1
|
Sivaramakrishna D, Bhuvanachandra B, Bevara S, Padhy H, Maddu RR, Bellamkonda R, Podile AR. Composition of the pretreatment solvent and the structural features of substrates and chitinases influence the bioconversion of α-chitin. Int J Biol Macromol 2025; 310:143340. [PMID: 40254204 DOI: 10.1016/j.ijbiomac.2025.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Auxiliary domains in chitinases play a significant role in the hydrolysis of chitin and chitooligosaccharides (COS). Pretreatment of α-chitin, followed by enzymatic hydrolysis, considerably enhanced the production of COS with a lower degree of polymerization (DP). We studied the effect of pretreatment solvent composition (KOH-with/without-urea) on the bioconversion of α-chitin and hydrolysis of COS (DP2-6), separately by a multi-modular chitinase CsChiG and its catalytic domain (Cat-CsChiG). Temperature-dependent structural stability of CsChiG and Cat-CsChiG was analyzed using circular dichroism spectroscopy. Deletion of chitin-binding domains in CsChiG influenced the overall secondary structural elements and its thermal stability, affecting the bioconversion of treated substrates and hydrolysis of lower chain length COS. Field emission scanning electron microscope (FESEM) and thermogravimetric analysis-differential thermal analysis (TGA-DTA) corroborate the influence of pretreatment on the structural and thermal stabilities of the pretreated substrates. It is, therefore, concluded that the composition of the pretreatment solvent and structural features of the substrates and modules in the chitinases influence the bioconversion of α-chitin, especially the composition of COS.
Collapse
Affiliation(s)
- Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India..
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Samatha Bevara
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Harihara Padhy
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rajesh Rao Maddu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ramakrishna Bellamkonda
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Su H, Huang H, Guo C, Sun J, Mao X. Biochemical Characterization of a Family GH18 Specific-Domain Chitinase: Chitin-Binding Domain Modulates the Reaction Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40209041 DOI: 10.1021/acs.jafc.4c12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Chitinase is an essential tool for the high-value utilization of chitin and the production of N-acetyl chito-oligosaccharides (N-acetyl COSs). The reaction specificity of chitinase is a key determinant of product composition. Previous studies have shown that carbohydrate-binding modules (CBMs) may influence the reaction specificity of glycoside hydrolases, though few studies have focused on this aspect in chitinases. Here, we identified a chitinase ChiZg from Zooshikella ganghwensis, characterized by the spatial separation of the chitin-binding domain (ChBD) from the catalytic domain (CD). ChiZg modulated product specificity for (GlcNAc)2 in an atypical exo-mode, and the (GlcNAc)2 yield ultimately maintained a relative balance as the substrate concentration and enzyme amount changed. Additionally, we found that the ChBD in ChiZg could modulate the enzyme's reaction specificity. A ChBD-truncated mutant exhibited additional N-acetylglucosaminidase activity, hydrolyzing (GlcNAc)2 to GlcNAc. We also engineered a mutant by translocating the ChBD from the N-terminus to the C-terminus, which aligned with the CD spatial configuration. It enhanced product specificity for (GlcNAc)3 with minimal GlcNAc production. This work expands the understanding of the ChBD-mediated reaction specificity in chitinases, providing an effective catalytic tool for the efficient degradation of chitin and the production of N-acetyl COSs with specific configurations.
Collapse
Affiliation(s)
- Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyan Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chaoran Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
3
|
Qu M, Guo X, Ando T, Yang Q. Functional role of carbohydrate-binding modules in multi-modular chitinase OfChtII. J Biol Chem 2024; 300:107622. [PMID: 39098522 PMCID: PMC11402056 DOI: 10.1016/j.jbc.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.
Collapse
Affiliation(s)
- Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Xiaoxi Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Sato H, Sonoda N, Nakano M, Matsuyama Y, Shizume A, Arai R, Nogawa M, Taguchi G, Shimosaka M. Multi-enzyme Machinery for Chitin Degradation in the Chitinolytic Bacterium Chitiniphilus shinanonensis SAY3 T. Curr Microbiol 2023; 80:360. [PMID: 37796346 DOI: 10.1007/s00284-023-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2023] [Indexed: 10/06/2023]
Abstract
The chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed. These include sixteen endo-type chitinases, two N-acetylglucosaminidases, and one lipopolysaccharide monooxygenase that catalyzes the oxidative cleavage of glycosidic bonds. Among the 16 chitinases, ChiL was characterized by its remarkable transglycosylation activity. Of the two N-acetylglucosaminidases (ChiI and ChiT), ChiI was the major enzyme, corresponding to > 98% of the total cellular activity. Surprisingly, a chiI-disrupted mutant was still able to grow on medium with powdered chitin or GlcNAc dimer. However, its growth rate was slightly lower compared to that of the wild-type SAY3. This multi-enzyme machinery composed of various types of chitinolytic enzymes may support SAY3 to efficiently utilize native chitin as a carbon and energy source and may play a role in developing an enzymatic process to decompose and utilize abundant chitin at the industrial scale.
