening experiment in vitro showed that BPs-1 had stronger anti-inflammatory effect. Antioxidant experiments showed that BPs-2 had high free radical scavenging activity. This study laid a foundation for elucidating the fine structure and structure-activity relationship of Bupleurum chinense polysaccharides and will promote the product development of Bupleurum chinense polysaccharides.
Collapse
Affiliation(s)
- Shihong Feng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| | - Wanwan Lv
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
| | - Yuwei Wen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, P.R. China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, P.R. China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
13
|
Ji W, Qian C, Su X, Li X, Zhang Z, Ma Y, Zhang M, Li D. Structure characterization and protective effect against UVB irradiation of polysaccharides isolated from the plateau plant Gentiana dahurica Fisch. Int J Biol Macromol 2024; 267:131551. [PMID: 38621566 DOI: 10.1016/j.ijbiomac.2024.131551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 → 4)-α-GalpA-(6-OMe)-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.
Collapse
Affiliation(s)
- Wen Ji
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Cuiyin Qian
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiaopeng Su
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Xiang Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhenqing Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Life Sciences, Qinghai Normal University, Xining 810008, PR China.
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, PR China.
| |
Collapse
|
14
|
Wen H, Kuang Y, Lian X, Li H, Zhou M, Tan Y, Zhang X, Pan Y, Zhang J, Xu J. Physicochemical Characterization, Antioxidant and Anticancer Activity Evaluation of an Acidic Polysaccharide from Alpinia officinarum Hance. Molecules 2024; 29:1810. [PMID: 38675630 PMCID: PMC11052303 DOI: 10.3390/molecules29081810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
AHP-3a, a triple-helix acidic polysaccharide isolated from Alpinia officinarum Hance, was evaluated for its anticancer and antioxidant activities. The physicochemical properties and structure of AHP-3a were investigated through gel permeation chromatography, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The weight-average molecular weight of AHP-3a was 484 kDa, with the molar percentages of GalA, Gal, Ara, Xyl, Rha, Glc, GlcA, and Fuc being 35.4%, 21.4%, 16.9%, 11.8%, 8.9%, 3.1%, 2.0%, and 0.5%, respectively. Based on the results of the monosaccharide composition analysis, methylation analysis, and NMR spectroscopy, the main chain of AHP-3a was presumed to consist of (1→4)-α-D-GalpA and (1→2)-α-L-Rhap residues, which is a pectic polysaccharide with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) structural domains containing side chains. In addition, the results of the antioxidant activity assay revealed that the ability of AHP-3a to scavenge DPPH, ABTS, and OH free radicals increased with an increase in its concentration. Moreover, according to the results from the EdU, wound healing, and Transwell assays, AHP-3a can control the proliferation, migration, and invasion of HepG2 and Huh7 hepatocellular carcinoma cells without causing any damage to healthy cells. Thus, AHP-3a may be a natural antioxidant and anticancer component.
Collapse
Affiliation(s)
- Huan Wen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Yangjun Kuang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Xiuxia Lian
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Hailong Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Mingyan Zhou
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Yinfeng Tan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Xuguang Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
| | - Yipeng Pan
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Junqing Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (H.W.); (Y.K.); (X.L.); (H.L.); (Y.T.); (X.Z.)
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| | - Jian Xu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China;
| |
Collapse
|
15
|
Huang L, Sun Q, Li Q, Li X. Screening and characterization of an anti-inflammatory pectic polysaccharide from Cucurbita moschata Duch. Int J Biol Macromol 2024; 264:130510. [PMID: 38447847 DOI: 10.1016/j.ijbiomac.2024.130510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 → and →4)-α-D-GalpA-(1 → 2,4)-α-L-Rhap-(1 → as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.
Collapse
Affiliation(s)
- Linlin Huang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China
| | - Qi Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Li
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
16
|
Yang Q, Shen X, Zhao J, Er-Bu A, Liang X, He C, Yin L, Xu F, Li H, Tang H, Fu Y, Lv C. Onosma glomeratum Y. L. Liu polysaccharide alleviates LPS-induced pulmonary inflammation via NF-κB signal pathway. Int J Biol Macromol 2024; 263:130452. [PMID: 38417755 DOI: 10.1016/j.ijbiomac.2024.130452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Qian Yang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuelian Shen
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Junxi Zhao
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Aga Er-Bu
- Medical college, Tibet University, Lasa 850000, PR China
| | - Xiaoxia Liang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, PR China.
