1
|
Kang S, Zhang X, Shakeel U, Guo J, Zhu W, Makarov IS, Khan MR, Xiao H, Song J. Thermodynamic insights into the adsorption behaviors of amphoteric cellulose on charged silica surface. Int J Biol Macromol 2025; 310:143402. [PMID: 40274162 DOI: 10.1016/j.ijbiomac.2025.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
This study investigates amphoteric cellulose (AC) adsorption behaviors on the charged silica surface and the associated thermodynamics, a key area with broad industrial relevance. We synthesized a range of ACs with different degrees of substitution (DS) and examined their adsorption on silica using quartz crystal microbalance with dissipation monitoring (QCM-D). By applying Langmuir and Freundlich isotherm models, the maximum adsorption capacity and the interactions between ACs and silica were assessed, and then Van't Hoff equation was employed to estimate the thermodynamic parameters to unveil the mechanisms involved. In terms of ΔG°, ΔH°, and ΔS° associated with the adsorption of AC-0.23 at 298 K were assessed to be -6.68 kJ·mol-1, 18.98 kJ·mol-1, and 85.61 J·mol-1·K-1, respectively. Accordingly, those for AC-0.56 were - 11.21 kJ·mol-1, -10.53 kJ·mol-1, and 1.86 J·mol-1·K-1. These findings underscore the substantial influence of DS on adsorption behavior and thermodynamics of ACs due to the molecular flexibility playing a crucial role in adsorption. The low-charge-density polymer exhibits higher flexibility and entropy-driven adsorption, while the high-charge-density polymer shows stronger electrostatic interactions and more enthalpy-driven adsorption. Our research provides crucial insights into the adsorption behavior of ACs with varying DS, which is essential for enhancing their performance in industrial applications.
Collapse
Affiliation(s)
- Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Usama Shakeel
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Igor S Makarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Han ZW, Wang HM, Chen X, Wu YC, Hou QX. Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance. J Colloid Interface Sci 2025; 684:735-757. [PMID: 39818034 DOI: 10.1016/j.jcis.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites. Moreover, versatile and high tunable lignins can be valorized into functional materials, which are crucial building blocks in the fabrication of biomass-derived composites. Lignin's unique chemical structure, solvent resistance, anti-aging, and anti-ultraviolet functional properties make it highly potential for the fabrication of sustainable biobased barrier materials. This review systematically summarizes the progress in the fabrication and application of lignin-based functional composites, with a particular focus on barrier materials. First, the structural diversity of lignins from different sources and fractionation methods, and the structural modification strategies of lignins are briefly introduced. Then, the multiple barrier performances of lignin-based composites are listed, and the fabrication methods of different composites based on the polymer matrix systems are elaborated. In terms of diverse applications, this review highlights the multifaceted barrier properties of lignin-based composites in oxygen barrier, water vapor barrier, ultraviolet barrier, flame retardant and antibacterial applications. These functional barrier materials are widely used in food/pharmaceutical packaging, agricultural protection, construction, etc., providing an excellent option for sustainable materials with high barrier performance requirements. Finally, the main challenges faced by lignin-based barrier materials and the future directions are proposed.
Collapse
Affiliation(s)
- Zhong-Wei Han
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Han-Min Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Shanying International Holdings Co., Ltd., Maanshan 243021, China.
| | - Xu Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu-Chun Wu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing-Xi Hou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
You F, Wu Y, Gong X, Zheng Y. Multifunctional High-Concentration Polyepoxysuccinic Acid for Water-Based Drilling Fluids: Achieving Ultra-Low Friction and Filtration. Polymers (Basel) 2025; 17:751. [PMID: 40292587 PMCID: PMC11945648 DOI: 10.3390/polym17060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Water-based drilling fluids (WBDFs) cannot be effectively applied in long horizontal wells, such as shale gas wells, due to their high coefficient of friction (COF) and filtration loss that can strongly limit the efficient and environmentally friendly development of oil and gas resources. The objective of this study is the formulation of a WBDF characterized by ultra-low friction and ultra-low filtration properties, with a high-concentration polyepoxysuccinic acid (PESA) solution being utilized in the continuous phase. The research aims at the exploration of the feasibility of the method, the validation of the results, and the elucidation of the underlying mechanisms. The experimental results confirmed that the proposed WBDFs have excellent rheological properties, a COF of 0.016 and an API filtration of 0.4 mL. Microscopic analysis confirmed a direct and positive correlation between the macroscopic properties of the drilling fluids and their adsorption behavior at high PESA concentrations. This approach can be used to redesign traditional WBDFs and provide new possibilities to realize super performance in WBDFs that can be used to replace oil-based drilling fluids.
