1
|
Wang K, Liu Y, Guo Y, Zhang C. In vitro effects of structurally diverse low molecular weight chondroitin sulfates on gut microbiota and metabolome. Int J Biol Macromol 2025; 310:143051. [PMID: 40220808 DOI: 10.1016/j.ijbiomac.2025.143051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
In this study, low molecular weight chondroitin sulfates (LMCSs) with different structures, named LMCSO, LMCSD, and LMCSH, were prepared by oxidative degradation, deamidation cleavage, and hydrothermal depolymerization, respectively. In vitro fermentation modeling was used to study the effects of CS and LMCSs on gut microbiota and metabolite composition. The degree of carbohydrate metabolism was in the order of CS > LMCSH > LMCSO > LMCSD. Significantly, GlcA in chondroitin-6-sulfate (CSC) was more readily utilized by gut microbiota during fermentation, and this trend was more pronounced in LMCSs. The LMCSs group notably increased microbial richness and evenness, especially in the LMCSD group. Bacteroides fragilis was identified as a potential primary degrader of CS and LMCSs through species-level analysis. The abundance of Escherichia-Shigella was reduced by LMCSs, and short-chain fatty acids production was enhanced, particularly by LMCSO, while the production of beneficial metabolites such as N-acetyl-D-Glucosamine 6-Phosphate (GlcNAc-6P), lactate, and progesterone was stimulated. Among these, the metabolism of the key metabolite GlcNAc-6P was significantly and positively correlated with the abundance of Bacteroides, Clostridium_sensu_stricto_1, and Parabacteroides. Exploring the mechanisms by which gut microbiota metabolize LMCSs with different structures can provide theoretical support for the targeted preparation of LMCSs that modulate the gut microbiota.
Collapse
Affiliation(s)
- Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Yunnan Haiwang Aquatic Products Co., Yunnan 654800, China.
| |
Collapse
|
2
|
Zhang H, Song M, Zhuang S, Wang Z, Shi H, Song Z, Song C, Cen L. Development of α-Tocopherol Loaded PLGA Nanoparticles and Its Evaluation as a Novel Immune Adjuvant. Macromol Rapid Commun 2025; 46:e2400400. [PMID: 38981020 DOI: 10.1002/marc.202400400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Indexed: 07/11/2024]
Abstract
With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.
Collapse
Affiliation(s)
- Huan Zhang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Meng Song
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Shiya Zhuang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zining Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Hui Shi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| | - Zhuolang Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Chuanhe Song
- Shanghai Mingqi Energy Technology Co., Ltd, No. 29, Lane 155, Baocheng Road, Shanghai, 201199, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Liu C, Yi X, Li Y, Xu H, Wang P, Yang W, Li L, Tu Y. Cianidanol from Sea Buckthorn Exert Anti-Inflammatory Effects by the Inhibiting JAK2/STAT3 Signaling Pathway via an Integrative Pharmacology Strategy. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:40. [PMID: 39832078 DOI: 10.1007/s11130-024-01290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells. The predicted key anti-inflammatory compounds in sea buckthorns were cianidanol, kaempferol, pelargonidin, and ent-epicatechin, and the key targets were EGFR, TNF, STAT3, and IL-10. The anti-inflammatory effects of sea buckthorn may be achieved via the synergistic regulation of multiple biological pathways. Furthermore, cianidanol significantly reduced the secretion of NO, IL-6, TNF-α, and IL-1β and the expression of phosphorylated JAK2 and STAT3 in LPS-stimulated RAW264.7 cells, as determined by ELISA and western blotting. Cianidanol from sea buckthorns exerts anti-inflammatory effects by reducing the expression of inflammatory mediators and pro-inflammatory cytokines, and inhibiting the JAK2/STAT3 signaling pathway. Thus, sea buckthorn can be developed into a promising functional food with anti-inflammatory properties.
Collapse
Affiliation(s)
- Chuan Liu
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| | - Xiangrui Yi
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Yafan Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Huijuan Xu
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Peng Wang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Wenyu Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Ya Tu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Felix AL, Penno SM, Bezerra FF, Mourão PAS. Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future. Glycobiology 2025; 35:cwae098. [PMID: 39706802 DOI: 10.1093/glycob/cwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024] Open
Abstract
Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.
