1
|
Shishir MRI, Suo H, Taip FS, Cheng KW. Lactoferrin-chia seed mucilage complex coacervates for intestinal delivery of quercetin and fortification of set yogurt. Food Chem 2024; 456:139818. [PMID: 38878531 DOI: 10.1016/j.foodchem.2024.139818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
This study aimed to develop complex coacervates utilizing lactoferrin (LF) and chia seed mucilage (CSM) for promoting intestinal delivery of quercetin (Q) and fortification of set yogurt. Three cross-linkers, including calcium chloride (CC), transglutaminase (TG), and polyphenolic complex (HP), were used to further reinforce the coacervate network. Cross-linked coacervates had higher values of coacervate yield, encapsulation efficiency, and loading capacity. They efficiently preserved Q under gastric condition (⁓87%-99%), with CSM-TG-Q-LF being most effective for intestinal delivery of Q. Moreover, digested pellets of the cross-linked coacervates displayed better antioxidant activity than the uncross-linked coacervates with CSM-TG-Q-LF pellets showing maximum bioactivity. The Q-loaded coacervates demonstrated superior assembly in the yogurt matrix compared to the unencapsulated Q. Moreover, the coacervate systems, especially CSM-TG-Q-LF significantly improved the textural properties of yogurt and the stability of Q in it. Therefore, CSM-TG-LF is a promising carrier to promote intestinal delivery and food application of hydrophobic molecules.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hao Suo
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Majeed M, Rather MA. Advancements in vitamin D encapsulation: characterization, wall materials, and fortification applications. NUTRIRE 2024; 49:48. [DOI: 10.1186/s41110-024-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 01/06/2025]
|
3
|
Shishir MRI, Suo H, Taip FS, Ahmed M, Xiao J, Wang M, Chen F, Cheng KW. Seed mucilage-based advanced carrier systems for food and nutraceuticals: fabrication, formulation efficiency, recent advancement, challenges, and perspectives. Crit Rev Food Sci Nutr 2024; 64:7609-7631. [PMID: 36919601 DOI: 10.1080/10408398.2023.2188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Villamayor N, Villaseñor MJ, Ríos Á. Selective dual sensing strategy for free and vitamin D 3 micelles in food samples based on S,N-GQDs photoinduced electron transfer. Anal Bioanal Chem 2024; 416:4173-4191. [PMID: 38795215 DOI: 10.1007/s00216-024-05344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
A reliable nanotechnological sensing strategy, based on an S,N-co-doped graphene quantum dot (GQD) platform, has been developed to distinctly detect two key variants of vitamin D3, specifically the free (VD3) and the nanoencapsulated form (VD3Ms). For this purpose, food-grade vitamin D3 micelles were self-assembled using a low-energy procedure (droplet size: 49.6 nm, polydispersity index: 0.34, ζ-potential: -33 mV, encapsulation efficiency: 90 %) with an innovative surfactant mixture (Tween 60 and quillaja saponin). Herein, four fluorescent nanoprobes were also synthesized and thoroughly characterized: S,N-co-doped GQDs, α-cyclodextrin-GQDs, β-cyclodextrin-GQDs, and γ-cyclodextrin-GQDs. The goal was to achieve a selective dual sensing strategy for free VD3 and VD3Ms by exploiting their distinctive quenching behaviors. Thus, the four nanosensors allowed the individual sensing of both targets to be performed (except α-CD-GQD for VD3Ms), but S,N-GQDs were finally selected due to selectivity and sensitivity (quantum yield, QY= 0.76) criteria. This choice led to a photoinduced electron transfer (PET) mechanism associated with static quenching, where differentiation was evidenced through a displayed 13-nm hypsochromic (blue) shift when interacting with VD3Ms. The reliability of this dual approach was demonstrated through an extensive evaluation of analytical performance characteristics. The feasibility and accuracy were proven in commercial food preparations and nutritional supplements containing declared nanoencapsulated and raw VD3, whose results were validated by a paired Student's t-test comparison with a UV-Vis method. To the best of our knowledge, this represents the first non-destructive analytical approach addressing the groundbreaking foodomic trend to distinctly detect different bioactive forms of vitamin D3, while also preserving their native nanostructures as a chemical challenge, thus providing reliable information about their final stability and bioavailability.
