1
|
Ma Z, Yu J, Chen X, Cao J, Zhu Y, Liu G, Li G, Xu F, Hu Q, Zhang H, Wei H. Differences in starch and protein composition, morphological and structure, and their impacts on eating quality of soft japonica rice under different light and nitrogen fertilizer conditions in southern China. Food Chem 2025; 474:143204. [PMID: 39921972 DOI: 10.1016/j.foodchem.2025.143204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
This study explores the differences in starch and protein composition, morphological and structure, and their impacts on soft japonica rice eating quality under different light and nitrogen fertilizer conditions. Results showed that decreased light and applied panicle fertilize resulted in a decreased in total starch, accompanied by an increased in long-chain amylopectin, protein, particularly glutelin, and β-sheet, with these effects being more pronounced when panicle fertilizer was applied under 50 % light. RVA, LF-NMR and Rheometer date showed that aforementioned changes in starch and protein were detrimental to water migration and starch gelatinization during rice cooking, resulting in a high-strength rice gel network. Ultimately, cooked rice exhibited poor taste. In conclusion, decreased light and applied panicle fertilize both degrade rice eating quality, and the combined effect of these two factors further diminishes cooked rice taste. Furthermore, 50 % light had a greater impact on starch, protein and eating quality than panicle fertilize.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Ma Z, Cao J, Chen X, Yu J, Guodong L, Xu F, Hu Q, Li G, Zhu Y, Zhang H, Wei H. Differences in carbon and nitrogen metabolism of soft japonica rice in southern China during grain filling stage under different light and nitrogen fertilizer conditions and their relationship with rice eating quality. FRONTIERS IN PLANT SCIENCE 2025; 16:1534625. [PMID: 39935948 PMCID: PMC11811539 DOI: 10.3389/fpls.2025.1534625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Light and nitrogen are crucial environmental factors that significantly impact rice growth and quality formation. Currently, there is a lack of systematic research on how light and nitrogen affect carbon and nitrogen metabolism during grain filling, subsequently affecting the eating quality of rice. To address this gap, field experiments were conducted under varying light intensities and nitrogen fertilizer levels to investigate the changes in carbon and nitrogen metabolism during grain filling, the eating quality of rice at maturity, and the relationship between them. The findings revealed that, 50% light intensity suppressed carbon metabolism while stimulating nitrogen metabolism, resulting in a reduction in the C/N ratio, decreased starch content by 4.30% to 5.59%, and elevated protein content by 21.31% to 29.70%, thereby leading to decreased rice eating quality by 10.06% to 11.42%. Conversely, the application of panicle fertilizer boosted nitrogen metabolism while hindering carbon metabolism, leading to a decrease in the C/N ratio, increased protein content by 21.31% to 29.70%, and reduced starch content by1.60% to 2.93%, thereby leading to decreased rice eating quality by 4.13% to 6.71%. Correlation analysis revealed a significant positive correlation between the C/N ratio and carbon metabolism-related enzyme activities and products, along with a significant negative correlation with nitrogen metabolism-related enzyme activities and products, suggesting that the C/N ratio can serve as an indicator of carbon and nitrogen metabolism levels. Further analysis revealed a significant positive relationship between the C/N ratio and taste value, indicating that higher levels of carbon metabolism promote the development of good rice eating quality, while nitrogen metabolism exerts an opposing influence. In summary, notable variances in carbon and nitrogen metabolism were observed within the same japonica rice cultivar under diverse light and nitrogen fertilizer conditions. These metabolic differences impact the synthesis of starch and protein in the endosperm, ultimately influencing rice quality. Our study contributes to a more profound comprehension of the regulation of carbon and nitrogen metabolism in rice by light and nitrogen fertilizer, as well as their role in determining eating quality.
Collapse
Affiliation(s)
- Zhongtao Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Jiale Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Xi Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Jianghui Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Liu Guodong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Qun Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Li Z, Xi M, Xu Y, Sun X, Tu D, Zhou Y, Ji Y, Yang L. Molecular Mechanisms of Grain Chalkiness Variation in Rice Panicles. PLANTS (BASEL, SWITZERLAND) 2025; 14:244. [PMID: 39861596 PMCID: PMC11768284 DOI: 10.3390/plants14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety. The results indicated that the percentage of chalky grains (PCG) in Y1 was the highest, i.e., 17.12% and 52.18% higher than that of Y2 and Y3, respectively. Y2 exhibited the highest degree of grain chalkiness (DGC), attributable to its greater area of endosperm chalkiness (AEC) than the others. Y3 demonstrated the lowest PCG and DGC. Additionally, Y1 and Y2 were characterized by lower amylose and protein contents, as well as looser starch granule morphology, in comparison to Y3. Compared with Y3, both the average and maximum filling rates of Y1 and Y2 increased markedly; however, the active filling duration was notably reduced by 7.10 d and 5.56 d, respectively. The analysis of genomic expression levels indicated an enrichment of starch and sucrose metabolism in Y1-vs.-Y2, Y2-vs.-Y3, and Y1-vs.-Y3, with 7 genes (5 up-regulated and 2 down-regulated), 53 genes (12 up-regulated and 41 down-regulated), and 12 genes (2 up-regulated and 10 down-regulated) in the Y1-vs.-Y2, Y2-vs.-Y3, and Y1-vs.-Y3. The majority of these genes were down-regulated, linking metabolic activity to grain filling and contributing to the occurrence of grain chalkiness in rice panicles. In conclusion, the metabolic processes associated with sucrose and starch play a crucial role in regulating grain filling and the formation of chalkiness in rice.
Collapse
Affiliation(s)
| | - Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Z.L.); (Y.X.); (X.S.); (D.T.); (Y.Z.); (Y.J.); (L.Y.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Tu B, Zhang T, Liu P, Yang W, Zheng L, Dai Y, Wang H, Lin S, Zhang Z, Zheng X, Yuan M, Chen Y, Zhu X, Yuan H, Li T, Xiong J, Zhong Z, Chen W, Ma B, Qin P, Wang Y, Li S. The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:36-50. [PMID: 39312475 DOI: 10.1111/pbi.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
It is well known that the overall quality of japonica/geng rice is superior to that of indica/xian rice varieties. However, the molecular mechanisms underlying the quality disparities between these two subspecies of rice are still largely unknown. In this study, we have pinpointed a gene homologous to SLR1, termed LCG1, exhibiting significant expression during early caryopsis development and playing a specific role in regulating rice chalkiness and taste by affecting the accumulation of grain storage components, starch granule structure and chain length distribution of amylopectin. LCG1 physically interacts with OsBP5 and indirectly influences the expression of the amylose synthesis gene Waxy (Wx) by hindering the transcriptional activity of the OsBP5/OsEBP89 complex. Notably, sequence variations in the promoter region of LCG1 result in enhanced transcription in japonica rice accessions. This leads to elevated LCG1 expression in CSSL-LCG1Nip, thereby enhancing rice quality. Our research elucidates the molecular mechanism underlying the impact of the LCG1-OsBP5/OsEBP89-Wx regulatory pathway on rice chalkiness and taste quality, offering new genetic resources for improving the indica rice quality.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zheng
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Ying Dai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Song Lin
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zehua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xiaohang Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengting Yuan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Chen
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Jiawei Xiong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaohui Zhong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liao C, Cao F, Huang M, Chen J, Yang Y, Fu C, Zhao X, Wang W, Zheng H. Starch digestion and physiochemical properties of a newly developed rice variety with low glycemic index. Food Chem X 2024; 24:101948. [PMID: 39582636 PMCID: PMC11582461 DOI: 10.1016/j.fochx.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
This study aimed to clarify the starch digestion characteristics and related physicochemical properties of the newly developed low-GI rice variety, Ditangliangyou 335 (D335), in comparison with two widely grown rice varieties, Xiangzaoxian 45 (X45) and Zhongzao 39 (Z39). The results showed that D335 had an active digestion duration (286 min) that was 101-190 % shorter, a glucose production rate (1.06 mg g-1 min-1) that was 57-73 % slower, and a total glucose production (303 mg g-1) that was 11-19 % less than X45 and Z39. These differences were attributable to the distinct starch physicochemical properties, including amylose content, amylose-to-amylopectin ratio, starch granule size, amylopectin chain length, and starch molar mass, as well as the different pasting properties of rice flour, such as pasting temperature and breakdown viscosity. These findings reveal the starch digestion characteristics and the key physicochemical properties that determine these characteristics in the low-GI rice variety D335.