Collapse
Affiliation(s)
- Adriani L Felix
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Suzane M Penno
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Francisco F Bezerra
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
5
|
Guo H, Li D, Miao B, Feng K, Chen G, Gan R, Kang Z, Gao H. Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects. ULTRASONICS SONOCHEMISTRY 2025; 112:107215. [PMID: 39742686 PMCID: PMC11751549 DOI: 10.1016/j.ultsonch.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity. AP-Es (AP-E1, AP-E2, AP-E3) with different DE were prepared using mild ultrasound-assisted alkali de-esterification, followed by SAR analysis. Results revealed that AP-E3, with the lowest DE (5.08 ± 0.22 %), demonstrated a significant reduction in homogalacturonan (HG) domains and a corresponding increase in rhamnogalacturonan-I (RG-I) domains, which coincided with enhanced immunomodulatory effects. The molecular weights of AP-E1, AP-E2, and AP-E3 were determined to be 30.94 ± 0.83 kDa, 27.61 ± 0.65 kDa, and 22.17 ± 0.57 kDa, respectively. To further explore the underlying mechanism, transgenic zebrafish with fluorescent macrophages were utilized. A positive correlation was observed between AP-E3 concentration and the number of fluorescent microspheres engulfed by macrophages. Additionally, AP-E3 significantly upregulated the expression of key immune response genes (tnf-α, il-1β, il-6, cox-2, inos, and nf-κb) and restored the gut microbiota composition and abundance in chloramphenicol-induced immunocompromised zebrafish. Metabolomics analysis revealed that AP-E3 effectively restored metabolic homeostasis by activating multiple signaling pathways associated with signal transduction, immune regulation, and metabolism. These findings highlight the potential of low-esterified AP enriched with RG-I domains as a promising candidate for applications in immune modulation and gut health management.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China; Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China.
| | - Kanglin Feng
- Fruit and Vegetable Storage and Processing Research Center, Institute of Agricultural Products Processing, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guijing Chen
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu 610200, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Pi T, Sun L, Li W, Wang W, Dong M, Xu X, Xu H, Zhao Y. Preparation and characterization of kelp polysaccharide and its research on anti-influenza a virus activity. Int J Biol Macromol 2024; 280:135506. [PMID: 39260640 DOI: 10.1016/j.ijbiomac.2024.135506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The beneficial effects of kelp polysaccharide (KPS) have recently attracted attention. In this study, KPS was extracted from kelp using the enzyme hydrolysis combined with freeze-drying, namely, KPS-EF. The structural characterization showed that KPS-EF was a highly sulfated macromolecule with the Mw of 764.2 kDa and the sulfate content of 23.49 %. The antiviral activity of KPS-EF in vitro was verified, and the IC50 value of KPS against the PR8 virus was 0.58 mg/mL. Intranasal administration of KPS-EF significantly inhibited death and weight loss in IAV-infected mice and alleviated virus-induced pneumonia symptoms, meanwhile, KPS-EF (10 mg/kg/day) significantly decreased the production levels of chemokines (CXCL1, RANTES) and inflammatory cytokines (IL-6, TNF-α) in lungs (p < 0.05). KPS-EF could downregulate the activity of viral neuraminidase (NA) primarily in the late stage of viral adsorption with an IC50 value of 0.29 mg/mL. This study provides a theoretical basis for the using KPS as a supplement to NA inhibitors or anti-influenza drugs.
Collapse
Affiliation(s)
- Tianxiang Pi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lishan Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Li
- Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qingdao 266400, China
| | - Wei Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghui Dong
- Zhongxin Anderson (Guangdong) Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Guo H, Li H, Ran W, Yu W, Xiao Y, Gan R, Gao H. Structural and functional characteristics of pectins from three cultivars of apple (Malus pumila Mill.) pomaces. Int J Biol Macromol 2024; 269:132002. [PMID: 38702009 DOI: 10.1016/j.ijbiomac.2024.132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to investigate the chemical composition, structural properties, and biological properties of pectin polysaccharides (AP-FS, AP-QG, and AP-HG) isolated from different varieties of apple pomace. Based on the methylation and nuclear magnetic resonance analyses, the structure of AP-FS was determined to be composed of an α-1,4-linked homogalacturonan backbone that exhibited high levels of O-6 methylation. All pectins exhibit potent inhibitory activity against human colon cancer and human liver cancer cells, along with immunostimulatory effects. Among them, AP-FS exhibited the highest activity level. Finally, we further investigated the underlying mechanism behind the effect of AP-FS on RAW 264.7 cells using proteomics analysis. Our findings revealed that AP-FS triggers RAW 264.7 macrophage activation via NOD-like receptor (NLR), NF-κB, and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our research contributes to a better understanding of the structure-function relationship among apple pectins, and AP-FS has the potential to be applied to dietary supplements targeting immunomodulation.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenyi Ran
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Wenyue Yu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
9
|
Yin H, Li R, Liu J, Sun Y, Zhao L, Mou J, Yang J. Fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus alleviate the intestinal barrier injury and oxidative stress damage in vitro and in vivo. Carbohydr Polym 2024; 328:121722. [PMID: 38220325 DOI: 10.1016/j.carbpol.2023.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
This study aimed to investigate the alleviative effects of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus (fCSSc) on the intestinal barrier injury and oxidative stress damage in vitro and in vivo. The results showed that fCS-Sc protected the intestinal barrier and improved the antioxidant function in H2O2 damaged Caco-2 cells via up-regulating the tight junction proteins and activating Keap1-Nrf2-ARE antioxidant pathway. Furthermore, administration fCS-Sc could ameliorate the weight loss and spleen index decrease in Cyclophosphamide (Cy) treated mice, improve the expressions of ZO-1, Claudin-1, Nrf2, SOD, and NQO-1 in Cy damaged colon tissue, showing significant protective effects against intestinal barrier damage and oxidative stress in vivo. fCS-Sc intervention also alleviated the gut microbiota disorder though increasing the richness and diversity of intestinal bacteria, regulating the structural composition of gut microbiota. fCS-Sc promoted the relative abundance of beneficial microbiota and inhibited the growth of harmful bacteria. This study provided a theoretical basis for the application of fCS-Sc as a prebiotic in chemotherapy.
