1
|
Wang Y, Wang Q, Shi X, Yang S, Chen J, Hong T, Ni H, Li T, Su W, Wang Y. Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration. Food Chem 2025; 472:142976. [PMID: 39848041 DOI: 10.1016/j.foodchem.2025.142976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential. In this study, oat starch (OS), oat β-glucan (OBG), and OS-OBG composite systems were prepared and evaluated for their effects on the processing characteristics and oil-repellent capacity of DF mushrooms. Results from 13C solid-state NMR and microstructures demonstrated that incorporating OBG into OS restricted the expansion of OS and reduced moisture migration, thereby forming continuous layers with enhanced cohesive strength. Confocal laser scanning microscopy (CLSM) and gas chromatography-mass spectrometry (GC-MS) further confirmed that OS-OBG decreased oil uptake, improved the nutritional quality and desirable aroma typically associated with fried mushrooms. This study offers scientific and economic guidance for the large-scale production of low-fat fried foods using oat starch-β-glucan system as coatings.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Qifeng Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Jianan Chen
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Tao Hong
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian Province, China
| | - Hui Ni
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian Province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China.
| |
Collapse
|
2
|
Liang S, Guo Q, Li J, Zhao P, Ge C, Li S, Xiao Z. A Novel Polysaccharide Purified from Tricholoma matsutake: Structural Characterization and In Vitro Immunological Activity. Foods 2025; 14:1031. [PMID: 40232050 PMCID: PMC11941717 DOI: 10.3390/foods14061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tricholoma matsutake, as a rare wild edible mushroom, is popular due to its unique flavor and taste, as well as high nutritional and economic value. Investigating the relationship between the complex structure and in vitro immunological activity of TMP-2a, a novel polysaccharide isolated from T. matsutake, was the aim of this study. The results showed that TMP-2a consisted of six monosaccharides, fucose, glucosamine hydrochloride, galactose, glucose, mannose, and glucuronic acid, with molar ratios of 8.8:0.6:23.4:48.1:15.1:4.0 and a molecular weight of 27,749 Da. Furthermore, TMP-2a was mainly composed of →6)-β-Glcp-(1→ with →3)-β-D-Glcp-(1→ forming the main chain, with a small amount of →2,6)-α-D-Manp-(1→ and →6)-α-D-Galp-(1→ structural units attached, and the branched chain was mainly composed of β-Glcp-(1→ or a small amount of α-L-Fucp-(1→ as a telosaccharide attached at the O-6 position of →3,6)-β-D-Glcp-(1→. TMP-2a enhanced the proliferation and phagocytic activity of mouse macrophage RAW264.7, as well as the secretion of NO and cytokines (TNF-α, IL-6, IL-1β) to a considerable degree, maybe attributable to its glucan structure and the elevated presence of (1→3)-β-D-Glcp glycosidic bonds. This study establishes a basis for the structural identification and comprehensive investigation of the functional activities of T. matsutake polysaccharides while also offering a theoretical framework for the creation of T. matsutake-related food products.
Collapse
Affiliation(s)
- Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Guo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Ping Zhao
- Yunnan Agricultural University, Kunming 650201, China;
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
| | - Shijun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (S.L.); (Q.G.); (C.G.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Fan Y, Zheng T, Liang S, Niu Y, Xiao Z, Fan J. Metabolic profiling of polysaccharides from Leccinum crocipodium (Letellier.) Watliag stem fermented by Bacteroides thetaiotaomicron and their immunomodulatory effects. Int J Biol Macromol 2025:142026. [PMID: 40086542 DOI: 10.1016/j.ijbiomac.2025.142026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Leccinum crocipodium (Letellier.) Watliag has attracted increasing attention for their biological activity. In this study, the active polysaccharide components (LCSP11 and LCSP22) extracted from the stem of L. crocipodium (Letellier.) Watliag were investigated to assess structural characterization of LCSP11 and LCSP22, their effects on the metabolic profile of Bacteroides thetaiotaomicron, and the immune activities of the resulting fermentation products. The results showed that LCSP11 and LCSP22 were a type of heteropolysaccharide and amorphous state with good stability, which displayed molecular aggregation in aqueous solutions. LCSP11 and LCSP22 were effectively fermented by Bacteroides thetaiotaomicron, producing a variety of microbial metabolites, including organic acids and derivatives (30.13 %), lipids and lipid-like molecules (21.33 %), and organoheterocyclic compounds (17.45 %). Multiple differential metabolites were identified in the fermentation products (F11 and F22), with significant accumulation of peptides, amino acids, nucleotides, steroids, and fatty acids, such as murabutide and L-cystine. KEGG pathway analysis identified six enriched metabolic pathways in F11 and five in F22, with the histidine metabolic pathway significantly enriched in F11. Furthermore, LCSP22 fermentation by Bacteroides thetaiotaomicron produced short-chain fatty acids, including acetic acid, propionic acid, isovaleric acid, and caproic acid. Cellular experiments suggested that these fermentation metabolites exhibited immunoactivating effects on RAW264.7 cells, significantly enhancing phagocytic capacity and promoting the secretion of nitric acid (NO) and cytokines, including TNF-α, IL-6, and IL-2. These results provide new insights into the immunomodulatory activities of polysaccharides from the stem of L. crocipodium (Letellier.) Watliag fermented by Bacteroides thetaiotaomicron and broadens the potential applications of this natural resource in food, nutrition, and biomedicine.