Collapse
Affiliation(s)
- Chengjing Liao
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| | - Fangbo Cao
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| | - Min Huang
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| | - Jiana Chen
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| | - Yuanzhu Yang
- Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410125, China
| | - Chenjian Fu
- Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410125, China
| | - Xinhui Zhao
- Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410125, China
| | - Weiqin Wang
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| | - Huabin Zheng
- Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
- National Engineering Research Center of Rice, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Yang H, Hu J, Wei T, Shi Z, Pu L, Wang X, Li Y, Ye Y, Huang X, Fan G. Sulfur affects multi-scale starch structures and its contribution to the cookie-baking quality of wheat subjected to shade stress. Int J Biol Macromol 2024; 283:137466. [PMID: 39547603 DOI: 10.1016/j.ijbiomac.2024.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
The components and structure of starch macromolecules critically determine its food-use properties. However, elemental sulfur supplementation affects the relationship between starch structure and the cookie-making quality of wheat under shaded environments remains unclear. Here, we investigated the effect of sulfur on the starch multi-scale structures and its contribution to the cookie-baking quality of wheat after pre- or post-anthesis shading. Compared with the unshaded control, shade stress decreased the amylose and total starch contents, formed smaller B-type starch granules, narrowed the molecular weight distribution, and decreased the amylopectin long-chain proportion, crystallinity, viscosity, and spread ratio of cookies. Weak-gluten cultivars are more sensitive to shade stress than strong-gluten cultivars. Under shaded environments, sulfur increased the amylopectin content, proportion of amylopectin short chains, and total starch content, increasing the mean diameter of starch granules and viscosity, ultimately decreasing the cookie hardness. The random forest model revealed that the surface area of the starch granules (18.7 %) and amylopectin B3 chain (6.7 %) contributed the most to the variation in the cookie spread ratio. Cookie hardness was determined mainly by the total starch (7.8 %), amylopectin (6.3 %), and trough viscosity (5.0 %). Our results help to design strategies for achieving superior-quality wheat in the context of global dimming.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China.
| | - Jian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Ting Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Lixia Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Xu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yulu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yong Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Xiulan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Yang W, Li X, Zheng X, Wang M, Pan W, Liu P, Zhang Z, Gong C, Zheng L, Yuan H, Li T, Chen W, Qin P, Wang Y, Li S, Ma B, Tu B. Exploring the impact of key physicochemical properties of rice on taste quality and instant rice processing. FRONTIERS IN PLANT SCIENCE 2024; 15:1481207. [PMID: 39574455 PMCID: PMC11578832 DOI: 10.3389/fpls.2024.1481207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Taste quality is one of the most important indicators for assessing the quality of rice. However, there has been a lack of systematic studies investigating the impact factors of taste quality. In this study, chromosomal segment substitution lines (CSSLs) with notable differences in physicochemical properties were obtained by screening the CSSL population. A correlation analysis between the physicochemical properties and the taste qualities of rice revealed that amylose and protein content are significantly negatively correlated with the taste value of both freshly cooked and rehydrated instant rice. The alkali spreading value (ASV) had limited impact on the taste value of rice, but low-ASV rice is more resistant to cooking. Grain chalkiness played a critical role in maintaining the integrity of freshly cooked rice and instant rice grains after rehydration. In summary, our study provides crucial insights and guidance for rice breeding, with the goal of developing excellent quality and enhancing the processing of instant rice.
Collapse
Affiliation(s)
- Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xiaohang Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenxu Pan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zehua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Caixiong Gong
- Chongzhou Agriculture and Rural Bureau, Chengdu, Sichuan, China
| | - Ling Zheng
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Wang J, Zhang X, Xiao Y, Chen H, Wang X, Hu Y. Effect of nitrogen fertilizer on the quality traits of Indica rice with different amylose contents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8492-8499. [PMID: 38923540 DOI: 10.1002/jsfa.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Nitrogen is a key factor affecting the quality of rice. Studying the impact of nitrogen fertilizer on the taste, physicochemical properties, and starch structure of Indica rice with different amylose contents is of great significance for scientifically fertilizing and cultivating high-quality rice varieties for consumption. RESULTS The results indicate that increasing nitrogen fertilizer application reduces the amylose content and increases the protein content, resulting in a decrease in taste quality. Simultaneously, it reduces the intergranular porosity of starch particles, improving the appearance and milling quality of rice. Compared to the N1 treatment (nitrogen fertilizer application rate of 90 kg ha-1), the taste of low-amylose rice (Yixiangyou 2115) and high-amylose rice (Byou 268) decreased by 14.24% and 19.79%, respectively, under N4 treatment (nitrogen fertilizer application rate of 270 kg ha-1). The effect of nitrogen fertilizer on low-amylose rice is mainly reflected in increased rice hardness, enthalpy value, and setback viscosity, resulting in a decline in taste. The effect of nitrogen fertilizer on high-amylose rice is mainly reflected in a decrease in peak viscosity, an increase in gelatinization temperature, and crystallinity under high nitrogen levels. CONCLUSION Increasing nitrogen fertilizer application can improve the appearance and milling quality of rice, but it also leads to an increase in protein content, hardness, gelatinization enthalpy, decrease in breakdown value, and a decline in palatability. In practical production, different production measures should be taken according to different production goals. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinhui Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xiaoqiao Zhang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yao Xiao
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Hong Chen
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xuechun Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yungao Hu
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| |
Collapse
|
9
|
He C, Deng F, Yuan Y, Huang X, He Y, Li Q, Li B, Wang L, Cheng H, Wang T, Tao Y, Zhou W, Lei X, Chen Y, Ren W. Appearance, components, pasting, and thermal characteristics of chalky grains of rice varieties with varying protein content. Food Chem 2024; 440:138256. [PMID: 38150910 DOI: 10.1016/j.foodchem.2023.138256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This study investigated two rice varieties, GuichaoII and Jiazao311, with distinct protein content to determine the variation in appearance, components, pasting, and thermal properties of rice with different chalkiness degrees. Grain length, width, head rice weight, and whiteness of both varieties markedly increased as chalkiness increased from 0% to 50%. However, the variation in components, pasting, and thermal characteristics of chalky grain substantially differed between the rice varieties. The protein content of GuichaoII (low protein content) significantly increased with the chalkiness degree, along with a significant increase in onset, peak, and conclusion temperatures and gelatinization enthalpy. In Jiazao311 (high protein content), the chalkiness degree increased with the protein content but decreased with the starch content, along with increased trough, final, setback, and consistency viscosities. Compared to amylose content, protein content had a greater influence on the thermal properties and pasting characteristics of chalky grains of GuichaoII and Jiazao311, respectively.