Collapse
Affiliation(s)
- Huanan Yin
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Rui Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yanying Sun
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China
| | - Lei Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiaojiao Mou
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Jie Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China; Innovative Drug Research and Development Center, Weifang Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
10
|
Wang K, Wang W, Zhang R, Liu Y, Hou C, Guo Y, Zhang C. Preparation of low molecular weight chondroitin sulfate from different sources by H 2O 2/ascorbic acid degradation and its degradation mechanism. Food Chem 2024; 434:137392. [PMID: 37725843 DOI: 10.1016/j.foodchem.2023.137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Low molecular weight chondroitin sulfate (LMCS) has attention for enhanced bioavailability and bioactivity compared to native CS. We optimized H2O2/ ascorbic acid (Vc) degradation conditions to prepare LMCS from chicken, bovine, and shark cartilages. Degradation kinetics models and chemical composition data of LMCS showed the GlcA residues of chondroitin-4-sulfate (CSA) may be preferentially attacked. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) indicated that the CH of GlcA in CS was broken through a hydrogen abstraction reaction to break the β-(1 → 3) bond and form the hexendioic acid product. Standard density functional theory (DFT) calculations indicated that the energy required for the hydrogen abstraction from the C1-H bond in GlcA was lower than that of GalNAc. Molecular dynamics (MD) showed that CSA was more likely to interact with hydroxyl radicals (·OH) than non-sulfated chondroitin (CSO) and chondroitin-6-sulfate (CSC). These results provide guidance for producing LMCS.
Collapse
Affiliation(s)
- Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenfang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruishu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Liu S, Xu M, Chen B, Li F, Deng Y, Zhang Y, Lin G, Chen D, Geng Y, Ou Y, Huang X. The potential mechanism of concentrated mannan-oligosaccharide promoting goldfish's (Carassius auratus Linnaeus) resistance to Ichthyophthirius multifiliis invasion. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109290. [PMID: 38104695 DOI: 10.1016/j.fsi.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1β, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Collapse
Affiliation(s)
- Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yufan Zhang
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Ou J, Wang Z, Huang H, Chen J, Liu X, Jia X, Song B, Cheong KL, Gao Y, Zhong S. Intervention effects of sulfate glycosaminoglycan from swim bladder against arsenic-induced damage in IEC-6 cells. Int J Biol Macromol 2023; 252:126460. [PMID: 37619679 DOI: 10.1016/j.ijbiomac.2023.126460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this study, a purified macromolecular sulfate glycosaminoglycan whose structural characterization is similar to chondroitin sulfate from the swim bladder of Aristichthys nobilis, named SBSG, was used to explore the intervention effects on arsenic-induced intestinal epithelial cells (IEC-6) damage. Arsenic exposure led to cell membrane rupture, mitochondrial dysfunction, oxidative damage, and down-regulation of tight junction proteins expression. Treatment with SBSG could alleviate arsenic exposure-induced cell damage by decreasing the extracellular lactate dehydrogenase activity and influencing mitochondrial membrane potential, reactive oxygen species level, malondialdehyde content, and anti-oxidative enzyme activity. On the other hand, SBSG could promote nitric oxide production to achieve potential immunoregulation. The Western blot showed that intervention of SBSG mainly could restrain the activation of the JNK signaling pathway and up-regulate the expression of ZO-1 against arsenic-induced cell damage. This study provides a new perspective for understanding the heavy metal detoxification of SBSG on the intestinal and indicates that SBSG could be used as natural antioxidant resistant to heavy metal toxicity.