Collapse
Affiliation(s)
- Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Lu X, Zhao C, Wang X, Wang J, Du Y, Cui J, Zeng L, Zheng J. Arabinan branches in the RG-I region of citrus pectin aid acid-induced gelation. Carbohydr Polym 2024; 346:122668. [PMID: 39245519 DOI: 10.1016/j.carbpol.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyi Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Zhong RF, Liu CJ, Hao KX, Fan XD, Jiang JG. Polysaccharides from Flos Sophorae Immaturus ameliorates insulin resistance in IR-HepG2 cells by co-regulating signaling pathways of AMPK and IRS-1/PI3K/AKT. Int J Biol Macromol 2024; 280:136088. [PMID: 39366625 DOI: 10.1016/j.ijbiomac.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.
Collapse
Affiliation(s)
- Rui-Fang Zhong
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Liu JJ, Chen SK, Luo H, Wang Y, Song XX, He WW, Huang XJ, Yin JY, Nie SP. Insights into dynamic evolution of glucuronofucogalactoglucan from water extract of Agrocybe cylindracea during maturation. Carbohydr Polym 2024; 339:122235. [PMID: 38823906 DOI: 10.1016/j.carbpol.2024.122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
This study explored the physicochemical properties and structural characteristics of Agrocybe cylindracea polysaccharides at four developmental stages, as well as their dynamic evolution during maturation. Results showed that the polysaccharides from A. cylindracea water extract exhibited similar structural characteristics across all four maturity stages, despite a significant reduction in yields. Four water-soluble heteroglycans, including one high molecular weight (ACPM-Et50-I) and three low molecular weight (ACPM-Et50-II, ACPM-Et60, ACPM-Et80), were isolated from A. cylindracea at each maturity stage. ACPM-Et50-I was identified as branched heterogalactans, while ACPM-Et60 and ACPM-Et80 were branched heteroglucans. However, ACPM-Et50-II was characterized as a branched glucuronofucogalactoglucan at the tide-turning stage but a glucuronofucoglucogalactan at the pileus expansion stage due to the increase of its α-(1 → 6)-D-Galp. In general, although the structural skeletons of most A. cylindracea heteroglycans were similar during maturation as shown by their highly consistent glycosyl linkages, there were still differences in the distribution of some heteroglucans. This work has for the first time reported a glucuronofucogalactoglucan in A. cylindracea and its dynamic evolution during maturation, which may facilitate the potential application of A. cylindracea in food and biomedicine industries.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Hui Luo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yan Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
7
|
Liu JJ, Chen SK, Wang X, He WW, Song XX, Huang XJ, Yin JY, Nie SP. Changes of the Physicochemical Properties and Structural Characteristics of Alkali-Extracted Polysaccharides from Agrocybe cylindracea Across the Growth Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12810-12821. [PMID: 38778434 DOI: 10.1021/acs.jafc.4c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with β-1,3-d-Glcp and β-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as β-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
- Food Laboratory of Zhongyuan, Luo He 462300 Henan, China
| |
Collapse
|
8
|
Liu JJ, Hou YK, Wang X, He WW, Huang XJ, Yin JY, Nie SP. Dynamics of α-glucan from Agrocybe cylindracea water extract at different developmental stages and its structure characteristics. Int J Biol Macromol 2024; 269:131799. [PMID: 38677677 DOI: 10.1016/j.ijbiomac.2024.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of β particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 → 4)-Glcp and α-D-(1 → 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
9
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
10
|
Liu X, Wang Q, Wang J, Guo L, Chu Y, Ma C, Kang W. Structural characterization, chain conformation and immunomodulatory activity of a heteropolysaccharide from Inonotus hispidus. Int J Biol Macromol 2024; 260:129187. [PMID: 38262551 DOI: 10.1016/j.ijbiomac.2023.129187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