| | - Changliang He
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Funeng Xu
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Haohuan Li
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huaqiao Tang
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuping Fu
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
17
|
Zhang X, Gao M, Zhao X, Qi Y, Xu L, Yin L, Peng J. Purification and structural characterization of two polysaccharides with anti-inflammatory activities from Plumbago zeylanica L. Int J Biol Macromol 2024; 260:129455. [PMID: 38232876 DOI: 10.1016/j.ijbiomac.2024.129455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Plumbago zeylanica L., a traditional Chinese medicine, has anti-bacterial and anti-inflammatory effects, and it is critical important to explore the chemical compounds and evaluate their biological actions from the medicinal plant. However, the chemical structure and biological activities of polysaccharides from P. zeylanica. were still poorly understood. In this study, two water-soluble polysaccharides named WPZP-2-1 and WPZP-2-2 were purified from P. zeylanica L. Chemical and spectroscopic tests showed that the main chain of WPZP-2-1 was →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the branch chain was galactose or arabinose. The main chain of WPZP-2-2 was composed of →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the O-2 and O-3 of →4)-α-D-GalpA had a small amount of acetylation. In addition, in vitro test showed that WPZP-2-1 and WPZP-2-2 significantly improved the inflammatory damage of LPS + IFN-γ-induced THP-1 cells via reducing the protein levels of CD14, TLR4 and MyD88, thereby promoting IL-10 expression and inhibiting the mRNA levels of TNF-α and IL-1β. Those findings indicated that WPZP-2-1 and WPZP-2-2 from the plant should be served as the potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Linan Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
18
|
Wang H, Yan J, Wang K, Liu Y, Liu S, Wu K, Wang X, Haider A, Liu Y, Zhou Q, Wang X. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease. Int J Biol Macromol 2024; 256:128394. [PMID: 38013074 DOI: 10.1016/j.ijbiomac.2023.128394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The primary objective of this study is to investigate the potential mechanism behind the protective effect of Cistanche deserticola polysaccharides (CP) against alcoholic liver disease (ALD). Multiple chromography techniques were employed to characterize CP from polysaccharide, the molecular weight distribution of polysaccharides, monosaccharide composition, isomeric hydrogen and isomeric carbon, in order to clarify the material basis of CP. To create the ALD mouse model, we utilized the well-established Lieber-DeCarli alcoholic liquid feed method. Findings from the study revealed that CP administration resulted in significant improvements in intestinal permeability, upregulation of barrier proteins expression, and reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mouse liver and serum. Additionally, CP treatment reduced the presence of inflammatory cytokines both in serum and liver while enhancing the activity of antioxidant enzymes in the liver. Furthermore, CP effectively reduced alcohol-induced oxidative damage by downregulating Keap1 protein levels in the liver, leading to increased expression of Nrf2 protein. The 16S rDNA sequencing results revealed that CP significantly restored the intestinal microbiota composition in ALD mice. These findings establish a strong association between gut microbiota and liver injury indicators, highlighting the potential of CP in preventing and treating ALD by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Reyoung Pharmaceutical Co., Ltd. Jinan Branch, Jinan 250014, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yang Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xumei Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
19
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
20
|
Yang Y, Li H, Wang F, Jiang P, Wang G. An arabinogalactan extracted with alkali from Portulaca oleracea L. used as an immunopotentiator and a vaccine carrier in its conjugate to BSA. Carbohydr Polym 2023; 316:120998. [PMID: 37321719 DOI: 10.1016/j.carbpol.2023.120998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
A neutral polysaccharide (POPAN) from Portulaca oleracea L. was isolated with alkali and purified to obtain. HPLC analysis suggested POPAN (40.9 kDa) was mainly composed of Ara and Gal with traces of Glc and Man. GC-MS and 1D/2D NMR analysis confirmed POPAN was an arabinogalactan possessing a backbone mainly composing of (1 → 3)-α-l-Araf-linked arabinan and (1 → 4)-β-d-Galp-linked galactan, which was different from structure characterization of typical arabinogalactan reported previously. Importantly, we conjugated POPAN to BSA (POPAN-BSA), and detected the potential and mechanism of POPAN as an adjuvant in POPAN-BSA. The results indicated, in contrast to BSA, POPAN-BSA induced the robust and persistent humoral response in addition to the cellular response with Th2-biased immunity response in mice. Further investigations of mechanism revealed effects of POPAN-BSA were a result of POPAN as the adjuvant to: 1) significantly activate DCs in vitro or in vivo including the upgraded expressions of costimulators, MHCs and cytokines; 2) greatly facilitated the capture of BSA. Overall, present studies demonstrated POPAN can be a potential adjuvant as an immunopotentiator and an antigen delivery vehicle in its conjugate to recombinant protein vaccines.
Collapse
Affiliation(s)
- Ye Yang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hong Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Feihe Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Peng Jiang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Guiyun Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
21
|
Shao J, Li T, Zeng S, Dong J, Chen X, Zang C, Yao X, Li H, Yu Y. The structures of two acidic polysaccharides from Gardenia jasminoides and their potential immunomodulatory activities. Int J Biol Macromol 2023; 248:125895. [PMID: 37481185 DOI: 10.1016/j.ijbiomac.2023.125895] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