Collapse
Affiliation(s)
- Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China.
| | - Houpei Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Yuan Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Peng C, Feng Z, Ou L, Zou Y, Sang S, Liu H, Zhu W, Gan G, Zhang G, Yao M. Syzygium aromaticum enhances innate immunity by triggering macrophage M1 polarization and alleviates Helicobacter pylori-induced inflammation. J Funct Foods 2023; 107:105626. [DOI: 10.1016/j.jff.2023.105626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
|
14
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
15
|
Lee JH, Kim TK, Kim YJ, Kang MC, Song KM, Kim BK, Choi YS. Structural, physicochemical, and immune-enhancing properties of edible insect protein isolates from Protaetia brevitarsis larvae. Food Chem X 2023; 18:100722. [PMID: 37397222 PMCID: PMC10314139 DOI: 10.1016/j.fochx.2023.100722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Edible insects are promising future food resources globally. Herein, the structural, physicochemical, and bio-functional properties of edible insect protein isolates (EPIs) extracted from Protaetia brevitarsis larvae were investigated. The results showed that EPIs have a high total essential amino acid content; moreover, β-sheet is the major secondary protein structure. The EPI protein solution was highly soluble and electrically stable and did not aggregate easily. In addition, EPIs exhibited immune-enhancing properties; EPI treatment of macrophages induced the activation of macrophages and consequently promoted the production of pro-inflammatory mediators (NO, TNF-α, and IL-1β). Moreover, macrophage activation of EPIs was confirmed to occur through the MAPK and NF-κB pathways. In conclusion, our results suggest that the isolated P. brevitarsis protein can be fully utilized as a functional food material and alternative protein source in the future food industry.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
16
|
Dewi IP, Wahyuni FS, Aldi Y, Ismail NH. In vitro immunomodulatory activity study of Garcinia cowa Roxb. fraction. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:365-371. [PMID: 36750417 DOI: 10.1515/jcim-2022-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The objective of this study is to determine the activity of Garcinia cowa Roxb. n-hexane, ethyl acetate, and butanol fractions as an immunomodulator in vitro and obtain the fraction that has the potential as an immunomodulator. METHODS Raw 264.7 macrophages were used to asses G. cowa Roxb. immunomodulatory activity. The MTT assay was chosen to measure cell viability to evaluate the cytotoxic effect on cells. ELISA method was used to measure the concentration of Interleukin-6 (IL-6) and Tumor Necrosis Factor Alpha (TNF-α) secreted by cells after being treated with G. cowa Roxb. fraction. The neutral red uptake assay determined the effect of Garcinia cowa Roxb. on the phagocytic activity. RESULTS After Raw 264.7 macrophages were given the Hexan fraction (Hex) at concentrations of 12.5 and 25 μg/mL, there was a decrease in the concentration of IL-6, TNF-α, and the phagocytosis index of cells. Administration of the Ethyl Acetate fraction (EtOAc) at concentrations of 12.5 and 25 μg/mL on cells caused a decrease in IL-6 and TNF-α levels but did not affect the phagocytosis index. There was an increase in the level of TNF-α and the phagocytosis index after being given the Butanol fraction (BuOH) with concentrations of 12.5 and 25 μg/mL but there was a slight decrease in the level of IL-6. CONCLUSIONS Both Hex and EtOAc fractions could suppress immune responses through decreasing IL-6, TNF-α, and slightly decreased phagocytic activity. BuOH fraction could stimulate immunomodulatory activities through enhanced TNF-α levels and phagocytic index, but less potent in enhancing IL-6 production. The BuOH fraction could be developed as an immunostimulant.
Collapse
Affiliation(s)
- Irene Puspa Dewi
- Postgraduate Pharmacy Study Programme, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia and Prayoga Pharmacy Academy, Padang, Indonesia
| | - Fatma Sri Wahyuni
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| | - Yufri Aldi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Puncak Alam Campus, Selangor, Malaysia
| |
Collapse
|
17
|
Onishi S, Shionoya K, Sato K, Mubuchi A, Maruyama S, Nakajima T, Komeno M, Miyata S, Yoshizawa K, Wada T, Linhardt RJ, Toida T, Higashi K. Fucosylated heparan sulfate from the midgut gland of Patinopecten yessoensis. Carbohydr Polym 2023; 313:120847. [PMID: 37182947 DOI: 10.1016/j.carbpol.2023.120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The structural and functional relationships of glycosaminoglycans (GAGs) derived from marine organisms have been investigated, suggesting that marine invertebrates, particularly Bivalvia, are abundant sources of highly sulfated or branched GAGs. In this study, we identified a novel fucosylated heparan sulfate (Fuc-HS) from the midgut gland of the Japanese scallop, Patinopecten yessoensis. Scallop HS showed resistance to GAG-degrading enzymes, including chondroitinases and heparinases, and susceptibility to heparinases increased when scallop HS was treated with mild acid hydrolysis, which removes the fucosyl group. Moreover, 1H NMR detected significant signals near 1.2-1.3 ppm corresponding to the H-6 methyl proton of fucose residues and small H-3 (3.59 ppm) or H-2 (3.39 ppm) signals of glucuronate (GlcA) were detected, suggesting that the fucose moiety is attached to the C-3 position of GlcA in scallop HS. GC-MS detected peaks corresponding to 1, 3, 5-tri-O-acetyl-2, 4-di-O-methyl-L-fucitol and 1, 4, 5-tri-O-acetyl-2, 3-di-O-methyl-L-fucitol, suggesting that the fucose moiety is 3-O- or 4-O-sulfated. Furthermore, scallop HS showed anti-coagulant and neurite outgrowth-promoting (NOP) activities. These results suggest that the midgut gland of scallops is a valuable source of Fuc-HS with biological activities.