A new polysaccharide (IHP-1aa) was isolated from the fruiting body of Inonotus hispidus by hot water extraction, ethanol precipitation and column chromatography. The molecular weight of IHP-1aa was 26.9 kDa. Structural analysis showed that IHP-1aa consisted of glucose (Glc), galactose (Gal), fucose (Fuc), mannose (Man) and contained a certain amount of 3-O-methylgalactose (3-O-Me-Gal). The structure was mainly composed of →6)-α/β-D-Glcp-(1→, →6)-α-D-Galp-(1→, →6)-(3-O-Me)-α-D-Galp-(1→, →6)-α-D-Manp-(1 → and →2, 6)-α-D-Galp-(1 → as the main chain. Branched at O-2 with single β-L-Fucp-(1 → 6)-α-D-Galp-(1 → 6)-α-D-Glcp-(1 → as major the side chain. The results of SEM, XRD and AFM combined with Congo red indicated that IHP-1aa may be amorphous granular chain conformation. In addition, IHP-1aa stimulated macrophage function and improved phagocytic ability of RAW264.7, as well as promoted the secretion of NO, TNF-α and IL-6. IHP-1aa, a 3-O-methylgalactose-containing heteropolysaccharide, was isolated for the first time from the I. hispidus, which may be used as a potential immunomodulator in functional foods.
Collapse
Affiliation(s)
- Xiaopeng Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jie Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Lin Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Yanhai Chu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
Lv Y, Yang Y, Chen Y, Wang D, Lei Y, Pan M, Wang Z, Xiao W, Dai Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 261:129878. [PMID: 38309394 DOI: 10.1016/j.ijbiomac.2024.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-β-D-Glc and 1,6-β-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.
Collapse
Affiliation(s)
- Yaozhong Lv
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China
| | - Yajun Yang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Dongfan Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Yipeng Lei
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Mingyue Pan
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China.
| | - Yujie Dai
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Xing L, Kong F, Wang C, Li L, Peng S, Wang D, Li C. The amelioration of a purified Pleurotus abieticola polysaccharide on atherosclerosis in ApoE -/- mice. Food Funct 2024; 15:79-95. [PMID: 38031758 DOI: 10.1039/d3fo02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In this study, a polysaccharide known as PAPS2 was eluted from Pleurotus abieticola fruiting bodies using 0.1 M NaCl solutions. PAPS2 has a Mw of 19.64 kDa and its backbone is mainly composed of →6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →2,6)-α-D-Galp-(1→ residues, and its branches mainly end with β-D-Manp-(1→, which is attached at C2 of →2,6)-α-D-Galp-(1→. PAPS2 elicited several effects in high-fat diet (HFD)-fed ApoE-/- mice. It significantly reduced the body weight, liver index, and serum levels of total cholesterol (TC) and triglycerides (TGs), and it alleviated lipid accumulation in the aorta. Intestinal microflora analysis showed that PAPS2 suppressed the abundances of Adlercreutzia, Turicibacter, and Helicobacter and enriched that of Roseburia. It also influenced lipid metabolism, suggesting that it reduced the levels of TGs, lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and ceramide (Cer). Moreover, it suppressed oxidative response by increasing nuclear factor erythroid 2 (Nrf2)-related factor expression and activating the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the level of reactive oxygen species (ROS). Meanwhile, it showed anti-inflammatory effects partially related to the inhibition of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling induced by lipopolysaccharide (LPS) in RAW 264.7 cells, as well as in the aorta of HFD-fed ApoE-/- mice. This study provides experimental evidence of the auxiliary applicability of PAPS2 in atherosclerosis treatment.