This study identified two homogeneous acidic polysaccharides from Gardeniae fructus, GJP50-3 and GJP50-4, which exhibited potential immunomodulatory activities in macrophage activation assays, via liquid-chip technology, and in a zebrafish model. Monosaccharide composition analysis and gel permeation chromatography revealed that GJP50-3 and GJP50-4 were composed of Rha, GalA, Glc, Gal, and Ara in specific ratios and had molecular weights of 91.5 kDa and 140.3 kDa, respectively. Based on FT-IR, GC-MS, and NMR analyses, these polysaccharides were identified as typical pectin polysaccharides with methylation degrees of 24.7 % and 21.4 %, respectively. The primary structures of GJP50-3 and GJP50-4 included linear HG domains and branched RG-I domains with arabinans and AG side chains. In vitro, GJP50-3 and GJP50-4 could stimulate NO release and increase the secretion of TNF-α in a RAW 264.7 macrophage model. Luminex liquid suspension chip detection revealed that GJP50-3 significantly promoted the secretion of multiple interleukins [IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13], TNF-α, and chemokines (G-CSF, GM-CSF, MCP-1 and RANTES). In vivo, these polysaccharides could also increase NO release and neutrophil count in a zebrafish model. These findings suggested that GJP50-3 and GJP50-4 might have the potential to be used as immunomodulators in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Junran Shao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Siying Zeng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jie Dong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xinyi Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Caixia Zang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Haibo Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Bai C, Chen R, Zhang Y, Bai H, Tian L, Sun H, Li D, Wu W. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int J Biol Macromol 2023; 247:125730. [PMID: 37422248 DOI: 10.1016/j.ijbiomac.2023.125730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In order to better understand the influences of extraction techniques on the yield, characteristics, and bioactivities of polysaccharide conjugates, hot reflux extraction (HRE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), complex enzymolysis extraction (CEE), ultra-high pressure extraction (UPE), ultrasonic complex enzymes extraction (UEE) were used to extract sweet potato stems leaves polysaccharide conjugates (SPSPCs), and their physicochemical characteristics, functional properties, antioxidant and hypoglycemic activities were compared. Results showed that compared with HRE conjugate (HR-SPSPC), the yield, content of uronic acid (UAC), total phenol (TPC), total flavonoid (TFC) and sulfate group (SGC), water solubility (WS), percentage of glucuronic acid (GlcA), galacuronic acid (GalA) and galactose (Gal), antioxidant and hypoglycemia activities of UEE polysaccharide conjugates (UE-SPSPC) significant increased, while its molecular weight (Mw), degree of esterification (DE), content of protein (PC) and percentage of glucose (Glc) declined, but monosaccharides and amino acid types, and glycosyl linkages were not much different. Indeed, UE-SPSPC possessed the highest antioxidant activities and hypolipidemic activities among six SPSPCs, which might be due to the high UAC, TPC, TFC, SGC, GlcA, GalA and WS, low Mw, DE and Glc of UE-SPSPC. The results reveal that UEE is an effective extraction and modification technology of polysaccharide conjugates.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Zhang
- CHINA FAW GROUP CO., LTD, General Institute of FAW Vehicle benchmarking Center, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
23
|
Wang J, Liu Z, Li X, Liu G, Zhao J. Elucidating structure of pectin in ramie fiber to customize enzyme cocktail for high-efficiency enzymatic degumming. Carbohydr Polym 2023; 314:120954. [PMID: 37173048 DOI: 10.1016/j.carbpol.2023.120954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Pectin is one of the main components of bast fiber including ramie fiber, and must be removed before use. Enzymatic degumming is the preferred process as it is an environment-friendly, simple and controllable process for ramie degumming. However, an important problem limiting wide application of this process is the high cost due to the low efficiency of enzymatic degumming. In this study, pectin samples were extracted from raw ramie fiber and degummed ramie fiber, respectively, and their structures were characterized and compared to allow tailoring of an enzyme cocktail for degrading the pectin. It was elucidated that pectin from ramie fiber is composed of low esterified homogalacturonan (HG) and low branched rhamnogalacturonan I (RG-I), and the ratio of HG/RG-I is 1.72:1. Based on the pectin structure, potential enzymes to be used for enzymatic degumming of ramie fiber were proposed and an enzyme cocktail was customized. Degumming experiments confirmed that the customized enzyme cocktail can effectively remove pectin from ramie fiber. To our knowledge, this is the first time the structural characteristics of pectin in ramie fiber have been clarified, and it also provides an example of tailoring a specific enzyme system to achieve high-efficiency degumming for biomass containing pectin.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Zhaoxi Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No.72, Binhai Road, Qingdao 266237, Shandong, China.
| |
Collapse
|
24
|
Huang YX, Liang J, Chai JH, Kuang HX, Xia YG. Structure of a highly branched galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2023; 313:120844. [PMID: 37182946 DOI: 10.1016/j.carbpol.2023.120844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A novel galacturonoglucan, named SCP-1, is isolated and purified from Schisandra chinensis fruits. The structure of SCP-1 is systematically investigated by a combination of monosaccharide compositions, absolute Mw, methylation analysis, partial acid hydrolysis, isoamylase degradations, and nuclear magnetic resonance spectroscopy. The structure of SCP-1 is theoretically described as follows: (i) Glc and GalA in a molar ratio of 17:3; (ii) → 4)-α-Glcp-(1→, →4,6)-α-Glcp-(1→, →3,4,6)-α-Glcp-(1→, α-Glcp-(1→, →4)-α-GalAp-6-OMe-(1→, α-GalAp-6-OMe-(1→, β-Glcp-(1→, →6-)-β-Glcp-(1 → and →3,4)-β-Glcp-(1 → in a molar ratio of 48:5:3:3:10:5:12:5:9; (iii) a repeating unit of →4)-α-Glcp-(1 → as a backbone with branched points at C-3 and C-6, substituted by different types of acidic and neutral side chains to form multiple branches; and (iv) a rigid rod configuration deduced from α value of 1.26 in Mark-Houwink equation ([η] = kMα). Anti-tumor assay investigated the effects of SCP-1 on human HepG2 cancer cell lines in vitro. This is for the first time to report a galacturonoglucan in S. chinensis fruits.
Collapse
|
25
|
Ma X, Zhou W, Nie Y, Jing X, Li S, Jin C, Zhu A, Su J, Liao W, Ding K. A novel branched galacturonan from Gardenia jasminoides alleviates liver fibrosis linked to TLR4/NF-κB signaling. Int J Biol Macromol 2023:125540. [PMID: 37355063 DOI: 10.1016/j.ijbiomac.2023.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Gardenia jasminoides (GJ) is a classic edible medicine in China of which the fruit has been proved to alleviate liver damage. We hypothesized whether polysaccharide in the fruit could have comparable bioactivity. To address this, a novel polysaccharide GJE0.2-2, is purified from the fruit of Gardenia jasminoides. Indeed, GJE0.2-2 may attenuate CCl4-induced liver fibrosis in mice and impede the expression of critical fibrogenesis associated molecules such as α-SMA, FN1, and Collagen I induced by TGF-β in human hepatic stellate LX-2 cells. Mechanism studies suggest that this bioactivity may be implicated in TLR4/NF-κB signaling pathway via directly binding to TLR4. The structure characterization shows that the backbone of this polysaccharide is mainly composed of galacturonic acid with minor rhamnose, branched with galactose and arabinose, galacturonic acid, and esterified hexenuronic acid (HexpA). These findings provide evidence for a novel pectin-linked polysaccharide-based new drug candidate development for liver fibrosis therapy.