Collapse
|
18
|
Shi H, Li J, Liu F, Bi S, Huang W, Luo Y, Zhang M, Song L, Yu R, Zhu J. Characterization of a novel polysaccharide from Arca subcrenata and its immunoregulatory activities in vitro and in vivo. Food Funct 2023; 14:822-835. [PMID: 36622059 DOI: 10.1039/d2fo03483b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Arca subcrenata is an economical edible shellfish. A novel water-soluble α-D-glucan (ASPG-1) with a molecular weight of 2.56 × 106 Da was purified and characterized from A. subcrenata. Its structure was characterized as a repeating unit consisting of α-D-Glcp, (1 → 6)-α-D-Glcp and (1 → 4,6)-α-D-Glcp. ASPG-1 exerted potent immunoregulatory activity by promoting the viability of splenic lymphocytes. Moreover, it enhanced pinocytic capacity, and promoted the secretion of NO and cytokines in RAW264.7 cells. The immunomodulatory mechanism of ASPG-1 involved the activation of the TLR4-MAPK/Akt-NF-κB signaling pathway. ASPG-1 inhibited tumor growth in 4T1 breast cancer mice and its combination with doxorubicin increased antitumor efficacy. The ASPG-1 combination with DOX-treated group (64.8%) showed an improved tumor inhibition rate compared to that of the DOX-treated group (53.3%). The antitumor mechanism of ASPG-1 may involve an enhancement of the immune response of mice to tumors. These results indicated that ASPG-1 could be developed as a potential adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhuan Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Yuanyuan Luo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| |
Collapse
|
19
|
Cheng J, Wang Y, Song J, Liu Y, Ji W, He L, Wei H, Hu C, Jiang Y, Xing Y, Huang X, Ding H, He Q. Characterization, immunostimulatory and antitumor activities of a β-galactoglucofurannan from cultivated Sanghuangporus vaninii under forest. Front Nutr 2022; 9:1058131. [PMID: 36618684 PMCID: PMC9812957 DOI: 10.3389/fnut.2022.1058131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
A biomacromolecule, named as β-galactoglucofurannan (SVPS2), was isolated from the cultivated parts of Sanghuangporus vaninii under the forest. Its primary and advanced structure was analyzed by a series of techniques including GC-MS, methylation, NMR, MALS as well as AFM. The results indicated that SVPS2 was a kind of 1, 5-linked β-Glucofurannan consisting of β-glucose, β-galactose and α-fucose with 23.4 KDa. It exhibited a single-stranded chain with an average height of 0.72 nm in saline solution. The immunostimulation test indicated SVPS2 could facilitate the initiation of the immune reaction and promote the secretion of cytokines in vitro. Moreover, SVPS2 could mediate the apoptosis of HT-29 cells by blocking them in S phase. Western blot assay revealed an upregulation of Bax, Cytochrome c and cleaved caspase-3 by SVPS2, accompanied by a downregulation of Bcl-2. These results collectively demonstrate that antitumor mechanism of SVPS2 may be associated with enhancing immune response and inducing apoptosis of tumor cells in vitro. Therefore, SVPS2 might be utilized as a promising therapeutic agent against colon cancer and functional food with immunomodulatory activity.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jiling Song
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Institute of Biochemistry, Zhejiang University, Hangzhou, China
| | - Weiwei Ji
- Huzhou Liangxi Forest Park Management Office, Huzhou, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,*Correspondence: Liang He ✉
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,Hailong Wei ✉
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yiqi Xing
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Hongmei Ding
- Center of Forecasting and Analysis, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghai He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| |
Collapse
|
20
|
Wang K, Qi L, Zhao L, Liu J, Guo Y, Zhang C. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application. Carbohydr Polym 2022; 301:120361. [PMID: 36446498 DOI: 10.1016/j.carbpol.2022.120361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|
21
|
Natural Compounds Affecting Inflammatory Pathways of Osteoarthritis. Antioxidants (Basel) 2022; 11:antiox11091722. [PMID: 36139796 PMCID: PMC9495743 DOI: 10.3390/antiox11091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and chronic joint disease, affecting more than 240 million people worldwide. Although there are numerous advances in using drugs in treating OA, the use of natural compounds has aroused much interest among researchers due to their safety margin. Recent discovery shows that natural compounds play an extensive role in the oxidative stress signaling pathway in treating OA. Thus, this review summarizes the commonly used natural compounds for treating OA focusing on the oxidative stress signaling pathway and its downstream mediators. Selected databases—such as Scopus, Web of Science, Nature, and PubMed—were used to search for potentially relevant articles. The search is limited to the last 15 years and the search was completed using the Boolean operator’s guideline using the keywords of natural product AND oxidative stress AND osteoarthritis OR natural extract AND ROS AND degenerative arthritis OR natural plant AND free radicals AND degenerative joint disease. In total, 37 articles were selected for further review. Different downstream mechanisms of oxidative stress involved in the usage of natural compounds for OA treatment and anabolic and catabolic effects of natural compounds that exhibit chondroprotective effects have been discussed with the evidence of in vitro and in vivo trials in this review.