Collapse
Affiliation(s)
- Natalia Villamayor
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
- Regional Institute for Applied Chemistry Research (IRICA), Ciudad Real, 13071, Spain
| | - M Jesús Villaseñor
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
- Department of Analytical Chemistry, Industrial Engineering School, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain.
- Regional Institute for Applied Chemistry Research (IRICA), Ciudad Real, 13071, Spain.
| |
Collapse
|
5
|
Taheri A, Kashaninejad M, Tamaddon AM, Du J, Jafari SM. Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement. Gels 2023; 9:485. [PMID: 37367155 DOI: 10.3390/gels9060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Functional, physicochemical, and rheological properties of protein-polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes are discussed in the presence of CaCl2 (2-10 mM), (CSM-Blg-Ca), and NaCl (10-100 mM) (CSM-Blg-Na). Our results on steady-flow and oscillatory measurements indicated that shear thinning properties can be fitted well by the Herschel-Bulkley model and by the formation of highly interconnected gel structures in the complexes, respectively. Analyzing the rheological and structural features simultaneously led to an understanding that formations of extra junctions and the rearrangement of the particles in the CSM-Blg-Ca could enhance elasticity and viscosity, as compared with the effect of CSM-Blg complex without salts. NaCl reduced the viscosity and dynamic rheological properties and intrinsic viscosity through the salt screening effect and dissociation of structure. Moreover, the compatibility and homogeneity of complexes were approved by dynamic rheometry based on the Cole-Cole plot supported by intrinsic viscosity and molecular parameters such as stiffness. The results outlined the importance of rheological properties as criteria for investigations that determine the strength of interaction while facilitating the fabrication of new structures in salt-containing foods that incorporate protein-polysaccharide complexes.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Mahdi Kashaninejad
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Seid Mahdi Jafari
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
| |
Collapse
|
6
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Mohammed LJ, Taheri-Kafrani A. Fabrication of doxorubicin loaded aptamer-functionalized cationic β-lactoglobulin nanocomplex: A biocompatible multifunctional nanoplatform for encapsulation and controlled release of anticancer drugs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Mucilage from Yellow Pitahaya ( Selenicereus megalanthus) Fruit Peel: Extraction, Proximal Analysis, and Molecular Characterization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020786. [PMID: 36677844 PMCID: PMC9865909 DOI: 10.3390/molecules28020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Mucilage is a hydrophilic biopolymeric material of interest in the food industry due to its high content of dietary fiber, antioxidant activity, and gelling and thickening capacities, which is present in high concentration in agricultural by-products, such as the peel of cacti fruits. In this work, the powdered mucilage extracted from the peel of yellow pitahaya (Selenicereus megalanthus) fruit was characterized using a multi-technical approach that included proximal analysis (proteins, lipids, crude fiber, ash, and carbohydrates), as well as structural (FTIR, NMR, UPLC-QTOF-MS, and X-ray diffraction), colorimetric (CIELab parameters), morphological (SEM), and thermal (DSC/TGA) methods. Likewise, its total content of dietary fiber and polyphenols, as well as its antioxidant activity, were determined. This dried mucilage presented a light pale yellow-reddish color, attributed to the presence of betalains (bioactive pigments with high antioxidant activity). The FTIR spectrum revealed functional groups associated with a low presence of proteins (5.45 ± 0.04%) and a high concentration of oligosaccharides (55.26 ± 0.10%). A zeta potential of -29.90 ± 0.90 mV was determined, denoting an anionic nature that favors the use of this mucilage as a stable colloidal dispersion. UPLC-QTOF-MS analysis revealed a major oligosaccharide composition based on galacturonic acid units in anionic form. SEM micrographs revealed a cracked morphology composed of amorphous and irregular particles. According to the DSC/TGA results, this mucilage can be introduced as a new source of hydrocolloids in food processes since it has high thermal stability that has been manifested up to 373.87 °C. In addition, this biopolymer exhibited a high content of polyphenols (25.00 ± 0.01-g gallic acid equivalent (GAE)/100-g sample), dietary fiber (70.51%), and antioxidant activity (1.57 ± 0.01 mmol Trolox equivalents/kg of sample). It was concluded that this mucilaginous material presents sufficient physicochemical and functional conditions to be used as a nutritional ingredient, thus giving valorization to this agricultural by-product.