Collapse
Affiliation(s)
- Xiaonan Ma
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wanqi Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingmin Nie
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaoqi Jing
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Saijuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Juan Su
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenfeng Liao
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China.
| |
Collapse
|
26
|
Zhao JY, Hong T, Hou YJ, Song XX, Yin JY, Geng F, Nie SP. Comparison of structures and emulsifying properties between water-extracted pectins from Fructus aurantii. Int J Biol Macromol 2023:125005. [PMID: 37217058 DOI: 10.1016/j.ijbiomac.2023.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The structural characteristics of two water-extracted pectic polysaccharides from Fructus aurantii were investigated, and the impacts of their structures on the emulsifying stability were evaluated. FWP-60 (extracted by cold water and followed 60 % ethanol precipitation) and FHWP-50 (extracted by hot water and followed 50 % ethanol precipitation) were both high methyl-esterified pectins, which were composed of homogalacturonan (HG) and highly branched rhamnogalacturonan I (RG-I) regions. The weight-average molecular weight, methyl-esterification degree (DM) and HG/RG-I ratio of FWP-60 were 1200 kDa, 66.39 % and 4.45, respectively, which were 781 kDa, 79.10 % and 1.95 for FHWP-50. The methylation and NMR analysis of FWP-60 and FHWP-50 demonstrated that the main backbone consisted of different molar ratios of →4)-α-GalpA-(1 → and →4)-α-GalpA-6-O-methyl-(1→, and the side chains contained arabinan and galactan. Moreover, the emulsifying properties of FWP-60 and FHWP-50 were discussed. Compared with FHWP-50, FWP-60 had better emulsion stability. Overall, pectin had a linear HG domain and a small number of RG-I domain with short side chains to facilitate the stabilization of emulsions in Fructus aurantii. A comprehensive knowledge of the structure characteristic and emulsifying property would enable us to provide more information and theoretical guidance for the structure and emulsion preparation of Fructus aurantii pectic polysaccharides.
Collapse
Affiliation(s)
- Jia-Ying Zhao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yan-Jie Hou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
27
|
Polysaccharide guided tumor delivery of therapeutics: A bio-fabricated galactomannan-gold nanosystem for augmented cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Sun S, Lan W, Ji L, Ai L, Wu Y, Zhang H. A Homogalacturonan from Peel of Winter Jujube ( Zizyphus jujuba Mill. cv. Dongzao): Characterization and Protective Effects against CCl 4-Induced Liver Injury. Foods 2022; 11:foods11244087. [PMID: 36553828 PMCID: PMC9778428 DOI: 10.3390/foods11244087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A homogalacturonan pectin (HG, designated as WJP-F80) was extracted from the peel of winter jujube (Zizyphus jujuba Mill. Cv. Dongzao) and separated via ethanol-graded precipitation. The structural and conformational features were elucidated through HPAEC-PAD, GC-MS, 2D NMR, and HPSEC-MALLS studies. In vivo assessments were carried out to evaluate the hepatoprotective effects of WJP-F80 against CCl4-induced injury of mice. Results showed that WJP-F80 was a linear 1,4-α-galacturonan with partially methyl-esterified at O-6 of GalpA and occasionally acetylation. The Mw of WJP-F80 was determined as 45.3 kDa, the polydispersity was calculated as 1.56, and the Rg was measured as 22.7 nm in 0.1 M NaNO3. The conformational analysis revealed that WJP-F80 exhibited as rigid stiff chain in low Mw range, while aggregation by self-assembly of HG chains lead to high Mw and random coil conformation. In vivo studies indicated that WJP-F80 can protect the livers of mice from acute injury induced via CCl4 by decreasing the serum biochemical markers of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to normal levels. This work provides a theoretical basis for the value-added deep processing of winter jujube.
Collapse
Affiliation(s)
- Shuguang Sun
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Wenzhong Lan
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Li Ji
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
29
|
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022; 27:7641. [PMID: 36364468 PMCID: PMC9658512 DOI: 10.3390/molecules27217641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3) from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3 mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained (1→4)-α-d-Glc, (1→4,6)-α-d-Glc, (1→6)-α-d-Gal, (1→2)-α-d-Man, (1→4)-α-d-Man, β-l-Ara-(1→, and α-l-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural functional active substance in functional foods.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| |
Collapse
|
30
|
Golovchenko V, Popov S, Smirnov V, Khlopin V, Vityazev F, Naranmandakh S, Dmitrenok AS, Shashkov AS. Polysaccharides of Salsola passerina: Extraction, Structural Characterization and Antioxidant Activity. Int J Mol Sci 2022; 23:13175. [PMID: 36361966 PMCID: PMC9657462 DOI: 10.3390/ijms232113175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2023] Open
Abstract
The above-ground part of the Salsola passerine was found to contain ~13% (w/w) of polysaccharides extractable with water and aqueous solutions of ammonium oxalate and sodium carbonate. The fractions extracted with aqueous sodium carbonate solutions had the highest yield. The polysaccharides of majority fractions are characterized by similar monosaccharide composition; namely, galacturonic acid and arabinose residues are the principal components of their carbohydrate chains. The present study focused on the determination of antioxidant activity of the extracted polysaccharide fractions and elucidation of the structure of polysaccharides using nuclear magnetic resonance (NMR) spectroscopy. Homogalacturonan (HG), consisting of 1,4-linked residues of α-D-galactopyranosyluronic acid (GalpA), rhamnogalacturonan-I (RG-I), which contains a diglycosyl repeating unit with a strictly alternating sequence of 1,4-linked D-GalpA and 1,2-linked L-rhamnopyranose (Rhap) residues in the backbone, and arabinan, were identified as the structural units of the obtained polysaccharides. HMBC spectra showed that arabinan consisted of alternating regions formed by 3,5-substituted and 1,5-linked arabinofuranose residues, but there was no alternation of these residues in the arabinan structure. Polysaccharide fractions scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 0.2-1.8 mg/mL. The correlation analysis showed that the DPPH scavenging activity of polysaccharide fractions was associated with the content of phenolic compounds (PCs).