Collapse
|
22
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. The synthesis, characterization and immunological activity of mucopolysaccharide-quaternized chitosan nanoparticles. Int J Biol Macromol 2022; 220:258-266. [PMID: 35981674 DOI: 10.1016/j.ijbiomac.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
In this study, nanoparticles were prepared by using positively charged quaternized chitosan and negatively charged mucopolysaccharide such as chondroitin sulfate, heparin and hyaluronic acid. The nanoparticles have a stable nanostructure with particle size in 336.2-424.5 nm, potential in 18.5-31.1 mV and polydispersity index PDI of 0.172-0.335. Moreover, their encapsulation efficiency was 68.77 % and 64.89 %, and they have low endotoxin and good stability. It can significantly promote the expression of IL-6, TNF-α, and IL-1β of DCS cells. Moreover, the in vivo immune activity of heparin-quaternized chitosan-OVA nanoparticles against BALB/C mice was showed that, the nanoparticles could significantly promote the secretion of immunoglobulins in mice including IgG1 and IgG2. And nanoparticle also can promote the production of immune factors. Meanwhile, the expression of immune factor genes was also elevated. Furthermore, the results of tissue section experiments showed that the nanoparticles are safety of the body.
Collapse
Affiliation(s)
- Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
23
|
Gong PX, Wu YC, Chen X, Zhou ZL, Chen X, Lv SZ, You Y, Li HJ. Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydr Polym 2022; 287:119362. [PMID: 35422306 DOI: 10.1016/j.carbpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shi-Zhong Lv
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
24
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Wang K, Liu K, Zha F, Wang H, Gao R, Wang J, Li K, Xu X, Zhao Y. Preparation and characterization of chondroitin sulfate from large hybrid sturgeon cartilage by hot-pressure and its effects on acceleration of wound healing. Int J Biol Macromol 2022; 209:1685-1694. [PMID: 35461870 DOI: 10.1016/j.ijbiomac.2022.04.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 01/02/2023]
Abstract
In this paper, a combination of hot-pressure, enzymatic hydrolysis and membrane separation process is used for efficiently and environmentally friendly extraction of chondroitin sulfate (CS) from large hybrid sturgeon cartilage, namely, HPCS. The recovery and yield of CS were 93.68% and 36.47% under the optimized conditions. Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) indicated that the HPCS was composed of monosulfated disaccharides in position 6 and 4 of the N-acetyl-D-galactosamine (58.38% and 27.34%, respectively) and nonsulfated disaccharide (14.29%), which was similar to the composition of CS extracted by dilute alkali-enzymatic hydrolysis-chemical precipitation from large hybrid sturgeon cartilage (SCS). The wound healing results indicated that HPCS could promote cell migration and proliferation, alleviate inflammation and facilitate angiogenesis, which results in its excellent wound treatment activity. These results provide theoretical and practical significance for the production and application of chondroitin sulfate.
Collapse
Affiliation(s)
- Kangyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Fengchao Zha
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Haiyan Wang
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China; Hisense (Shandong) Refrigerator Co., Ltd., 266100 Qingdao, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Keyi Li
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China.