Collapse
Affiliation(s)
- Lei Xing
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Chunxia Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Shichao Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Xue H, Gao Y, Wu L, Cai X, Liao J, Tan J. Research progress in extraction, purification, structure of fruit and vegetable polysaccharides and their interaction with anthocyanins/starch. Crit Rev Food Sci Nutr 2023; 65:1235-1260. [PMID: 38108271 DOI: 10.1080/10408398.2023.2291187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Fruits and vegetables contain polysaccharides, polyphenols, antioxidant enzymes, and various vitamins, etc. Fruits and vegetables polysaccharides (FVPs), as an important functional factor in health food, have various biological activities such as lowering blood sugar, blood lipids, blood pressure, inhibiting tumors, and delaying aging, etc. In addition, FVPs exhibit good physicochemical properties including low toxicity, biodegradability, biocompatibility. Increasing research has confirmed that FVPs could enhance the stability and biological activities of anthocyanins, affecting their bioavailability to improve food quality. Simultaneously, the addition of FVPs in natural starch suspension could improve the physicochemical properties of natural starch such as viscosity, gelling property, water binding capacity, and lotion stability. Hence, FVPs are widely used in the modification of natural anthocyanins/starch. A systematic review of the latest research progress and future development prospects of FVPs is very necessary to better understand them. This paper systematically reviews the latest progress in the extraction, purification, structure, and analysis techniques of FVPs. Moreover, the review also introduces the potential mechanisms, evaluation methods, and applications of the interaction between polysaccharides and anthocyanins/starch. The findings can provide important references for the further in-depth development and utilization of FVPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Liu Wu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, Yichun, Jiangxi, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|
14
|
Chen SK, Li YH, Wang X, Guo YQ, Song XX, Nie SP, Yin JY. Evaluation of the "Relative Ordered Structure of Hericium erinaceus Polysaccharide" from Different Origins: Based on Similarity and Dissimilarity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17886-17898. [PMID: 37955257 DOI: 10.1021/acs.jafc.3c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Polysaccharides are organic compounds widely distributed in nature, but structural order and disorder remain a formidable problem. In this study, based on the theoretical framework of the "relative ordered structure of polysaccharide" proposed in our previous work, the structural order of Hericium erinaceus polysaccharides from different regions was evaluated by FT-IR, methylation analysis, and 1H NMR spectroscopy combined with chemometric methods. The results of principal component analysis and heatmap cluster analysis revealed that 18-subfractions exhibit four different structural types with representative glycoside linkage types: fucogalactoglucan, glucofucogalactan, fucoglucan, and glucan. The main chain of heteroglucans often consists of β-(1 → 6)-Glcp, β-(1 → 4)-Glcp, and β-(1 → 3)-Glcp residues, which are predominantly substituted at the O-3 and O-6 positions. The main chain structure of heterogalactans is α-(1 → 6)-Galp residues, which may be replaced by Fucp and Galp residues at O-2. Overall, our findings demonstrate the validity of the "relative ordered structure of polysaccharide" in Hericium erectus polysaccharides and simplify the complexity of polysaccharide structures.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Hao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
15
|
Zhang S, Wang S, Fan YY, Liu WC, Zheng YN, Wang Z, Ren S, Li W. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol 2023; 249:126124. [PMID: 37543271 DOI: 10.1016/j.ijbiomac.2023.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Plant polysaccharides can be used as bioactive natural polymers that provide health benefits, however high molecular weight neutral polysaccharides have not shown good bioactivity. In this study, high molecular weight neutral arabinogalactan was isolated and structurally characterized to investigate it antioxidant activity against IEC-6 cells. In this study, a neutral polysaccharide (AG-40-I-II) was obtained from the roots of Larix gmelinii (Rupr.) Kuzen. and purified using ethanol fractional precipitation and purification on a DEAE-52 cellulose column and a Superose 12 gel filtration column. The structural characteristics of AG-40-I-II was detected by chemical and spectroscopic methods. The results showed that the average molecular weight of