Collapse
Affiliation(s)
- Victoria Golovchenko
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Vasily Smirnov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Victor Khlopin
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Fedor Vityazev
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 167982 Syktyvkar, Russia
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Yuan Q, Lv K, Huang J, Sun S, Fang Z, Tan H, Li H, Chen D, Zhao L, Gao C, Liu Y. Simulated digestion, dynamic changes during fecal fermentation and effects on gut microbiota of Avicennia marina (Forssk.) Vierh. fruit non-starch polysaccharides. Food Chem X 2022; 16:100475. [PMID: 36263243 PMCID: PMC9574768 DOI: 10.1016/j.fochx.2022.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Avicennia marina fruit non-starch polysaccharides (AMFPs) were obtained and analyzed. Dynamic changes of AMFPs during simulated digestion and fermentation were revealed. AMFPs were not digested by the digestive juice but were utilized by gut microbiota. Beneficial microbiota, such as Mistuokella, and Prevotella were obviously increased. Harmful bacteria were obviously inhibited and SCFA levels were obviously promoted.
Grey mangrove (Avicennia marina (Forssk.) Vierh.) fruit is a traditional folk medicine and health food consumed in many countries. In this study, its polysaccharides (AMFPs) were obtained and analyzed by chemical and instrumental methods, with the results indicating that AMFPs consisted of galactose, galacturonic acid, arabinose, and rhamnose in a molar ratio of 4.99:3.15:5.38:1.15. The dynamic changes in AMFPs during the digestion and fecal fermentation processes were then investigated. The results confirmed that AMFPs were not depolymerized by gastric acid and various digestive enzymes. During fermentation, 56.05 % of the AMFPs were utilized by gut microbiota. Galacturonic acid, galactose, and arabinose from AMFPs, were mostly consumed by gut microbiota. AMFPs obviously decreased harmful bacteria and increased some beneficial microbiota, including Megasphaera, Mistuokella, Prevotella, and Megamonas. Furthermore, AMFPs obviously increased the levels of various short-chain fatty acids. These findings suggest that AMFPs have potential prebiotic applications for improving gut health.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kunling Lv
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jinwen Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Shujing Sun
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ziyu Fang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hongjie Tan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China,Corresponding authors.
| |
Collapse
|
32
|
Wu Y, Zhou H, Wei K, Zhang T, Che Y, Nguyễn AD, Pandita S, Wan X, Cui X, Zhou B, Li C, Hao P, Lei H, Wang L, Yang X, Liang Y, Liu J, Wu Y. Structure of a new glycyrrhiza polysaccharide and its immunomodulatory activity. Front Immunol 2022; 13:1007186. [PMID: 36238291 PMCID: PMC9551306 DOI: 10.3389/fimmu.2022.1007186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
A component of licorice polysaccharide (GPS-1) was extracted from licorice, its primary structure was identified and characterized for the first time, and its immunomodulatory activity was studied. Crude licorice polysaccharide was isolated and purified by DEAE sepharose FF ion-exchange column chromatography and Chromdex 200 PG gel filtration column chromatography to obtain a purified Glycyrrhiza polysaccharide named GPS-1. NMR and methylation analysis revealed that GPS-1 is composed of homogalacturonan (HG)-type pectin with 4)-D-GalpA-(1 as the backbone. This study of GPS-1 also examined its significant role in regulating immune activity in vitro and in vivo. As a result, GPS-1 promoted the secretion of IFN-γ and IL-4 in mice and increased the proportion of CD3+CD4+ and CD3+CD8+ T lymphocytes in their spleens. Dendritic cells (DCs) treated with GPS-1 showed promotion of DC maturation, antigen presentation, and phagocytic capacity. The results suggest that GPS-1 is a potential immunomodulator that stimulates the immune system by regulating multiple signaling pathways. Combined with our characterization of the primary structure of GPS-1, the present investigation provides the basis for future study of the form-function relationship of polysaccharides.
Collapse
Affiliation(s)
- Yu Wu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhou
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plant, Nan Ning, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Audrey D. Nguyễn
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Davis Medical, Sacramento, CA, United States
| | - Sakshi Pandita
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Davis Medical, Sacramento, CA, United States
| | - Xin Wan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuejie Cui
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bingxue Zhou
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caiyue Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Hao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjun Lei
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lin Wang
- Animal Science and Veterinary College, Jiangsu Vocational College of Agricultural and Forestry, Zhenjiang, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plant, Nan Ning, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plant, Nan Ning, China
| | - Jiaguo Liu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu, ;
| |
Collapse
|
33
|
Bi Z, Zhao Y, Hu J, Ding J, Yang P, Liu Y, Lu Y, Jin Y, Tang H, Liu Y, Zhang Y. A novel polysaccharide from Lonicerae Japonicae Caulis: Characterization and effects on the function of fibroblast-like synoviocytes. Carbohydr Polym 2022; 292:119674. [DOI: 10.1016/j.carbpol.2022.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
|
34
|
Li LX, Chen MS, Zhang ZY, Paulsen BS, Rise F, Huang C, Feng B, Chen XF, Jia RY, Ding CB, Feng SL, Li YP, Chen YL, Huang Z, Zhao XH, Yin ZQ, Zou YF. Structural features and antioxidant activities of polysaccharides from different parts of Codonopsis pilosula var. modesta (Nannf.) L. T. Shen. Front Pharmacol 2022; 13:937581. [PMID: 36091763 PMCID: PMC9449496 DOI: 10.3389/fphar.2022.937581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.