| |
Collapse
|
26
|
Wang M, Fu C, Zhang M, Zhang Y, Cao L. Immunostimulatory activity of soybean hull polysaccharide on macrophages. Exp Ther Med 2022; 23:389. [PMID: 35495602 PMCID: PMC9019774 DOI: 10.3892/etm.2022.11316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mengxue Wang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chenye Fu
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mingcong Zhang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yuxian Zhang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Liang Cao
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
27
|
Sturgeon Chondroitin Sulfate Restores the Balance of Gut Microbiota in Colorectal Cancer Bearing Mice. Int J Mol Sci 2022; 23:ijms23073723. [PMID: 35409083 PMCID: PMC9040715 DOI: 10.3390/ijms23073723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Abstract
Chondroitin sulfate (CS) is a well-known bioactive substance with multiple biological functions, which can be extracted from animal cartilage or bone. Sturgeon, the largest soft bone animal with ~20% cartilage content, is a great candidate for CS production. Our recent study confirmed the role of sturgeon chondroitin sulfate (SCS) in reducing colorectal cancer cell proliferation and tumor formation. Here, we further studied the effect of SCS on modulating gut microbiome structure in colorectal cancer bearing mice. In this study, the transplanted tumor mice model was constructed to demonstrate that SCS can effectively halt the growth of transplanted colorectal tumor cells. Next, we showed that SCS significantly altered the gut microbiome, such as the abundance of Lactobacillales, Gastranaerophilales, Ruminiclostridiun_5 and Ruminiclostridiun_6. According to linear discriminant analysis (LDA) and abundance map analysis of the microbial metabolic pathways, the changes in microbial abundance led to an increase of certain metabolites (e.g., Phe, Tyr, and Gly). Fecal metabolome results demonstrated that SCS can significantly reduce the amount of certain amino acids such as Phe, Pro, Ala, Tyr and Leu presented in the feces, suggesting that SCS might inhibit colorectal cancer growth by modulating the gut microbiome and altering the production of certain amino acids. Our results revealed the therapeutic potential of SCS to facilitate treatment of colorectal cancer. This study provides insights into the development of novel food-derived therapies for colorectal cancer.
Collapse
|
28
|
Macrophage immunity promotion effect of polysaccharide LGP-1 from Guapian tea via PI3K/AKT and NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Khatua S, Simal-Gandara J, Acharya K. Understanding immune-modulatory efficacy in vitro. Chem Biol Interact 2022; 352:109776. [PMID: 34906553 PMCID: PMC8665649 DOI: 10.1016/j.cbi.2021.109776] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1β by PCR have been the most widely used to screen the therapeutics under investigation.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Department of Botany, Krishnagar Government College, Krishnagar, Nadia, 741101, West Bengal, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004, Ourense, Spain,Corresponding author
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India,Corresponding author
| |
Collapse
|
30
|
Wu R, Li P, Wang Y, Su N, Xiao M, Li X, Shang N. Structural analysis and anti-cancer activity of low-molecular-weight chondroitin sulfate from hybrid sturgeon cartilage. Carbohydr Polym 2022; 275:118700. [PMID: 34742426 DOI: 10.1016/j.carbpol.2021.118700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022]
Abstract
Low-molecular-weight chondroitin sulfate (CS) has attracted widespread attention due to its better bioavailability and bioactivity than native CS. In this study, a low-molecular-weight CS (named SCS-F2) was prepared from hybrid sturgeon (Acipenser schrenckii × Huso dauricus) cartilage by enzymatic depolymerization with high in vitro absorption and anti-cancer activity. The structure of SCS-F2 was characterized and the in vivo biodistribution and colorectal cancer prevention effect was investigated. The results revealed that SCS-F2 consisted of 48.84% ΔDi-6S [GlcUAβ1-3GalNAc(6S)], 32.11% ΔDi-4S [GlcUAβ1-3GalNAc(4S)], 16.05% ΔDi-2S,6S [GlcUA(2S)β1-3GalNAc(6S)] and 3.0% ΔDi-0S [GlcUAβ1-3GalNAc]. Animal study showed that the SCS-F2 could be effectively absorbed and delivered to the tumor site and significantly prevented the growth of HT-29 xenograft by inhibiting cell proliferation and inducing apoptosis without showing any negative effect to normal tissues. Therefore, SCS-F2 could be developed as a potential nutraceutical to protect against colorectal cancer.
Collapse
Affiliation(s)
- Ruiyun Wu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pinglan Li
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yi Wang
- MOE Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Nan Su
- MOE Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mengyuan Xiao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Li
- Yangzhou Borui Saccharide Biotech Co., Ltd, Jiangsu 225000, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Immunomodulatory and Antioxidant Potential of Biogenic Functionalized Polymeric Nutmeg Oil/Polyurethane/ZnO Bionanocomposite. Pharmaceutics 2021; 13:pharmaceutics13122197. [PMID: 34959478 PMCID: PMC8703756 DOI: 10.3390/pharmaceutics13122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
The current study is focused on the biosynthesis of nutmeg oil/ polyurethane/ZnONPs bionanocomposite film for immunomodulatory and antioxidant activities. The fabricated film was prepared by using naturally extracted nutmeg oil functionalized with ZnONPs in the presence of polyutherane (PU) medium. The bionanocomposite film was obtained by incorporating dropwise 10 % (w/v) of nutmeg oil to the PU solution/ZnONPs blend. The active constituents of nutmeg oil were determined by gas chromatography coupled with mass spectrometry (GC-MS). The morphological characteristics of the resulting bionanocomposite film were confirmed using various microscopic and spectroscopic methods. Immunomodulatory potential of bionanocomposite was evaluated for RAW 264.7 macrophages. The results exhibited an excellent reduction in inflammatory cytokines (IL-6, IL-10, and TNFα) secretions after the treatment with bionanocomposite. The bionanocomposite exerted the highest inhibitory effects on certain cell signaling constituents that influence the initiation of expression of proinflammatory cytokines. The bionanocomposite was also tested for DPPH and ABTS free radicals scavenging assays and showed excellent antioxidant potential with IC50 values (0.28 ± 0.22 and 0.49 ± 0.36), respectively. The outcomes suggested promising immunomodulatory and antioxidant potentials for the biogenic synthesized nutmeg oil/PU/ZnONPs polymeric bionanocomposite.