Collapse
Affiliation(s)
- Chenyan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yujie Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Youfeng Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolong Lei
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanjun Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Ouyang J, Wang C, Huang Q, Guan Y, Zhu Z, He Y, Jiang G, Xiong Y, Li X. Correlation between in vitro starch digestibility and starch structure/physicochemical properties in rice. Int J Biol Macromol 2024; 263:130316. [PMID: 38382778 DOI: 10.1016/j.ijbiomac.2024.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Natural resistant starch (RS) in rice provides human health benefits, and its concentration in rice is influenced by the structure and physicochemical properties of starch. The native starch structures and physicochemical properties of three rice varieties, QR, BR58, and BR50, and their relationships to in vitro digestibility were studied. The starch granules in all three varieties were irregular or polyhedral in shape. There were a few oval granules and a few pinhole structures in QR, no oval granules but a higher number of pinholes in BR58, and no oval granules and pinholes in BR50. QR is a low-amylose (13.8 %), low-RS (0.2 %) variety. BR58 is a low-amylose (15.3 %), high-RS (6.5 %) variety. BR50 is a high-amylose (26.7 %), high-RS (8.3 %) variety. All three starches exhibited typical A-type diffraction patterns. Starch molecular weight, chain length distribution, starch branching degree, pasting capabilities, and thermal properties differed considerably between the rice starches. The RS contents of the rice starch varieties were positively correlated with AAC, Mw/Mn, Mz/Mn, peak 3, B, PTime, and Tp and negatively correlated with Mn, peak 2, DB, PV, and BD, according to Pearson's correlation analysis. These findings may be helpful for the breeding and development of high-RS rice varieties.
Collapse
Affiliation(s)
- Jie Ouyang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Chutao Wang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Qianlong Huang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yusheng Guan
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Zichao Zhu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Yongxin He
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Gang Jiang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Ying Xiong
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China
| | - Xianyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; Chongqing Zhongyi Seed Industry Co., Ltd, Chongqing 400060, China; Chongqing Key Laboratory of Hybrid Rice Breeding, Chongqing 400060, China.
| |
Collapse
|
11
|
Liu X, Qiao L, Kong Y, Wang H, Yang B. Characterization of the starch molecular structure of wheat varying in the content of resistant starch. Food Chem X 2024; 21:101103. [PMID: 38268838 PMCID: PMC10805764 DOI: 10.1016/j.fochx.2023.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
Resistant starch (RS) is the total amount of starch that is incompletely or not digested and absorbed in the small intestine. It plays a role similar to dietary fibre with beneficial effects for human health. In this study, the RS content of 129 wheat accessions was determined, and the relationship between the several starch physical properties and resistant starch content were analyzed. By comparing the total starch content, amylose starch content, starch chain length distribution, starch crystallization type, starch branching degree, and starch granule morphology between the high RS and low RS content wheat accessions, it was found that the amylose content and RS content were significantly positively correlated. However, in the range of chain length fb 3 (DP ≥ 37), there was a significant negative correlation between amylopectin content and RS content. The surface of starch granules became increasingly smooth as the content of RS increased.
Collapse
Affiliation(s)
- Xingchen Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
12
|
Yang J, Zhang X, Wang D, Wu J, Xu H, Xiao Y, Xie H, Shi W. The deterioration of starch physiochemical and minerals in high-quality indica rice under low-temperature stress during grain filling. FRONTIERS IN PLANT SCIENCE 2024; 14:1295003. [PMID: 38317835 PMCID: PMC10839034 DOI: 10.3389/fpls.2023.1295003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Low temperatures during the grain-filling phase have a detrimental effect on both the yield and quality of rice grains. However, the specific repercussions of low temperatures during this critical growth stage on grain quality and mineral nutrient composition in high-quality hybrid indica rice varieties have remained largely unexplored. The present study address this knowledge gap by subjecting eight high-quality indica rice varieties to two distinct temperature regimes: low temperature (19°C/15°C, day/night) and control temperature (28°C/22°C) during their grain-filling phase, and a comprehensive analysis of various quality traits, with a particular focus on mineral nutrients and their interrelationships were explored. Exposure of rice plants to low temperatures during early grain filling significantly impacts the physicochemical and nutritional properties. Specifically, low temperature increases the chalkiness rate and chalkiness degree, while decreases starch and amylopectin content, with varying effects on amylose, protein, and gelatinization temperature among rice varieties. Furthermore, crucial parameters like gelatinization enthalpy (ΔH), gelatinization temperature range (R), and peak height index (PHI) all significantly declined in response to low temperature. These detrimental effects extend to rice flour pasting properties, resulting in reduced breakdown, peak, trough, and final viscosities, along with increased setback. Notably, low temperature also had a significant impact on the mineral nutrient contents of brown rice, although the extent of this impact varied among different elements and rice varieties. A positive correlation is observed between brown rice mineral nutrient content and factors such as chalkiness, gelatinization temperature, peak viscosity, and breakdown, while a negative correlation is established with amylose content and setback. Moreover, positive correlations emerge among the mineral nutrient contents themselves, and these relationships are further accentuated in the context of low-temperature conditions. Therefore, enhancing mineral nutrient content and increasing rice plant resistance to chilling stress should be the focus of breeding efforts to improve rice quality.