Collapse
Affiliation(s)
- Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Si Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zi-Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shi-Ling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| | - Zhen Huang
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| |
Collapse
|
35
|
Liu D, Tang W, Huang XJ, Hu JL, Wang JQ, Yin JY, Nie SP, Xie MY. Structural characteristic of pectin-glucuronoxylan complex from Dolichos lablab L. hull. Carbohydr Polym 2022; 298:120023. [DOI: 10.1016/j.carbpol.2022.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/17/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
36
|
Balli D, Khatib M, Cecchi L, Adessi A, Melgarejo P, Nunes C, Coimbra MA, Mulinacci N. Pomegranate peel as a promising source of pectic polysaccharides: a multi-methodological analytical investigation. Food Chem 2022; 397:133550. [DOI: 10.1016/j.foodchem.2022.133550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
|
37
|
Structural characterization and anti-inflammatory activity of a pectin polysaccharide HBHP-3 from Houttuynia cordata. Int J Biol Macromol 2022; 210:161-171. [PMID: 35533845 DOI: 10.1016/j.ijbiomac.2022.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
In this study, a hot buffer soluble Houttuynia cordata polysaccharide (HBHP-3) with a molecular weight of 397.4 kDa was isolated from H. cordata. HBHP-3 was composed of rhamnose, arabinose, glucose, galactose and galacturonic acid with molar ratio of 16.0:12.6:4.6:18.1:15.6. Structural analysis showed that the main chain of HBHP-3 was composed of →2)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→ and →4)-β-D-Galp-(1→. There were branched chains of α-L-Araf-(1→, →5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, β-D-Galp-(1→ connected to the O-4 positions of →2)-α-L-Rhap-(1→. HBHP-3 effectively inhibited the secretion of NO and the mRNA expression of pro-inflammatory cytokines in a dose-dependent manner in macrophages. HBHP-3 inhibited the phosphorylation of p65 and IκBα proteins as well, illustrating that HBHP-3 exerted its anti-inflammatory activity by inhibiting the activation of NF-κB pathway.
Collapse
|
38
|
Long H, Xia X, Liao S, Wu T, Wang L, Chen Q, Wei S, Gu X, Zhu Z. Physicochemical Characterization and Antioxidant and Hypolipidaemic Activities of a Polysaccharide From the Fruit of Kadsura coccinea (Lem.) A. C. Smith. Front Nutr 2022; 9:903218. [PMID: 35662931 PMCID: PMC9158746 DOI: 10.3389/fnut.2022.903218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 01/24/2023] Open
Abstract
Kadsura coccinea fruit, a novel fruit resource, has attracted wide interest, but the physicochemical characteristics and biological activities of its polysaccharides remain unclear. This study investigated the physicochemical properties of a polysaccharide extracted from K. coccinea fruit polysaccharide (KCFP) and evaluated its antioxidant and hypolipidaemic activities in vitro and in vivo. KCFP is an amorphous, thermally stable pectin heteropolysaccharide with an average molecular weight of 204.6 kDa that is mainly composed of mannose, rhamnose, glucose, galactose, xylose, arabinose, galacturonic acid (molar percentage >70%) and glucuronic acid. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays and an iron reducing antioxidant power assay showed that KCFP has strong antioxidant capacity, while the bile acid binding assay showed that KCFP has hypolipidaemic potential in vitro. The antioxidant and hypolipidaemic activities of KCFP were further evaluated in high-fat diet-induced hyperlipidaemic mice. KCFP significantly increased the activities of superoxide dismutase, glutathione peroxidase and catalase, decreased the malondialdehyde content, significantly reduced the total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels, and increased the amount of high-density lipoprotein cholesterol (HDL-C). These findings suggest that KCFP could be used as a functional food to remedy oxidative damage and hyperlipidaemia.
Collapse
Affiliation(s)
- Hairong Long
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xianghua Xia
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Suqi Liao
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Lijun Wang
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Qianping Chen
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Shugen Wei
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Xiaoyu Gu
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- *Correspondence: Xiaoyu Gu,
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou, China
- Zhenjun Zhu,
| |
Collapse
|
39
|
Mechanism of viscosity reduction of okra pectic polysaccharide by ascorbic acid. Carbohydr Polym 2022; 284:119196. [DOI: 10.1016/j.carbpol.2022.119196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
|
40
|
Sun W, Labreche F, Kou XH, Wu CE, Fan GJ, Li TT, Suo A, Wu Z. Efficient extraction, physiochemical, rheological properties, and antioxidant activities of polysaccharides from Armeniaca vulgaris Lam. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Hong T, Zhao J, Yin J, Nie S, Xie M. Structural Characterization of a Low Molecular Weight HG-Type Pectin From Gougunao Green Tea. Front Nutr 2022; 9:878249. [PMID: 35495904 PMCID: PMC9044067 DOI: 10.3389/fnut.2022.878249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tea is a popular beverage with a long history of safe and healthy use. Tea polysaccharide is a bioactive component extracted from tea, which has attracted more and more attention in recent decades. In this article, an acidic polysaccharide Gougunao tea polysaccharide (GPS) was isolated from Gougunao green tea by hot water extraction and ethanol precipitation. After purification by a diethylaminoethyl (DEAE) Sepharose Fast Flow column and a Sephacryl S-400 column, several homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) fractions were obtained. Fraction GPS2b with the highest yield was selected for structural characterization by methylation and nuclear magnetic resonance (NMR) analysis. GPS2b was found to be an HG-type pectic polysaccharide (degree of methyl esterification [DE], 51.6%) with low molecular weight (Mw, 36.8 kDa). It was mainly composed of →4)-α-GalpA- (1→ and →4)-α-GalpA-6-OMe-(1→. In addition, a minor highly branched RG-I domain was identified in this fraction. The investigation of structural features of tea polysaccharides can provide insights to understand their structure-bioactivity relationship.