AG-40-I-II was 18.6 kDa, the main chain was composed of →4)-β-D-Gal-(1, → 4, 6)-β-D-Gal-(1 and →4)-β- D-Glc-(1, the side chain is composed of T-β-L-Araf(1 → 6). The effect of AG-40-I-II on H2O2-induced IEC-6 cell injury was determined by MTT method. Besides, AG-40-I-II could reduce the level of MDA and increase SOD activity on IEC-6 cells, which could significantly inhibit the production of ROS. Importantly, AG-40-I-II inhibited the splicing of XBP1 by IRE1α through the ERS pathway and reduced the cell apoptosis induced by H2O2. In summary, the results of this study indicate that AG-40-I-II, as a natural source of plant polysaccharides, has good antioxidant activity, and is expected to become a safe plant source of natural antioxidants, which has great potential in biomedicine potential.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Ying Fan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Northeast Normal University, Changchun 130024, China
| | - Wen-Cong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Zhang X, LaPointe G, Liu Y, Wang X, Xiao L, Zhao X, Li W. Comparative analysis of exopolysaccharide-producing Lactiplantibacillus plantarum with ropy and non-ropy phenotypes on the gel properties and protein conformation of fermented milk. Food Chem 2023; 420:136117. [PMID: 37084472 DOI: 10.1016/j.foodchem.2023.136117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
In this study, we evaluated the impact of Lactiplantibacillus plantarum (L. plantarum) with ropy and non-ropy phenotypes on gel structure and protein conformation of fermented milk. Ropy L. plantarum (T1 & CL80) secreted EPS with high molecular weight (1.41 × 106, 1.19 × 106 Da) and intrinsic viscosity (486.46, 316.32 mL/g), effectively enhances fermented milk viscosity and water holding capacity (WHC) (65.4%, 84.6%) by forming a dense gel structure. Non-ropy L. plantarum (CSK & S-1A) fermented milk gel's high surface hydrophobicity and free sulfhydryl content caused high hardness and low WHC. Raman spectroscopy combined with circular dichroism analysis showed that high levels of α-helix (29.32-30.31%) and random roil (23.06-25.36%) protein structures are the intrinsic factors that contribute to the difference among fermented milk gels of ropy and non-ropy strains. This study provides a basis for understanding the structural variability of fermented milk gels using ropy or non-ropy lactic acid bacteria.
Collapse
Affiliation(s)
- Xueliang Zhang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Gisele LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Canada
| | - Yang Liu
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaomeng Wang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
17
|
Rosdan Bushra SM, Nurul AA. Bioactive mushroom polysaccharides: The structure, characterization and biological functions. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
18
|
Ji X, Zhang S, Jin X, Yin C, Zhang Y, Guo X, Lin X. Systematic Comparison of Structural Characterization of Polysaccharides from Ziziphus Jujuba cv. Muzao. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020562. [PMID: 36677620 PMCID: PMC9866945 DOI: 10.3390/molecules28020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
To investigate the structural information differences of Ziziphus Jujuba cv. Muzao polysaccharides, ten samples were successfully extracted from aqueous and alkaline solutions, prepared via DEAE-Sepharose Fast Flow through different eluents and Sephacryl S-300 columns, and systematically analyzed. Their characteristics were studied and then compared using chemical testing, high-performance gel permeation chromatography (HPGPC), gas chromatography (GC), methylation analysis, and NMR spectroscopy. The data achieved demonstrated that different jujube polysaccharide fractions possessed different structural characteristics, and most of them belonged to pectic polysaccharides. Overall, the structural information difference of jujube polysaccharides was preliminarily illuminated, which could not only promote the potential application of Z. Jujuba cv. Muzao polysaccharides but also provide an effective way to analyze the structures of polysaccharides from other genera jujube fruit.
Collapse
Affiliation(s)
- Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuli Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou 571126, China
| | - Chuanxue Yin
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yang Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xudan Guo
- Hebei Higher Education Institute Applied Technology Research Center on TCM Development and Industrialization, Hebei TCM Formula Preparation Technology Innovation Center, Basic Medical College, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Correspondence: (X.G.); (X.L.)
| | - Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (X.G.); (X.L.)