Collapse
Affiliation(s)
- Juan Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinzheng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - De Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Jinshui Wu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hang Xu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yang Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hongjun Xie
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Wanju Shi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
13
|
Park JR, Kim EG, Jang YH, Kim KM. Utilization of the Winkler scale of plants using big data temperature presented by the Korea Meteorological Administration. FRONTIERS IN PLANT SCIENCE 2024; 14:1349606. [PMID: 38283972 PMCID: PMC10811219 DOI: 10.3389/fpls.2023.1349606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Introduction Rice is an important food source that can provide a stable supply of calories for most people around the world. However, owing to the recent rapid temperature rise, we are facing social issues related to the increase in the Winkler scale. In this study, a strategy for screening potential candidate genes related to the yield according to the Winkler scale is presented, and the possibility of using a candidate gene identified through sequence haplotype and homology analysis as a breeding source is suggested. Methods QTL for the Winkler scale was identified using a population of 120 double haploids derived from a cross between Cheongchoneg, Indica, and Nagdong, Japonica. Results and discussion A total of 79 candidate genes were detected in the identified QTL region, and OsHAq8 was finally screened. Through haplotype analysis, OsHAq8 was derived from the Indica group and orthologous to Graminae's activator of Hsp90 ATPase, suggesting that it is a candidate gene involved in yield according to temperature during the growing period. The expression level of OsHAq8 increased as the Winkler scale increased. The findings of this study can serve as a crucial indicator for predicting harvest time and grain quality while achieving a stable yield through marker selection and adaptation to climate change. Climate change occurs more frequently. In these situations, it is very important to predict harvest time and apply relevant candidate genes to breeding. The candidate genes presented in this study can be effectively applied to rice breeding in preparation for climate change.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Wang H, Zhang H, Liu J, Ma Q, Wu E, Gao J, Yang Q, Feng B. Transcriptome analysis reveals the mechanism of nitrogen fertilizers in starch synthesis and quality in waxy and non-waxy proso millet. Carbohydr Polym 2024; 323:121372. [PMID: 37940241 DOI: 10.1016/j.carbpol.2023.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Abstract
Recent findings suggest that optimal application of nitrogen fertilizers can effectively improve the quality of proso millet (PM). Here, we aimed to investigate the pathways associated with starch synthesis and metabolism to elucidate the effect and molecular mechanisms of nitrogen fertilization in starch synthesis and properties in waxy and non-waxy PM varieties using transcriptomic techniques. Co-expression network analysis revealed that the regulation of starch synthesis and quality in PM by nitrogen fertilizer mainly occurred in the S2 and S3 stages during grain filling. Nitrogen fertilization inhibited glycolysis/gluconeogenesis and starch biosynthesis in grains, but increased starch degradation to maltose and dextrin and then to glucose. Moreover, nitrogen fertilization increased starch accumulation by upregulating the expression of SuS and malZ genes, thereby increasing the total starch content in grains. In contrast, nitrogen fertilization suppressed the expression of GBSS gene and decreased amylose content in PM grains, resulting in a relatively higher crystallinity, light transmittance, and breakdown viscosity in the two PM varieties. Overall, these results provided transcriptomics insights into the molecular mechanisms by which nitrogen fertilization regulates starch quality in PM, identified key genes that associated with the starch properties, and provided new insights into the quality cultivation of PM.
Collapse
Affiliation(s)
- Honglu Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Hui Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jiajia Liu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Qian Ma
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Enguo Wu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Qinghua Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China
| | - Baili Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
15
|
Guo K, Liang W, Wang S, Guo D, Liu F, Persson S, Herburger K, Petersen BL, Liu X, Blennow A, Zhong Y. Strategies for starch customization: Agricultural modification. Carbohydr Polym 2023; 321:121336. [PMID: 37739487 DOI: 10.1016/j.carbpol.2023.121336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.
Collapse
Affiliation(s)
- Ke Guo
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Wenxin Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
16
|
Li M, Hu P, He D, Zheng B, Guo Y, Wu Y, Duan T. Quantification of the Cumulative Shading Capacity in a Maize-Soybean Intercropping System Using an Unmanned Aerial Vehicle. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0095. [PMID: 37953854 PMCID: PMC10637764 DOI: 10.34133/plantphenomics.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/01/2023] [Indexed: 11/14/2023]
Abstract
In intercropping systems, higher crops block direct radiation, resulting in inevitable shading on the lower crops. Cumulative shading capacity (CSC), defined as the amount of direct radiation shaded by higher crops during a growth period, affects the light interception and radiation use efficiency of crops. Previous studies investigated the light interception and distribution of intercropping. However, how to directly quantify the CSC and its inter-row heterogeneity is still unclear. Considering the canopy height differences (Hms, obtained using an unmanned aerial vehicle) and solar position, we developed a shading capacity model (SCM) to quantify the shading on soybean in maize-soybean intercropping systems. Our results indicated that the southernmost row of soybean had the highest shading proportion, with variations observed among treatments composed of strip configurations and plant densities (ranging from 52.44% to 57.44%). The maximum overall CSC in our treatments reached 123.77 MJ m-2. There was a quantitative relationship between CSC and the soybean canopy height increment (y = 3.61 × 10-2×ln(x)+6.80 × 10-1, P < 0.001). Assuming that the growth status of maize and soybean was consistent under different planting directions and latitudes, we evaluated the effects of factors (i.e., canopy height difference, latitude, and planting direction) on shading to provide insights for optimizing intercropping planting patterns. The simulation showed that increasing canopy height differences and latitude led to increased shading, and the planting direction with the least shading was about 90° to 120° at the experimental site. The newly proposed SCM offers a quantitative approach for better understanding shading in intercropping systems.
Collapse
Affiliation(s)
- Min Li
- College of Land Science and Technology,
China Agricultural University, Beijing, China
| | - Pengcheng Hu
- School of Agriculture and Food Sustainability,
The University of Queensland, St Lucia, QLD, Australia
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia
| | - Di He
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia
| | - Bangyou Zheng
- Agriculture and Food, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| | - Yan Guo
- College of Land Science and Technology,
China Agricultural University, Beijing, China
| | - Yushan Wu
- College of Agronomy,
Sichuan Agricultural University, Chengdu, China
| | - Tao Duan
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Guo C, Wuza R, Tao Z, Yuan X, Luo Y, Li F, Yang G, Chen Z, Yang Z, Sun Y, Ma J. Effects of elevated nitrogen fertilizer on the multi-level structure and thermal properties of rice starch granules and their relationship with chalkiness traits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7302-7313. [PMID: 37499162 DOI: 10.1002/jsfa.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Chalkiness in rice reduces its market value and affects consumer acceptance. Research on the mechanism of chalkiness formation has focused primarily on the activity of key enzymes of carbon metabolism and starch accumulation. The relationship between the formation of chalkiness induced by N fertilizer and rice starch's multi-level structure and thermal properties still needs to be fully elucidated. RESULTS In this study, the rates of chalky grains and degree of chalkiness decreased with the increase in N fertilizer dosage. This was attributed to an increased proportion of short chains, ordered structure carbon chains, small starch granules, and branched starches, and a higher degree of crystallinity and ΔHg in protein, and a decreased proportion of amylose, large starch granules, and weighted average diameter of starch granule surface area and volume. Application of N fertilizer promoted an increased proportion of short-branched chain amylopectin to develop a more ordered carbohydrate structure and crystalline lamella. These effects enhanced the normal development and compactness of starch granules in grains, and improved their arrangement morphology, thereby reducing the chalkiness in rice. CONCLUSION These changes in starch multi-level structure and protein improve the physicochemical characteristics of starch and enhance the fullness, crystallinity and compactness of starch granules, while synergistically increasing the regularity and homogeneity of starch granules and thus optimizing the stacking pattern of starch granules, leading to a reduction in rice chalkiness under nitrogen fertilization and thus improving the appearance of rice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Riqu Wuza
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ziling Tao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feijie Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guotao Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Yang H, Li Y, Zhao J, Chen Z, Huang X, Fan G. Regulating the composition and secondary structure of wheat protein through canopy shading to improve dough performance and nutritional index. Food Res Int 2023; 173:113399. [PMID: 37803737 DOI: 10.1016/j.foodres.2023.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,β + γ)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased β-sheet content but decreased β-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Jiarong Zhao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
19
|
Wang H, Wu E, Ma Q, Zhang H, Feng Y, Yang P, Gao J, Feng B. Comparison of the fine structure and physicochemical properties of proso millet (Panicum miliaceum L.) starch from different ecological regions. Int J Biol Macromol 2023; 249:126115. [PMID: 37541463 DOI: 10.1016/j.ijbiomac.2023.126115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Field experiments were conducted to evaluate the morphology, granule size, fine structure, thermal properties, and pasting properties of starch from a waxy (139) and a non-waxy (297) varieties of proso millet grown in Yulin (YY) and Yangling (YL). Compared with the starches from the two varieties grown in YY, the starches from the two varieties grown in YL exhibited higher relative crystallinities, 1045/1022 cm-1 ratio, and amounts of amylopectin long branch chains (APL) but lower 1022/995 cm -1 ratio, amounts of amylopectin short branch chains (APs), and APs/APL ratios. Starches from YL also synthesized long branch-chain amylopectin to enhance intermolecular interactions and form a stable granular structure, which resulted in increased starch gelatinization temperature, enhanced shear resistance, and reduced setback viscosity. Starch from the waxy (139) variety has good application prospects in the food industry because of its high gelatinization temperature and light transmittance and low setback value, which can be ascribed to its extremely low amylose content, polydispersity index, high molecular weight, and dispersed molecular density. It may serve as a reference for applying proso millet starches in the food industry and developing breeding programs to improve starch quality.