Collapse
|
42
|
Shen Y, Guo YL, Zhang Y, Li Y, Liang J, Kuang HX, Xia YG. Structure and immunological activity of an arabinan-rich acidic polysaccharide from Atractylodes lancea (Thunb.) DC. Int J Biol Macromol 2022; 199:24-35. [PMID: 34973271 DOI: 10.1016/j.ijbiomac.2021.12.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
An arabinan-rich acidic polysaccharide, named ALP4-2 ([α]20 D = +197.8 (c 1.0 mg/mL, H2O); and Mw = 5.59 × 103 g/mol), was obtained from Atractylodes lancea (Thunb.) DC. ALP4-2 is mainly comprised of Ara along with a small amount of GalA, Gal, Rha, Glc and Xyl. The structure was decorated by glycosidic linkages of α-Araf-(1→, →3)-α-Araf-(1→, →5)-α-Araf-(1→, →3,5)-α-Araf-(1→, →2,4)-α-Rhap-(1→, α-GalAp-(1→, →4)-α-GalAp-6-OMe-(1→, →4)-α-GalAp-6-OMe and β-Galp-(1→ with a ratio of 6:1:7:5:5:1:7:1:4. The structure, configuration and microstructure of ALP4-2 was proposed by comprehensive considerations of results from SEC-MALLS-RID, SEC-HRMS, GC-MS, and 1D/2D NMR spectroscopy. Except for a high methyl ester in full pectin regions, an abundant arabinan moiety is observed in ALP4-2 with highly complex and branched characteristics. The immunoactivity displayed that ALP4-2 can significantly promote phagocytosis of macrophage without cytotoxicity, and stimulate nitric oxide and cytokines (TNF-α, IL-6 and IL-10) release on RAW 264.7.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China; College of Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi 154007, PR China
| | - Yu-Li Guo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ye Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang Univerity of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
43
|
Kaczmarska A, Pieczywek PM, Cybulska J, Zdunek A. Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydr Polym 2022; 278:118909. [PMID: 34973730 DOI: 10.1016/j.carbpol.2021.118909] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Rhamnogalacturonan I (RG-I) belongs to the pectin family and is found in many plant cell wall types at different growth stages. It plays a significant role in cell wall and plant biomechanics and shows a gelling ability in solution. However, it has a significantly more complicated structure than smooth homogalacturonan (HG) and its variability due to plant source and physiological state contributes to the fact that RG-I's structure and function is still not so well known. Since functionality is a product of structure, we present a comprehensive review concerning the chemical structure and conformation of RG-I, its functions in plants and properties in solutions.
Collapse
Affiliation(s)
- Adrianna Kaczmarska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
44
|
Shakhmatov EG, Makarova EN. Structure of KOH-extractable polysaccharides of tree greenery of from Siberian fir Abies sibirica Ledeb. Carbohydr Polym 2022; 276:118794. [PMID: 34823801 DOI: 10.1016/j.carbpol.2021.118794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
Polysaccharide ASK was extracted with aqueous KOH from the Abies sibirica foliage. Pectin, xylan, AGPs and xyloglucan were isolated from ASK by anion-exchange chromatography and Smith degradation, combined with enzymatic cleavage. Potential interactions between those polymers were examined. Since xylan, AGPs, RG-I and glucan were co-fractionated following complete removal of galacturonan (HG) with polygalacturonase, it can be inferred that the enzymatic cleavage of HG did not affect co-fractionation of cross-linking glycans, RG-I and AGPs. These were hypothesized to be bound via a covalent cross-link, as the removal of HG regions did not affect this complex. Given that pectin was represented solely by RG-I regions, it can be assumed that some of glucan, xylan and AGPs were associated directly with RG-I. Besides, the enzymatic hydrolysis eliminated most of xylose and rhamnose. This suggests implicitly that some of xylan was linked to RG-I.
Collapse
Affiliation(s)
- Evgeny G Shakhmatov
- Institute of Chemistry, Federal Research Center "Komi Science Center of the Ural Branch of the Russian Academy of Sciences", Pervomaiskaya St. 48, Syktyvkar 167982, Russia
| | - Elena N Makarova
- Institute of Chemistry, Federal Research Center "Komi Science Center of the Ural Branch of the Russian Academy of Sciences", Pervomaiskaya St. 48, Syktyvkar 167982, Russia.
| |
Collapse
|
45
|
Zhang W, Hu B, Han M, Guo Y, Cheng Y, Qian H. Purification, structural characterization and neuroprotective effect of a neutral polysaccharide from Sparassis crispa. Int J Biol Macromol 2022; 201:389-399. [PMID: 34998886 DOI: 10.1016/j.ijbiomac.2021.12.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
In the present study, a purified polysaccharide (named SCP-1, Mw 1.368 × 104 Da) was isolated from Sparassis crispa, and its biological activity was evaluated in an oxidative stress model caused by H2O2 in hippocampal neuronal HT22 cells. SCP-1 was a heteropolysaccharide mainly comprising glucose, galactose, fucose, and mannose in a molar ratio of 52.10: 31.10: 15.04: 1.76. The main backbone of SCP-1 was predominantly composed of (1→6)-α-D-Galp, (1→6)-β-D-Glcp, (1→3)-β-D-Glcp, (1→2,6)-α-D-Galp and (1→3,6)-β-D-Glcp. The branches, substituted at the O-2 of Gal and O-3 of Glc, contained (1→6)-2-OMe-α-D-Galp, (1→4)-β-D-Glcp, (1→3)-β-D-Glcp, and terminated by T-α-L-Fucp and T-β-D-Glcp. Besides, SCP-1 could effectively protect the HT22 cells against H2O2-induced oxidative injury via decreasing the intracellular reactive oxygen species levels, modulating antioxidant enzymes, and reducing cell apoptosis. The findings suggested that SCP-1 holds a potential to be a natural antioxidant or as a neuroprotective agent.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai 200235, P.R.China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.