Collapse
|
9
|
Sabbagh F, Khatir NM, Kiarostami K. Synthesis and Characterization of 𝒌-Carrageenan/PVA Nanocomposite Hydrogels in Combination with MgZnO Nanoparticles to Evaluate the Catechin Release. Polymers (Basel) 2023; 15:polym15020272. [PMID: 36679153 PMCID: PMC9864035 DOI: 10.3390/polym15020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
In the current study, nanocomposites were prepared by combining k-carrageenan, polyvinyl alcohol (PVA), and doped nanoparticles (Magnesium oxide) MgO, (Magnesium Zinc oxide) MgZnO 1%, MgZnO 3%, and MgZnO 5%. The nanoparticles were synthesized by a sol-gel method and mixed with a mixture of k-carrageenan/PVA (Ca/PVA) in various ratios. The structure of the composites was analyzed using thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The Ca/PVA mixture was then mixed with nanoparticles and loaded with active ingredient, catechin. Scanning electron microscope (SEM) and texture analysis were performed to analyze the nanocomposites. Entrapment efficiency (EE%) and drug release studies confirmed that k-carrageenan/PVA/MgZnO 5% had the highest EE% at 81.58% and a drug release of 75.21% ± 0.94. The EE% of k-carrageenan/PVA/MgO was 55.21% and its drug release was 45%. This indicates that ZnO plays an effective role in the structure and performance of Ca/PVA composites. The SEM images of MgO composites show smoother surfaces compared to MgZnO composites. This may be one of the reasons for the increased EE% and drug release of MgZnO composites. The addition of ZnO to the composite structure can lead to the appearance of pores on the surface of the composite, increasing entrapment and drug release.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Botany and Plant Science, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: (F.S.); (K.K.)
| | - Nadia Mahmoudi Khatir
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
| | - Khadijeh Kiarostami
- Department of Botany and Plant Science, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
- Correspondence: (F.S.); (K.K.)
| |
Collapse
|
10
|
Maurya VK, Shakya A, Bashir K, Jan K, McClements DJ. Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Compr Rev Food Sci Food Saf 2023; 22:135-186. [PMID: 36468215 DOI: 10.1111/1541-4337.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/09/2022]
Abstract
Over the past few decades, vitamin D deficiency has been recognized as a serious global public health challenge. The World Health Organization has recommended fortification of foods with vitamin D, but this is often challenging because of its low water solubility, poor chemical stability, and low bioavailability. Studies have shown that these challenges can be overcome by encapsulating vitamin D within well-designed delivery systems containing nanoscale or microscale particles. The characteristics of these particles, such as their composition, size, structure, interfacial properties, and charge, can be controlled to attain desired functionality for specific applications. Recently, there has been great interest in the design, production, and application of vitamin-D loaded delivery systems. Many of the delivery systems reported in the literature are unsuitable for widespread application due to the complexity and high costs of the processing operations required to fabricate them, or because they are incompatible with food matrices. In this article, the concept of "fortification by design" is introduced, which involves a systematic approach to the design, production, and testing of colloidal delivery systems for the encapsulation and fortification of oil-soluble vitamins, using vitamin D as a model. Initially, the challenges associated with the incorporation of vitamin D into foods and beverages are reviewed. The fortification by design concept is then described, which involves several steps: (i) selection of appropriate vitamin D form; (ii) selection of appropriate food matrix; (iii) identification of appropriate delivery system; (iv) identification of appropriate production method; (vii) establishment of appropriate testing procedures; and (viii) system optimization.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
11
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
12
|
Zhang X, Song R, Liu X, Xu Y, Wei R. Fabrication of vitamin D3 nanoemulsions stabilized by Tween 80 and Span 80 as a composite surface-active surfactant: Characterization and stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rostamabadi MM, Falsafi SR, Nishinari K, Rostamabadi H. Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Crit Rev Food Sci Nutr 2022; 63:9937-9960. [PMID: 35587167 DOI: 10.1080/10408398.2022.2076065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.