Collapse
Affiliation(s)
- Honglu Wang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Enguo Wu
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Qian Ma
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Hui Zhang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Yu Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Pu Yang
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Jinfeng Gao
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China
| | - Baili Feng
- Northwest A&F University, College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
20
|
Lin D, Zhou X, Zhao H, Tao X, Yu S, Zhang X, Zang Y, Peng L, Yang L, Deng S, Li X, Mao X, Luan A, He J, Ma J. The Synergistic Mechanism of Photosynthesis and Antioxidant Metabolism between the Green and White Tissues of Ananas comosus var. bracteatus Chimeric Leaves. Int J Mol Sci 2023; 24:ijms24119238. [PMID: 37298190 DOI: 10.3390/ijms24119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.
Collapse
Affiliation(s)
- Dongpu Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xuzixin Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Huan Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiaoguang Tao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Sanmiao Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiaopeng Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Yaoqiang Zang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Lingli Peng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Li Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Shuyue Deng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xiyan Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Xinjing Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| | - Aiping Luan
- Tropical Crop Genetic Resources Institute, Chinese Academy of Agricultural Science, Haikou 571101, China
| | - Junhu He
- Tropical Crop Genetic Resources Institute, Chinese Academy of Agricultural Science, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
21
|
Saha S, Purkayastha S, K N, Ganguly S, Das S, Ganguly S, Sinha Mahapatra N, Bhattacharya K, Das D, Saha AK, Biswas T, Bhattacharyya PK, Bhattacharyya S. Rice ( Oryza sativa) alleviates photosynthesis and yield loss by limiting specific leaf weight under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:267-276. [PMID: 36624487 DOI: 10.1071/fp22241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The physiological mechanisms of shade tolerance and trait plasticity variations under shade remain poorly understood in rice (Oryza sativa L.). Twenty-five genotypes of rice were evaluated under open and shade conditions. Various parameters to identify variations in the plasticity of these traits in growth irradiance were measured. We found wide variations in specific leaf weight (SLW) and net assimilation rate measured at 400µmolm-2 s-1 photosynthetic photon flux density (PPFD; referred to as A 400 ) among the genotypes. Under shade, tolerant genotypes maintained a high rate of net photosynthesis by limiting specific leaf weight accompanied by increased intercellular CO2 concentration (C i ) compared with open-grown plants. On average, net photosynthesis was enhanced by 20% under shade, with a range of 2-30%. Increased accumulation of biomass under shade was observed, but it showed no correlation with photosynthetic plasticity. Chlorophyll a /b ratio also showed no association with photosynthetic rate and yield. Analysis of variance showed that 11%, 16%, and 37% of the total variance of A 400 , SLW, and C i were explained due to differences in growth irradiance. SLW and A 400 plasticity in growth irradiance was associated with yield loss alleviation with R 2 values of 0.37 and 0.16, respectively. Biomass accumulation was associated with yield loss alleviation under shade, but no correlation was observed between A 400 and leaf-N concentration. Thus, limiting specific leaf weight accompanied by increased C i rather than leaf nitrogen concentration might have allowed rice genotypes to maintain a high net photosynthesis rate per unit leaf area and high yield under shade.
Collapse
Affiliation(s)
- Shoumik Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nimitha K
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Sebantee Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Subhadeep Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shamba Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nilanjan Sinha Mahapatra
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Kriti Bhattacharya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Dibakar Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Arup K Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Tirthankar Biswas
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Prabir K Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| |
Collapse
|
22
|
Li J, Zhang C, Luo X, Zhang T, Zhang X, Liu P, Yang W, Lei Y, Tang S, Kang L, Huang L, Li T, Wang Y, Chen W, Yuan H, Qin P, Li S, Ma B, Tu B. Fine mapping of the grain chalkiness quantitative trait locus qCGP6 reveals the involvement of Wx in grain chalkiness formation. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad112. [PMID: 36964899 DOI: 10.1093/jxb/erad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 06/18/2023]
Abstract
Grain chalkiness is an important index of rice appearance quality and is negatively associated with rice processing and eating qualities. However, the genetic mechanism underlying chalkiness formation is largely unknown. To identify the genetic basis of chalkiness, 410 recombinant inbred lines (RILs) derived from two representative indica rice varieties, Shuhui498 (R498) and Yihui3551 (R3551), were used to discover quantitative trait loci (QTL). The two parental lines and RILs were grown in three locations in China under three controlled fertilizer application level. Analyses indicated that chalkiness was significantly affected by genotype, the environment, and the interaction between the two, and that heritability was high. Several QTLs were isolated, including the two stable QTLs, i.e., qCGP6 and qCGP8. Fine mapping and candidate gene verification of qCGP6 showed that Wx may play a key role in chalkiness formation. Chromosomal segment substitution lines (CSSLs) and near-isogenic lines (NILs) carrying the Wxa or Wxin allele produced more chalky grain than the R498 parent. A similar result was also observed in the 3611 background. Notably, the effect of the Wx genotype on rice chalkiness was shown to be dependent on environmental conditions and Wx alleles exhibited different sensitivities to shading treatment. Using CRISPR/Cas9, the Wxa promoter region was successfully edited, down-regulating Wx alleviates chalkiness formation in NILR498-Wxa. This study developed a new strategy for synergistic improvement of eating and appearance qualities in rice, and created a novel Wx allele with great potential in breeding applications.