Collapse
Affiliation(s)
- Hiroaki Sato
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Norie Sonoda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Moe Nakano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yuka Matsuyama
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Arisa Shizume
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Masahiro Nogawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
5
|
Liang Y, Zou Y, Wu S, Song D, Xu W, Zhu K. Preparation and properties of chitin/silk fibroin biocompatible composite fibers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:860-874. [PMID: 36369874 DOI: 10.1080/09205063.2022.2147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present world chitin is used enormously in various fields, such as biopharmaceuticals, medical and clinical bioproducts, food packaging, etc. However, its development has been curbed by the impaired performance and cumbersome dissolution process when chitin materials are dissolved and regenerated by physical or chemical methods. To further obtain the regenerated chitin fiber material with improved performance, silk fibroin was introduced into the chitin matrix material, and chitin/silk fibroin biocompatible composite fibers were obtained by formic acid/calcium chloride/ethanol ternary system and top-down wet spinning technology. The produced composite fibers outperformed previously reported chitin-silk composites in terms of the tensile strength (160 MPa) and failure strain (25%). The fibers also performed good cell compatibility and strong cellular affinity for non-toxicity. The cell viabilities of the fibers were about 20% greater than those of silk fiber after three days of co-culture with NIH-3T3. Furthermore, no hemolysis occurs in the presence of chitin/silk fibers, demonstrating their superior hemocompatibility. The fibers had a hemolysis index as low as 1%, which is far lower than the acceptable level of 5%. The material offers prospective opportunities for biomaterial applications in anticoagulation, absorbable surgical sutures, etc.
Collapse
Affiliation(s)
- Yaoting Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
6
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Swamy MJ, Podile AR. Deciphering the thermotolerance of chitinase O from Chitiniphilus shinanonensis by in vitro and in silico studies. Int J Biol Macromol 2022; 210:44-52. [PMID: 35537581 DOI: 10.1016/j.ijbiomac.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
Abstract
Biochemical and biophysical studies revealed that chitinase O from Chitiniphilus shinanonensis (CsChiO) exhibits considerable thermotolerance, possibly due to the formation of a stable structural conformation. CsChiO is an exochitinase with a temperature optimum of 70 °C. The secondary structures of CsChiO and its catalytic domain (Cat-CsChiO) are only marginally affected upon heating up to 90 °C, as revealed by circular dichroism (CD) spectroscopy. Differential scanning calorimetric (DSC) studies revealed that CsChiO exhibits two endothermic transitions at ca. 51 °C (Tm1) and 59 °C (Tm2), whereas Cat-CsChiO shows a single endothermic transition at 52 °C. Together, the CD and DSC analyses suggested that the catalytic domain of CsChiO undergoes a thermotropic transition at ~52 °C from native state to another stable structural conformation. Results from molecular dynamic simulations corroborated that Cat-CsChiO adopts a stable structural conformation above 50 °C by partial unfolding. Thermotolerant CsChiO would be useful for the conversion of chitin, which is highly abundant, to biologically active COS. This study unveiled the adaptability of enzymes/proteins in nature to perform biological functions at elevated temperatures.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
7
|
Hu D, Wu H, Zhu Y, Zhang W, Mu W. Engineering Escherichia coli for highly efficient production of lacto-N-triose II from N-acetylglucosamine, the monomer of chitin. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:198. [PMID: 34625117 PMCID: PMC8501739 DOI: 10.1186/s13068-021-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lacto-N-triose II (LNT II), an important backbone for the synthesis of different human milk oligosaccharides, such as lacto-N-neotetraose and lacto-N-tetraose, has recently received significant attention. The production of LNT II from renewable carbon sources has attracted worldwide attention from the perspective of sustainable development and green environmental protection. RESULTS In this study, we first constructed an engineered E. coli cell factory for producing LNT II from N-acetylglucosamine (GlcNAc) feedstock, a monomer of chitin, by introducing heterologous β-1,3-acetylglucosaminyltransferase, resulting in a LNT II titer of 0.12 g L-1. Then, lacZ (lactose hydrolysis) and nanE (GlcNAc-6-P epimerization to ManNAc-6-P) were inactivated to further strengthen the synthesis of LNT II, and the titer of LNT II was increased to 0.41 g L-1. To increase the supply of UDP-GlcNAc, a precursor of LNT II, related pathway enzymes including GlcNAc-6-P deacetylase, glucosamine synthase, and UDP-N-acetylglucosamine pyrophosphorylase, were overexpressed in combination, optimized, and modulated. Finally, a maximum titer of 15.8 g L-1 of LNT II was obtained in a 3-L bioreactor with optimal enzyme expression levels and β-lactose and GlcNAc feeding strategy. CONCLUSIONS Metabolic engineering of E. coli is an effective strategy for LNT II production from GlcNAc feedstock. The titer of LNT II could be significantly increased by modulating the gene expression strength and blocking the bypass pathway, providing a new utilization for GlcNAc to produce high value-added products.
Collapse
Affiliation(s)
- Duoduo Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
8
|
Lv C, Gu T, Ma R, Yao W, Huang Y, Gu J, Zhao G. Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol. Int J Biol Macromol 2020; 167:193-201. [PMID: 33259839 DOI: 10.1016/j.ijbiomac.2020.11.178] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
Chitinases play crucial roles in enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a chitinase of glycoside hydrolase (GH) family 19, SaChiB, was cloned from Streptomyces alfalfae ACCC 40021 and expressed in Escherichia coli BL21(DE3). The purified SaChiB displayed maximal activities at 45 °C and pH 8.0, and showed good stability up to 55 °C and in the range of pH 4.0-11.0, respectively. It exhibited substrate specificity towards chitin and chitooligosaccharides (degree of polymerization 3-6) with the endo-cleavage manner. In combination with the N-acetyl hexosaminidase SaHEX, it yielded a conversion rate of 95.2% from chitin powder to N-acetyl-D-glucosamine in 8 h and a product purity of >98.5%. Furthermore, the enzyme strongly inhibited the growth of tested pathogenic fungi. These results indicated that SaChiB has the great potential for applications in the conversion of raw chitinous waste in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Chenyin Lv
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, PR China
| | - Tianyan Gu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, PR China
| | - Rui Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wei Yao
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, PR China
| | - Yuyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Guogang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, PR China.
| |
Collapse
|