Collapse
Affiliation(s)
- Fuchang You
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, China; (F.Y.)
- School of Petroleum Engineering, National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China
| | - Yu Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, China; (F.Y.)
| | - Xingguang Gong
- Mud Service Company of CNPC Bohai Drilling Engineering Co., Ltd., Tianjin 300280, China;
| | - Yancheng Zheng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, China; (F.Y.)
| |
Collapse
|
4
|
Li W, Zhu L, Xu Y, Wang G, Xu T, Si C. Lignocellulose-Mediated Functionalization of Liquid Metals toward the Frontiers of Multifunctional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415761. [PMID: 39573839 DOI: 10.1002/adma.202415761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Indexed: 03/27/2025]
Abstract
Lignocellulose-mediated liquid metal (LM) composites, as emerging functional materials, show tremendous potential for a variety of applications. The abundant hydroxyl, carboxyl, and other polar groups in lignocellulose facilitate the formation of strong chemical bonds with LM surfaces, enhancing wettability and adhesion for improved interface compatibility. Beyond serving as a supportive matrix, lignocellulose can be tailored to optimize the microstructure of the composites, adapting them for diverse applications. This review comprehensively summarizes the fundamental principles and recent advancements in lignocellulose-mediated LM composites, highlighting the advantages of lignocellulose in composite fabrication, including facile synthesis, versatile interactions, and inherent functionalities. Key modulation strategies for LMs and innovative synthesis methods for functionalized lignocellulose composites are discussed. Furthermore, the roles and structure-performance relationships of these composites in electromagnetic shielding, flexible sensors, and energy storage devices are systematically summarized. Finally, the obstacles and prospective advancements pertaining to lignocellulose-mediated LM composites are thoroughly scrutinized and deliberated upon. This review is expected to provide basic guidance for researchers to boost the popularity of LMs in diverse applications and provide useful references for design strategies of state-of-the-art LMs.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ying Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
5
|
Jin S, Ren Y, Cai H, Chen B, Cheng Y, Liu W, Peng C, Fu Y, Lv C, Li H. One-pot green and sustainable process for the biotransformation of sophoricoside to genistein from Fructus Sophorae with magnetic cellulose spheres immobilized Aspergillus oryzae on cellulose using deep eutectic solvent assisted. Prep Biochem Biotechnol 2025:1-11. [PMID: 40013622 DOI: 10.1080/10826068.2025.2471892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study introduces a green, sustainable, and efficient approach for biotransforming sophoricoside into genistein from Fructus Sophorae using Aspergillus oryzae by removal of one molecule of glucose by β-glucosidase, an edible microorganism immobilized on magnetic cellulose and treated with deep eutectic solvents (DES). The goal was to enhance the biotransformation ratio by optimizing reaction conditions and selecting the most suitable DES. Various DESs, including natural deep eutectic solvents (NADES), were assessed for their ability to improve catalytic performance. Among them, the NADES system comprising choline chloride (CHCL) and glycerol (G) exhibited the highest catalytic efficiency (32.19 mg/g) under optimal conditions: temperature 33 °C, time 65 hours, pH 5.5, and a liquid-to-solid ratio of 45:1 (mL/g). This yield was 10.60 times greater than the genistein yield from untreated F. Sophorae. This combination notably increased cell membrane permeability, aiding the bioconversion process. The cellulose immobilization technique provided a stable and reusable microreactor and maintained microbial activity (80.37%) over 10 cycles. These findings validate the bioconversion method as a promising and sustainable strategy for genistein production from plant-derived sophoricoside, with potential applications in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Shuang Jin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yubin Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Hongyao Cai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Biqiong Chen
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yupeng Cheng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Cailiang Peng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Chen Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Huiling Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| |
Collapse
|
6
|