| |
Collapse
|
19
|
Zhang N, Yang B, Mao K, Liu Y, Chitrakar B, Wang X, Sang Y. Comparison of structural characteristics and bioactivity of Tricholoma mongolicum Imai polysaccharides from five extraction methods. Front Nutr 2022; 9:962584. [PMID: 35990341 PMCID: PMC9389156 DOI: 10.3389/fnut.2022.962584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tricholoma mongolicum Imai is an edible fungus rich in various health-promoting compounds, such as polysaccharides, polypeptides, polyunsaturated fatty acids, etc., and among them, polysaccharides have gotten more attention in recent research trends. This study explored the extraction of polysaccharides from T. mongolicum Imai by five extraction methods, including hot water extraction, ultrasound extraction, enzyme-assisted extraction, 0.1 M HCL extraction, and 0.1 M NaOH extraction. The effects of these extraction methods on the yield, chemical structure, apparent morphology, and the antioxidant activities of Tricholoma mongolicum Imai polysaccharides (TMIPs) were investigated in this study. The data showed that 0.1 M NaOH extraction produced the highest extraction yield compared to the other extraction methods. The results of high-performance gel permeation chromatography (HPGPC) and scanning electron microscopy (SEM) showed that different extraction methods had significant effects on the molecular weight and morphology of TMIPs. The results of Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis showed that the extraction methods had no significant difference in functional groups, crystal structure, and thermal stability of TMIPs. The antioxidant activity of TMIPs extracted by ultrasound extraction was more prominent among the five polysaccharides, which might be related to a large number of low-molecular-weight components in molecular weight distribution.
Collapse
Affiliation(s)
- Nan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yuwei Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Wu H, Shu L, Liang T, Li Y, Liu Y, Zhong X, Xing L, Zeng W, Zhao R, Wang X. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4065-4078. [PMID: 34997594 DOI: 10.1002/jsfa.11755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lotus seedpods are an agricultural by-product of lotus (Nelumbo nucifera Gaertn.), which is widely cultivated in Southeast Asia and Australia. Most lotus seedpods are considered waste and are abandoned or incinerated, resulting in significant waste of resources and heavy environmental pollution. For recycling lotus seedpods, the extraction optimization, physicochemical properties, antioxidant activity, and α-glucosidase inhibitory effect of the polysaccharides contained therein were investigated in this study. RESULTS Hot water extraction of lotus seedpod polysaccharides was optimized by using a response surface methodology combined with a Box-Behnken design, with the optimum conditions being as follows: a liquid/solid ratio of 25.0 mL g-1 , an extraction temperature of 98.0 °C, and an extraction time of 138.0 min. Under these conditions, an experimental yield of 5.88 ± 0.06% was obtained. Physicochemical analyses suggested that lotus seedpod polysaccharides belong to acidic heteropolysaccharides and are principally composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid. The polysaccharides content has a broad molecular weight distribution (2.15 × 105 to 1.77 × 107 Da), an α-configuration, and mainly possesses smooth and sheet-like structures. Biological evaluations showed that the polysaccharides possessed good scavenging activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 1,1-diphenyl-2-picryl-hydrozyl, and hydroxyl radicals, and exerted an obvious inhibitory effect on α-glucosidase activity. Moreover, the polysaccharides content was determined to be a mixed-type noncompetitive inhibitor of α-glucosidase. CONCLUSION The results indicate that lotus seedpod polysaccharides have potential as natural antioxidants and hypoglycaemic substitutes. This study provides the theoretical bases for the exploitation and application of polysaccharides from lotus seedpod by-product resources. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huwei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Linping Shu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yuanxiang Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuli Zhong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Wei Zeng
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Rui Zhao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
21
|
Sun W, Zhang Y, Jia L. Polysaccharides from Agrocybe cylindracea residue alleviate type 2-diabetes-induced liver and colon injuries by p38 MAPK signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Wei M, Hu Y, Zou W, Li Y, Cao Y, Li S, Huang J, Xing L, Huang B, Wang X. Physicochemical property and antioxidant activity of polysaccharide from the seed cakes of Camellia oleifera Abel. Food Sci Nutr 2022; 10:1667-1682. [PMID: 35592294 PMCID: PMC9094452 DOI: 10.1002/fsn3.2789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Seed cake refers to the food by‐product of Camellia oleifera Abel, and its insufficient utilization can cause serious environment pollution and resource waste. This study aimed to investigate antioxidant activities of the polysaccharide from the seed cakes of Camellia oleifera Abel (COCP) in vitro and in vivo. The physicochemical property of COCP was also determined. COCP was characterized to be an acidic glycoprotein and mainly consisted of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), xylose (Xyl), mannose (Man), and galacturonic acid (Gal‐UA). COCP exhibited the polysaccharide's characteristic absorption in the Fourier transform infrared (FT‐IR) spectroscopy and showed as sheet‐like structures with a smooth surface under the scanning electron microscope (SEM). COCP exerted good scavenging activities on ABTS, DPPH, and OH radicals, with IC50 values of 2.94, 2.24, and 5.09 mg/ml, respectively. COCP treatment improved learning and memory abilities of D‐galactose‐induced aging mice. Significant decreases were found in the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine (CRE), blood urea nitrogen (BUN), creatine kinase (CK), and lactate dehydrogenase (LDH) in serum, as aging mice were supplemented with COCP. Aging mice showed obviously higher malondialdehyde (MDA) contents and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) activities in serum, brain, liver, kidney, and heart. The phenomena were noticeably reversed when mice were treated with COCP. Results indicated that COCP exerted excellent antioxidant activities in vitro and in vivo, which support its potential application as a natural antioxidant in food and medicine industries.