Collapse
Affiliation(s)
- Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
- Food Hydrocolloid International Science and Technology, Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, China
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Taheri A, Kashaninejad M. Rheological properties for determining the interaction of soluble cress seed mucilage and β-lactoglobulin nanocomplexes under sucrose and lactose treatments. Food Chem 2022; 378:132133. [PMID: 35042116 DOI: 10.1016/j.foodchem.2022.132133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/11/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Protein-polysaccharide complexes are commonly applied in different food products. Their interaction and their functional properties that arise as a consequence of interactions are remarkably influenced by the presence of co-solutes in the system. In this study, general rheological properties and the aggregation behavior of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes were studied in the presence of sucrose (5-20% w/v) and lactose (5-20% w/v). The highest values of apparent viscosity and stability (zeta potential) in CSM-Blg complexes were measured when the medium contained 5% w/v lactose (10.00 Pa.s at 0.1 s-1, -25 ± 0.8 mV) and 20% w/v sucrose (12.89 Pa.s at 0.1 s-1, -35 ± 0.2 mV). The results of oscillatory experiments indicated that the gel-like feature of the complexes improved, parallel to a decrease in frequency, which highlighted the shear-induced gelation phenomenon. The thermal analysis test demonstrated that the thermal stability of Blg (70.5◦C), with its complexation to CSM, improved through denaturation. Also, the association of CSM-Blg (82◦C) nanocomplexes with lactose (96◦C) can enhance the thermal stability more effectively. Considering the widespread use of protein-polysaccharide complexes in diverse sugar-containing food formulations, the results of this study can contribute to the creation of new compounds with special techno-functional features.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdi Kashaninejad
- Department of Food Process Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Ye H, Wang J, Wang N, Wu D, Li H, Geng F. Ultrasound-assisted pH-shifting remodels egg-yolk low-density lipoprotein to enable construction of a stable aqueous solution of vitamin D3. Curr Res Food Sci 2022; 5:964-972. [PMID: 35721392 PMCID: PMC9198362 DOI: 10.1016/j.crfs.2022.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Egg-yolk low-density lipoprotein (LDL) has a natural liposome structure. Using ultrasound-assisted pH-shifting (pH 12), a naturally safe and stable aqueous solution of vitamin D3 (VD3) was constructed employing LDL as the carrier. Images from electron microscopy showed that pH-shifting remodeled LDL molecules, resulting in a dramatic reduction in particle size (∼50%) and an increase in specific surface area, which reduced the turbidity (27.7%) and provided new interfaces for VD3 loading. Fluorescence analyses showed that the binding of VD3 to LDL under pH-shifting was strong, involved quenching, and the binding constant was 6.19 × 104 M−1. Thermogravimetric analysis and Fourier transform-infrared spectroscopy showed that pH-shifting hydrolyzed the esters in LDL to fatty acid salts, and the maximum weight loss of LDL occurred from 381.9 °C to 457.0 °C. Ultrasonic treatment enhanced the binding of LDL and VD3 (binding constant increased to 2.56 × 107 M−1), reduced the particle size, and increased the ζ-potential of the complex between LDL and VD3, thereby resulting in the improvement of solution stability and storage stability of VD3. Ultrasound-assisted pH-shifting could remodel LDL to construct a stable aqueous solution of VD3, which showed the potential of LDL as a carrier for lipid-soluble components. pH-shifting remodels LDL and results in a reduction in particle size. Under pH-shifting, VD3 was bound stably to LDL with strong affinity. pH-shifting remodeled LDL can be used to encapsulate active ingredients. The binding of VD3 to LDL was enhanced by ultrasonic treatment.
Collapse
|