Collapse
|
32
|
Whey protein isolate-dextran conjugates: Decisive role of glycation time dependent conjugation degree in size control and stability improvement of colloidal nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Balavigneswaran CK, Muthuvijayan V. Nanohybrid-Reinforced Gelatin-Ureidopyrimidinone-Based Self-healing Injectable Hydrogels for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:5362-5377. [PMID: 35007016 DOI: 10.1021/acsabm.1c00458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The traditional hydrogels are prone to break due to the applied stress. The deformation of the implanted hydrogels would result in the loss of structural integrity, leading to the failure of hydrogel functionalities and tissue regeneration. Self-healing hydrogels (AG-UPy), composed of oxidized alginate and ureidopyrimidinone-functionalized gelatin (G-UPy), were developed to address this challenge. These self-healing hydrogels possess two independent healing mechanisms, viz., Schiff base formation and UPy dimerization. These hydrogels were compared with oxidized alginate-gelatin (AG) hydrogels. AG-UPy hydrogels showed effective self-healing in a short time (about 2 min) after applying 800% strain, wherein recovery was not achieved with the AG hydrogel. However, the shear-thinning property of UPy made the AG-UPy hydrogel mechanically weaker than the AG hydrogel. To improve the mechanical strength of the AG-UPy hydrogel, we impregnated poly(ethylene glycol)-poly(urethane)/cloisite nanohybrid (PEG-PU/C) to prepare the AG-UPy/PEG-PU/C hydrogel. The incorporation of PEG-PU/C resulted in a 20-fold increase in the compression strength compared to that of the AG-UPy hydrogel. The AG-UPy/PEG-PU/C hydrogels also showed rapid self-healing. Incorporating the nanohybrid improved the cell proliferation by 2- and 1.25-fold compared to that of the AG and AG-UPy hydrogels, respectively. Therefore, PEG-PU/C combined with the UPy-functionalized polymer could be used to modulate mechanical strength and self-healing and enhance cell proliferation.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
34
|
Pu H, Liu J, Wang Y, Peng Y, Zheng W, Tang Y, Hui B, Nie C, Huang X, Duan Y, Huang Y. Bioactive α-Pyrone Derivatives from the Endophytic Fungus Diaporthe sp. CB10100 as Inducible Nitric Oxide Synthase Inhibitors. Front Chem 2021; 9:679592. [PMID: 34084766 PMCID: PMC8167431 DOI: 10.3389/fchem.2021.679592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) produces NO from l-arginine and plays critical roles in inflammation and immune activation. Selective and potent iNOS inhibitors may be potentially used in many indications, such as rheumatoid arthritis, pain, and neurodegeration. In the current study, five new compounds, including a dibenzo-α- pyrone derivative ellagic acid B (5) and four α-pyrones diaporpyrone A-D (9-12), together with three known compounds (6-8), were isolated from the endophytic fungus Diaporthe sp. CB10100. The structures of these new natural products were unambiguously elucidated using NMR, HRESIMS or electronic circular dichroism calculations. Ellagic acid B (5) features a tetracyclic 6/6/6/6 ring system with a fused 2H-chromene, which is different from ellagic acid (4) with a fused 2H-chromen-2-one. Both 2-hydroxy-alternariol (6) and alternariol (7) reduced the expression of iNOS at protein levels in a dose-dependent manner, using a lipopolysaccharide (LPS)-induced RAW264.7 cell models. Also, they decreased the protein expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1. Importantly, 6 and 7 significantly reduced the production of NO as low as 10 μM in LPS-induced RAW264.7 cells. Molecular docking of 6 and 7 to iNOS further suggests that both of them may interact with iNOS. Our study suggests that 6 and 7, as well as the alternariol scaffold may be further developed as potential iNOS inhibitors.
Collapse
Affiliation(s)
- Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Yuhui Peng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wanying Zheng
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Yang Tang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Boping Hui
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Chunmei Nie
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| |
Collapse
|
35
|
Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. APPLIED MATERIALS TODAY 2021; 22:100969. [DOI: 10.1016/j.apmt.2021.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|