Collapse
Affiliation(s)
- Jialian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, Liaoning 110101, China
| | - Xia Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyu Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuekun Lei
- Chengdu Juannong Intelligent Agriculture Technology Development Co., Ltd
| | - Siwen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Liangzhu Kang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
23
|
Yang H, Zhao J, Ma H, Shi Z, Huang X, Fan G. Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. Int J Biol Macromol 2023; 236:123972. [PMID: 36906208 DOI: 10.1016/j.ijbiomac.2023.123972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Heavy haze-induced decreases in solar radiation represent an important factor that affects the structural properties of starch macromolecules. However, the relationship between the photosynthetic light response of flag leaves and the structural properties of starch remains unclear. In this study, we investigated the impact of light deprivation (60 %) during the vegetative-growth or grain-filling stage on the leaf light response, starch structure, and biscuit-baking quality of four wheat cultivars with contrasting shade tolerance. Shading decreased the apparent quantum yield and maximum net photosynthetic rate of flag leaves, resulting in a lower grain-filling rate and starch content and higher protein content. Shading decreased the starch, amylose, and small starch granule amount and swelling power but increased the larger starch granule amount. Under shade stress, the lower amylose content decreased the resistant starch content while increasing the starch digestibility and estimated glycemic index. Shading during the vegetative-growth stage increased starch crystallinity, 1045/1022 cm-1 ratio, starch viscosity, and the biscuit spread ratio, while shading during the grain-filling stage decreased these values. Overall, this study indicated that low light affects the starch structure and biscuit spread ratio by regulating the photosynthetic light response of flag leaves.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Jiarong Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Hongliang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Xiulan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China; Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
24
|
Ai X, Xiong R, Tan X, Wang H, Zeng Y, Huang S, Shang Q, Pan X, Shi Q, Zhang J, Zeng Y. Low temperature and light combined stress after heading on starch fine structure and physicochemical properties of late-season indica rice with different grain quality in southern China. Food Res Int 2023; 164:112320. [PMID: 36737913 DOI: 10.1016/j.foodres.2022.112320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Late-season indica rice frequently encounters low temperature (LT) along with low light (LL) after heading in southern China, which deteriorates the grain quality by altering starch quality. However, the detailed effects on starch properties of these stressors remain unclear. Herein, two indica rice cultivars with good and poor grain quality were grown under control (CK), LT, and LT + LL conditions after heading and the structural and physicochemical properties of their starch were evaluated. Compared with CK, LT and LT + LL worsened thermal and pasting properties of starch in the two cultivars, mainly because they increased branch chain branching and A chain (DP ≤12), and decreased average branch chain length and crystallinity. Compared with LT, LT + LL deteriorated the pasting properties of the poor-quality cultivar, such as reducing breakdown (BD), final and peak viscosity, which mainly owing to decreasing the starch branching and crystallinity degrees, and increasing the small starch granules (d < 10 μm). Gelatinization enthalpy and BD both had significant and positive correlations with amylose content, the ratio of amylose and amylopectin, B3 chain and crystallinity. Taken together, these results suggest that LT and LT + LL during grain filling can deteriorate the physicochemical properties of starch in late-season indica rice cultivars by disrupting starch multilevel structure, especially upon LT + LL. In particular, while poor-quality cultivar had poorer physicochemical properties, the good-quality cultivar had poorer thermal properties under LT + LL.
Collapse
Affiliation(s)
- Xiaofeng Ai
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haixia Wang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyin Shang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Shi
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Fan P, Xu J, Wang Z, Liu G, Zhang Z, Tian J, Wei H, Zhang H. Phenotypic differences in the appearance of soft rice and its endosperm structural basis. FRONTIERS IN PLANT SCIENCE 2023; 14:1074148. [PMID: 36818874 PMCID: PMC9929301 DOI: 10.3389/fpls.2023.1074148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In view of the significant differences among genotypes in the appearance of soft rice, it is necessary to conduct research on the differences in the appearance quality of soft rice and their mechanisms. It can provide a theoretical basis for the selection and breeding of superior appearance varieties at a later stage. In order to clarify the differences in appearance phenotypes between different soft rice genotypes and structural basis of endosperm structures behind the differences, four soft rice varieties were selected in this study, including two varieties with good-appearance and two varieties with cloudy appearance. The differences in appearance phenotypes and endosperm structure in mature grains of soft rice with different appearance phenotypes were scientifically analyzed. The development process of their endosperm differences at the filling stage was investigated. The results show that the difference in the rice appearance of soft rice varieties mainly lay in the chalk-free seed transparency and chalkiness. These differences were caused by two completely different types of endosperm structure. Fewer and smaller starch grain cavities were responsible for higher chalk-free transparency of soft rice grains, denser starch granules arrangement caused lower chalkiness of soft rice grains. Ten days after flowering, the starch granules in the back and heart of good-appearance soft rice were already significantly fuller and more closely packed than those of cloudy soft rice. At the same time, the number and area of starch granule holes were significantly smaller than those of cloudy soft rice. This difference gradually increased until maturity. Therefore, based on appearance evaluation, soft rice with good-appearance should have higher transparency and lower chalkiness. The endosperm starch granules should be full and tightly arranged. The number of starch grain cavities and the area should be smaller. These differences develop in the early stages of grouting and gradually increase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Wei
- *Correspondence: Haiyan Wei, ; Hongcheng Zhang,
| | | |
Collapse
|
26
|
Effects of nitrogen and phosphorus fertilizer on the eating quality of indica rice with different amylose content. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Yashini M, Khushbu S, Madhurima N, Sunil CK, Mahendran R, Venkatachalapathy N. Thermal properties of different types of starch: A review. Crit Rev Food Sci Nutr 2022; 64:4373-4396. [PMID: 36322685 DOI: 10.1080/10408398.2022.2141680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Starch is present in high amount in various cereals, fruits and roots & tubers which finds major application in industry. Commercially, starch is rarely consumed or processed in its native form, thus modification of starch is widely used method for increasing its application and process stability. Due to the high demand for starch in industrial applications, researchers were driven to hunt for new sources of starch, including modification of starch through green processing. Thermal properties are significant reference parameters for evaluating the quality of starch when it comes to cooking and processing. Modification of starches affects the thermal properties, which are widely studied using Differential scanning calorimeter or Thermogravimetric analysis. It could lead to a better understanding of starch's thermal properties including factors influencing and expand its commercial applications as a thickener, extender, fat replacer, etc. in more depth. Therefore, the review presents the classification of starches, factors influencing the thermal properties, measurement methods and thermal properties of starch in its native and modified form. Further, this review concludes that extensive research on the thermal properties of new sources of starch, as well as modified starch, is required to boost thermal stability and extend industrial applications.
Collapse
Affiliation(s)
- M Yashini
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - S Khushbu
- University of Hohenheim, Stuttgart, Germany
| | - N Madhurima
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - N Venkatachalapathy
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| |
Collapse
|
28
|
Tu D, Wu W, Xi M, Zhou Y, Xu Y, Chen J, Shao C, Zhang Y, Zhao Q. Effect of Temperature and Radiation on Indica Rice Yield and Quality in Middle Rice Cropping System. PLANTS (BASEL, SWITZERLAND) 2022; 11:2697. [PMID: 36297721 PMCID: PMC9607267 DOI: 10.3390/plants11202697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.) is cultivated in a wide range of climatic conditions, thereby inducing great variations in the rice growth, yield and quality. However, the comprehensive effects of temperature and solar radiation under different ecological regions on the rice growth, yield and quality are not well understood, especially in a middle rice cropping system. The rice growth, yield- and quality-related traits were investigated under different ecological regions. Among different areas, the days before the heading stage and after the heading stage of six cultivars ranged from 80 to 120 and from 30 to 50. The gaps of the grain yield, head rice rate, chalky grain rate and chalkiness level were about 1.2-52.4%, 1.0-3.0%, 2.7-12.7% and 0.3-4.5%, respectively. This study demonstrated that in these regions, temperature is a limiting factor compared with radiation. Moreover, the rice growth, yield and quality were closely associated with daily air (DT), maximum (MaT), minimum (MiT) and effective accumulated temperatures (EAT). An excellent rice growth, a high grain yield and an excellent quality could be achieved if the EAT was higher than 1592 °C·d and the MiT was lower than 23.1 °C before the heading stage, and if the DT, MiT and MaT were lower than 25.7 °C, 22.0 °C and 30 °C after the heading stage, respectively. These findings served as an important reference for optimizing cultivar selection for a specific area and determining suitable areas for a certain variety.