| |
Collapse
|
46
|
Wang W, Fan L, Li X, Wang Z, Zhou J, Jialengbieke B, Ren J, Hu X. Digestion of pectic polysaccharide from
Brassica rapa
L. in vitro and its effect on the intestinal microbiota in cyclophosphamide‐treated mice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Wang
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Lijun Fan
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Xuewen Li
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Zirong Wang
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Buligen Jialengbieke
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Jianye Ren
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| | - Xiaodong Hu
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi China
| |
Collapse
|
47
|
Sun Y, Guan Y, Khoo HE, Li X. In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin. Front Nutr 2021; 8:778563. [PMID: 34926554 PMCID: PMC8678565 DOI: 10.3389/fnut.2021.778563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the carboxymethylation effect of crude water-soluble polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP). Their chemical and pre-biotic properties were also determined. The polysaccharides were carboxymethylated by reacting with chloroacetic acid and sodium hydroxide. The carboxymethylated and non-carboxymethylated polysaccharides were also used as pre-biotics to study the growth pattern of selected intestinal microflora. These polysaccharides substituted the glucose solution in culture media for culturing Lactobacillus brevis GIM1.773, Lactobacillus plantarum GIM1.19, Lactobacillus delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus thermophilus GIM1.540. The results showed that the carboxymethylated polysaccharides c-XY, c-CP, and c-WPEP, had substitution degrees of 0.682, 0.437, and 0.439, respectively. The polysaccharides demonstrated resistance to digestion in the simulated human digestive models. The resistance to digestion was enhanced by carboxymethylation, especially the carboxymethylated CP and WPEP. The results also showed that the pre-biotic activities of the polysaccharides increased after carboxymethylation. The c-XY had a better pre-biotic effect than XY and the other carbohydrate samples. The findings suggested that carboxymethylated polysaccharides may be developed into novel pre-biotics and nutraceuticals that could promote growth of the probiotic strains.
Collapse
Affiliation(s)
- Yongjin Sun
- Department of Bioengineering, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
| | - Yuan Guan
- Department of Bioengineering, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
| | - Hock Eng Khoo
- Department of Bioengineering, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
| | - Xia Li
- Department of Bioengineering, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Bioengineering Program, Guilin University of Technology, Guilin, China
| |
Collapse
|
48
|
Dimopoulou M, Alba K, Sims IM, Kontogiorgos V. Structure and rheology of pectic polysaccharides from baobab fruit and leaves. Carbohydr Polym 2021; 273:118540. [PMID: 34560952 DOI: 10.1016/j.carbpol.2021.118540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022]
Abstract
Linkage patterns and relaxation dynamics of baobab (Adansonia digitata) polysaccharides have been investigated by means of linkage analysis and rheometry. The fruit polysaccharide was mostly xylogalacturonan, with co-extracted α-glucan. The leaf polysaccharide consists predominantly of two domains, one branched at O-4 of the →2)-Rhap-(1→ residues and another branched at O-3 of the →4)-GalpA-(1→ backbone to single GlcpA-(1→ residues. Master curves of viscoelasticity of fruit polysaccharides manifested strong pH-dependency. At pH below the dissociation constant of galacturonic acid, dispersions showed liquid-like behaviour. In contrast, at neutral pH, a weak gel network formation was observed that destabilised rapidly under the influence of flow fields. The present work identifies xylogalacturonans from baobab fruit as polysaccharides with unique rheological characteristics that may point to new directions in food and pharmaceutical formulation.
Collapse
Affiliation(s)
- Maria Dimopoulou
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Katerina Alba
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Vassilis Kontogiorgos
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia.
| |
Collapse
|
49
|
Feng X, Du C, Wang C. Structural characterization of polysaccharide from yellow sweet potato and ameliorates DSS-induced mice colitis by active GPR41/MEK/ERK 1/2 signaling pathway. Int J Biol Macromol 2021; 192:278-288. [PMID: 34597702 DOI: 10.1016/j.ijbiomac.2021.09.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
A polysaccharide isolated from yellow sweet potato (Ipomoea batatas (L.) Lam.) consisted of Rha, Ara, Gal, Glc, GalA, GlcA with the ratio of 1.00, 2.00, 3.63, 1.21, 1.17, 1.14, respectively. The molecular weight (Mw) of RSPP-A was determinted to be 2.51×106 kDa. Methylation, Nuclear Magnetic Resonance (NMR) (1D & 2D) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that RSPP-A possessed six glycosidic bonds including α-L-Araf-(1→, →5)-α-L-Araf-(1→, →6)-β-D-Galp-(1→, β-D-Glcp-(1→, →3)-α-L-Araf-(1→, →3)-α-L-Rhap-(1→. In dextran sulfate sodium (DSS) induced mouse-acute-colitis model, the results indicated that RSPP-A could down- regulate the secretion of IL-6 and IL-1β, and promote the secretion of IL-10 in serum and colon, which also suggested that RSPP-A could enhance the contents of short chain fatty acids(SCFAs) and up-regulate the expression of G protein-coupled receptor (GPR41) in colon. Moreover, the expression of Mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK1/2) were up-regulated in colon after intervention with RSPP-A, result from above suggested that the anti-inflammatory activity might be related to the production of SCFA, activating GPR41/MEK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Chuan Du
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China.
| |
Collapse
|
50
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|