Collapse
Affiliation(s)
- Meidan Wei
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Yuxin Hu
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Wanshuang Zou
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Yanping Li
- Scientific Research Center Gannan Medical University Ganzhou China
| | - Yiyang Cao
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Shangtong Li
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jing Huang
- School of Basic Medical Sciences Gannan Medical University Ganzhou China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University Ganzhou China
| | - Bingjie Huang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Xiaoyin Wang
- School of Public Health and Health Management Gannan Medical University Ganzhou China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education Gannan Medical University Ganzhou China
| |
Collapse
|
23
|
Feng X, Du C, Wang C. Structural characterization of polysaccharide from yellow sweet potato and ameliorates DSS-induced mice colitis by active GPR41/MEK/ERK 1/2 signaling pathway. Int J Biol Macromol 2021; 192:278-288. [PMID: 34597702 DOI: 10.1016/j.ijbiomac.2021.09.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023]
Abstract
A polysaccharide isolated from yellow sweet potato (Ipomoea batatas (L.) Lam.) consisted of Rha, Ara, Gal, Glc, GalA, GlcA with the ratio of 1.00, 2.00, 3.63, 1.21, 1.17, 1.14, respectively. The molecular weight (Mw) of RSPP-A was determinted to be 2.51×106 kDa. Methylation, Nuclear Magnetic Resonance (NMR) (1D & 2D) and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that RSPP-A possessed six glycosidic bonds including α-L-Araf-(1→, →5)-α-L-Araf-(1→, →6)-β-D-Galp-(1→, β-D-Glcp-(1→, →3)-α-L-Araf-(1→, →3)-α-L-Rhap-(1→. In dextran sulfate sodium (DSS) induced mouse-acute-colitis model, the results indicated that RSPP-A could down- regulate the secretion of IL-6 and IL-1β, and promote the secretion of IL-10 in serum and colon, which also suggested that RSPP-A could enhance the contents of short chain fatty acids(SCFAs) and up-regulate the expression of G protein-coupled receptor (GPR41) in colon. Moreover, the expression of Mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK1/2) were up-regulated in colon after intervention with RSPP-A, result from above suggested that the anti-inflammatory activity might be related to the production of SCFA, activating GPR41/MEK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Chuan Du
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China
| | - Chunling Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, People's Republic of China.
| |
Collapse
|
24
|
Wang YX, Xin Y, Yin JY, Huang XJ, Wang JQ, Hu JL, Geng F, Nie SP. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem 2021; 368:130772. [PMID: 34399182 DOI: 10.1016/j.foodchem.2021.130772] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Macrolepiota albuminosa (Berk.) Pegler is abundant in active polysaccharides, but little is known about their structures and solution properties. In this study, water-extracted polysaccharides from M. albuminosa (MAWP) were purified into three fractions with structural heterogeneity, which was attributed to the diversity in molecular weight, monosaccharide composition and linkage patterns, further affecting their solution properties. Methylation and NMR analysis revealed MAWP-60p and MAWP-70 were a 3-O-methylated glucomannogalactan and a previously unreported glucomannogalactan, whereas MAWP-80 was elucidated as a branched galactoglucan. Besides, three fractions exhibited random coil conformation in aqueous solution, while MAWP-60p had the highest viscosity due to its highest molecular weight, mean square radius of gyration (Rg) and O-methyl group attached to the backbone. The molecular weight, monosaccharide composition and glycosidic linkages might be the major contributors to the flexibility, molecular size and stereochemistry of mushroom polysaccharide chains.
Collapse
Affiliation(s)
- Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yue Xin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|