Collapse
Affiliation(s)
- Debao Tu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Min Xi
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yongjin Zhou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Youzun Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jinhua Chen
- Anhui Agrometeorological Institute, Hefei 230031, China
| | - Caihong Shao
- Red Soil Engineering and Technology Center, Soil and Fertilizer & Resource and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuping Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Quanzhi Zhao
- College of Agronomy, Henan Key Laboratory of Regulation and Control of Crop Growth and Development, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
29
|
Wang H, Zhong L, Fu X, Huang S, Fu H, Shi X, Hu L, Cai Y, He H, Chen X. Physiological and Transcriptomic Analyses Reveal the Mechanisms of Compensatory Growth Ability for Early Rice after Low Temperature and Weak Light Stress. PLANTS 2022; 11:plants11192523. [PMID: 36235390 PMCID: PMC9570567 DOI: 10.3390/plants11192523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
“Late spring coldness” (T) is a frequent meteorological disaster in the spring in southern China, often causing severe yield losses of direct-seeded early rice. In this study, we investigated the mechanisms underlying the differences in the compensatory growth ability of different rice genotypes by focusing on agronomic traits, physiological indicators, and transcriptome. The results showed that there were significant differences in the compensatory growth recovery ability of different genotypes after a combination of four days of low temperature and weak light stress. Only the strong compensatory growth genotype B116 was able to grow rapidly and reduce soluble protein and H2O2 concentrations rapidly after stress. By analyzing enzyme activity as well as endogenous hormone concentration, we found that the high superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and high levels of abscisic acid (ABA) could reduce the damage of B116 during stress. Meanwhile, higher glutamine synthetase (GS) and nitrate reductase (NR) activity and higher levels of gibberellin A3(GA3), indoleacetic acid (IAA), and zeatin nucleoside (ZR) could enable B116 to grow rapidly after stress. The identified differentially expressed genes (DEGs) indicated that there were large differences in POD-related genes and gibberellin metabolism between B116 and B144 after stress; RT-PCR quantification also showed a trend consistent with RNA-seq, which may be an important reason for the differences in compensatory growth ability.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
30
|
Low Light Stress Increases Chalkiness by Disturbing Starch Synthesis and Grain Filling of Rice. Int J Mol Sci 2022; 23:ijms23169153. [PMID: 36012414 PMCID: PMC9408977 DOI: 10.3390/ijms23169153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Low light stress increases the chalkiness of rice; however, this effect has not been fully characterized. In this study, we demonstrated that low light resulted in markedly decreased activity of ADP-glucose pyrophosphorylase in the grains and those of sucrose synthase and soluble starch synthase in the early period of grain filling. Furthermore, low light also resulted in decreased activities of granule-bound starch synthase and starch branching enzyme in the late period of grain filling. Therefore, the maximum and mean grain filling rates were reduced but the time to reach the maximum grain filling rates and effective grain filling period were increased by low light. Thus, it significantly decreased the grain weight at the maximum grain filling rate and grain weight and retarded the endosperm growth and development, leading to a loose arrangement of the amyloplasts and an increase in the chalkiness of the rice grains. Compared to the grains at the top panicle part, low light led to a greater decrease in the grain weight at the maximum grain filling rate and time to reach the grain weight at the maximum grain filling rate at the bottom panicle part, which contributed to an increase in chalkiness by increasing the rates of different chalky types at the bottom panicle part. In conclusion, low light disturbed starch synthesis in grains, thereby impeding the grain filling progress and increasing chalkiness, particularly for grains at the bottom panicle part.
Collapse
|
31
|
Tao K, Liu X, Yu W, Neoh GKS, Gilbert RG. Starch molecular structural differences between chalky and translucent parts of chalky rice grains. Food Chem 2022; 394:133471. [PMID: 35716496 DOI: 10.1016/j.foodchem.2022.133471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Chalky rice has an undesirable appearance and reduced commercial value. To understand the relationship between starch structural characteristics and chalkiness, a comprehensive investigation was conducted of molecular structural differences between starch in chalky and translucent parts of the same chalky grains (three Japonica and two Indica rices), this strategy being such as to minimize genetic and environmental effects. Compared to translucent parts, chalky parts had a larger ratio of large to small branched molecules and more short amylopectin chains (degree of polymerization < 35), but fewer longer chains, which affect higher-level starch structures, such as crystallinity. No significant differences in amylose structure were observed. White-belly and white-core chalky grains showed distinguishable starch characteristics, suggesting studying different chalkiness types separately. These findings extend understanding of chalkiness from the perspective of starch structure, and control of this structure can in the future help breeders to develop strategies against the formation of chalkiness.
Collapse
Affiliation(s)
- Keyu Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Xin Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, 510632, Guangzhou Province, China
| | - Galex K S Neoh
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
32
|
Chen H, Wang T, Deng F, Yang F, Zhong X, Li Q, Ren W. Changes in chemical composition and starch structure in rice noodle cultivar influence Rapid Visco analysis and texture analysis profiles under shading. Food Chem X 2022; 14:100360. [PMID: 35734574 PMCID: PMC9207303 DOI: 10.1016/j.fochx.2022.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
The pasting property of rice noodles which decreased under shade stress. Pasting property is related to amylose, short chain amylopectin and crystallinity of starch. Protein content and swelling factor had significant correlation with the quality of rice noodle.
GuichaoII, a rice variety with high amylose content widely used to make rice noodles, exhibits high hardness (631.07–729.43), gel consistency (8.47–9.47 mm), and hold viscosity/peak viscosity (HPV/PKV) (0.85–0.88); however, it has a low protein content (5.74–6.96%) and swelling factor (5.49–9.77). Herein, GuichaoII was subjected to low-light stress (53% reduction) during the grain filling stage. The amylose content and crystallinity of GuichaoII and the control variety Shuhui 498 decreased while the protein content, short-chain branch ratio, and degree of branching increased, which affected the ability of the rice flour to absorb water and expand during the gelatinization process. The PKV, HPV, breakdown viscosity, and final viscosity were significantly reduced, while the hardness was significantly increased, and the gel consistency and the gelatinization quality of the rice were reduced, severely limiting the processing and production of rice noodles.
Collapse
|
33
|
Highly efficient fermentation of glycerol and 1,3-propanediol using a novel starch as feedstock. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Yang T, Yang H, Zeng Y, Wang H, Xiong R, Wu L, Zhang B. Differences in the functional properties and starch structures of early/late season rice between the early and late seasons. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Kim EJ, Hong WJ, Kim YJ, Jung KH. Transcriptome Analysis of Triple Mutant for OsMADS62, OsMADS63, and OsMADS68 Reveals the Downstream Regulatory Mechanism for Pollen Germination in Rice ( Oryza sativa). Int J Mol Sci 2021; 23:ijms23010239. [PMID: 35008665 PMCID: PMC8745200 DOI: 10.3390/ijms23010239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
The MADS (MCM1-AGAMOUS-DEFFICIENS-SRF) gene family has a preserved domain called MADS-box that regulates downstream gene expression as a transcriptional factor. Reports have revealed three MADS genes in rice, OsMADS62, OsMADS63, and OsMADS68, which exhibits preferential expression in mature rice pollen grains. To better understand the transcriptional regulation of pollen germination and tube growth in rice, we generated the loss-of-function homozygous mutant of these three OsMADS genes using the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system in wild-type backgrounds. Results showed that the triple knockout (KO) mutant showed a complete sterile phenotype without pollen germination. Next, to determine downstream candidate genes that are transcriptionally regulated by the three OsMADS genes during pollen development, we proceeded with RNA-seq analysis by sampling the mature anther of the mutant and wild-type. Two hundred and seventy-four upregulated and 658 downregulated genes with preferential expressions in the anthers were selected. Furthermore, downregulated genes possessed cell wall modification, clathrin coat assembly, and cellular cell wall organization features. We also selected downregulated genes predicted to be directly regulated by three OsMADS genes through the analyses for promoter sequences. Thus, this study provides a molecular background for understanding pollen germination and tube growth mediated by OsMADS62, OsMADS63, and OsMADS68 with mature pollen preferred expression.
Collapse
Affiliation(s)
- Eui-Jung Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang-si 50463, Korea
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (E.-J.K.); (W.-J.H.)
- Correspondence: (Y.-J.K.); (K.-H.J.); Tel.: +82-31-201-3474 (K.-H.J.)
| |
Collapse
|
36
|
Wu B, Xia D, Zhou H, Cheng S, Wang Y, Li M, Gao G, Zhang Q, Li X, He Y. Fine mapping of qWCR7, a grain chalkiness QTL in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:68. [PMID: 37309362 PMCID: PMC10236040 DOI: 10.1007/s11032-021-01260-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Chalkiness is one of the key determinants of rice quality and is a highly undesirable trait for breeding and marketing. In this study, qWCR7, a major quantitative trait locus (QTL) of white-core rate (WCR), was genetically validated using a BC3F2 segregation population and further fine mapped using a near isogenic line (NIL) population, of which both were derived from a cross between the donor parent DL208 and the recurrent parent ZS97. qWCR7 was finally narrowed to a genomic interval of ~ 68 kb, containing seven annotated genes. Among those, two genes displayed markedly different expression levels in endosperm of NILs. Transcriptome analysis showed that the synthesis and accumulation of metabolites played a key role in chalkiness formation. The contents of storage components and expression levels of related genes were detected, suggesting that starch and storage protein were closely related to white-core trait. Our findings have laid the foundation of map-based cloning of qWCR7, which may have potential value in quality improvement during rice breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01260-x.
Collapse
Affiliation(s)
- Bian Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Shiyuan Cheng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
37
|
Yield, Grain Quality, and Starch Physicochemical Properties of 2 Elite Thai Rice Cultivars Grown under Varying Production Systems and Soil Characteristics. Foods 2021; 10:foods10112601. [PMID: 34828879 PMCID: PMC8620510 DOI: 10.3390/foods10112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Rice production systems and soil characteristics play a crucial role in determining its yield and grain quality. Two elite Thai rice cultivars, namely, KDML105 and RD6, were cultivated in two production systems with distinct soil characteristics, including net-house pot production and open-field production. Under open-field system, KDML105 and RD6 had greater panicle number, total grain weight, 100-grain weight, grain size, and dimension than those grown in the net-house. The amounts of reducing sugar and long amylopectin branch chains (DP 25–36) of the RD6 grains along with the amounts of long branch chains (DP 25–36 and DP ≥ 37), C-type starch granules, and average chain length of the KDML105 were substantially enhanced by the open-field cultivation. Contrastingly, the relative crystallinity of RD6 starch and the amounts of short branch chains (DP 6–12 and DP 13–24), B- and A-type granules, and median granule size of KDML105 starch were significantly suppressed. Consequently, the open-field-grown RD6 starch displayed significant changes in its gelatinization and retrogradation properties, whereas, certain retrogradation parameters and peak viscosity (PV) of KDML105 starches were differentially affected by the distinct cultivating conditions. This study demonstrated the influences of production systems and soil characteristics on the physicochemical properties of rice starches.
Collapse
|
38
|
Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Teixeira OR, Batista CDS, Colussi R, Martino HSD, Vanier NL, Bassinello PZ. Impact of physicochemical properties on the digestibility of Brazilian whole and polished rice genotypes. Cereal Chem 2021. [DOI: 10.1002/cche.10455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olívia Reis Teixeira
- School of Agronomy and Food Engineering Federal University of Goiás‐ UFG Goiânia Brazil
| | | | - Rosana Colussi
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | - Nathan Levien Vanier
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | |
Collapse
|
40
|
Kittipongpatana N, Wiriyacharee P, Phongphisutthinant R, Chaipoot S, Somjai C, Kittipongpatana OS. Resistant Starch Contents of Starch Isolated from Black Longan Seeds. Molecules 2021; 26:3405. [PMID: 34199868 PMCID: PMC8200116 DOI: 10.3390/molecules26113405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
A large quantity of longan fruits (Dimocarpus longan Lour.) produced annually are processed into many products, one of which is black longan, from which the dried, dark-brown meat has been used medicinally in traditional medicine, while the starch-containing seeds are discarded. In this study, starch samples (BLGSs) were isolated from seeds of black longan fruits prepared using varied conditions. The in vitro digestibility was determined in comparison with those extracted from fresh (FLGS) and dried (DLGS) seeds. Scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy were employed to evaluate the starch properties. The results showed that the yields of FLGS, DLGS, and BLGSs were 20%, 23%, and 16-22% w/w, respectively. SEM images showed starch granules of mixed shapes, with sizes up to 15 µm in all samples. XRD patterns confirmed an A-type crystallinity for FLGS and DLGS, with strong refraction peaks at 2θ = 15°, 17°, 18°, and 23°, while BLGSs also showed detectable peaks at 2θ = 10° and 21°, which suggested V-type structures. Thermal properties corroborated the changes by showing increases in peak gelatinization temperature (Tp) and enthalpy energy (ΔH) in BLGSs. The paste viscosity of BLGSs (5% w/w) decreased by 20-58% from that of FLGS. The FTIR peak ratio at 1045/1022 and 1022/995 cm-1 also indicated an increase in ordered structure in BLGSs compared to FLGS. The significant increase in the amounts of slowly digestible starch (SDS) and resistant starch (RS) in BLGSs compared to FLGS, especially at a prolonged incubation time of 20 (4.2×) and 30 days (4.1×), was proposed to be due to the heat-induced formation of starch inclusion with other components inside the seed during the black longan production process. Thus, black longan seed could be a new source of starch, with increased RS content, for potential use in the food and related industries.
Collapse
Affiliation(s)
- Nisit Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Agricultural Innovation, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.W.); (C.S.)
- Science and Technology Research Institute of Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Science and Technology Research Institute of Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supakit Chaipoot
- Science and Technology Research Institute of Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.)
| | - Chalermkwan Somjai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.W.); (C.S.)
| | - Ornanong S. Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Agricultural Innovation, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|