Siqueira MFF, Massaut KB, Thiel PR, Pires JB, Zavareze EDR, Gandra EA, da Silva WP, Fiorentini ÂM. Development and characterization of active cellulose acetate films with antifungal properties of Thymus vulgaris essential oil for cheese applications : Antifungal potential film with Thymus vulgaris essential oil against cheese fungi. Braz J Microbiol 2025:10.1007/s42770-025-01636-7. [PMID: 39954046 DOI: 10.1007/s42770-025-01636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025] Open
Abstract
The aim of this study was to evaluate the antifungal activity of Thymus vulgaris essential oil (TEO) against fungal isolates from cheese and its potential as an active component in cellulose acetate films for application on cheese, and to perform the characterization of the films. The cheese rind isolates were identified as Penicillium crustosum QCP1 and Aspergillus flavus QCA2. TEO exhibited significant in vitro inhibitory activity against all isolates, with inhibition zones exceeding 40.0 mm and minimum inhibitory concentrations (MICs) of 1.0 µL mL⁻¹ and 0.8 µL mL⁻¹ for P. crustosum QCP1 and A. flavus QCA2, respectively. Incorporating TEO into cellulose acetate films altered the film's physical properties, particularly morphology and elongation. The control film, composed solely of acetate, showed the lowest values for most properties evaluated, except for tensile strength (MPa) (38.89 ± 5.29). For water permeability and water vapor permeability, no significant differences were observed between the control film and the active film containing TEO at tenfold MFC concentrations for each isolate. In in vitro tests with the active film, P. crustosum QCP1 demonstrated higher sensitivity; however, the active film effectively inhibited the growth of both fungal isolates on cheese slices for 30 days. It was concluded that TEO has antifungal potential against isolates in more than one type of methodology and, when added to cellulose acetate film, was effective in controlling fungal mycelial growth, both in vitro and in situ, extending shelf life by up to 2 times, indicating a promising application as active packaging in cheeses.
Collapse
Affiliation(s)
| | - Khadija Bezerra Massaut
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Patrícia Radatz Thiel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Juliani Buchveitz Pires
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Yang ZC, Lin H, Liu GJ, Pan H, Zhu JL, Zhang XH, Gao F, Wang Z, Wang ZH. CB-MNCs@ CS/HEC/GP promote wound healing in aged murine pressure ulcer model. Stem Cell Res Ther 2025; 16:52. [PMID: 39920794 PMCID: PMC11806723 DOI: 10.1186/s13287-025-04177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing. METHODS Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses. RESULTS CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells. CONCLUSION CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.
Collapse
Affiliation(s)
- Zhi-Cheng Yang
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - He Lin
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Guo-Jun Liu
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Hui Pan
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun-Lu Zhu
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Hong Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, Shandong, China
| | - Feng Gao
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Zhong Wang
- Shandong Qilu Stem Cell Engineering Co., Ltd, Jinan, 250012, Shandong, China
| | - Zhi-Hao Wang
- Department of Geriatric Medicine & Laboratory of Gerontology and Anti-Aging Research, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Li Y, Wang Y, Huang Y. A Review on MXene/Nanocellulose Composites: Toward Wearable Multifunctional Electromagnetic Interference Shielding Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410283. [PMID: 39696902 DOI: 10.1002/smll.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Indexed: 12/20/2024]
Abstract
With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices. In this review, the electromagnetic wave (EMW) attenuation mechanism of EMI shielding materials is briefly introduced, and the latest progress of MXene/nanocellulose composites in wearable multifunctional EMI shielding applications is comprehensively reviewed, wherein the advantages and disadvantages of different preparation methods and various types of composites are summarized. Finally, the challenges and perspectives are discussed, regarding the performance improvement, the performance control mechanism, and the large-scale production of MXene/nanocellulose composites. This review can provide guidance on the design of flexible MXene/nanocellulose composites for multifunctional electromagnetic protection applications in the future intelligent wearable field.
Collapse
Affiliation(s)
- Yuhong Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Lu Q, Pal R. Steady Shear Rheology and Surface Activity of Polymer-Surfactant Mixtures. Polymers (Basel) 2025; 17:364. [PMID: 39940565 PMCID: PMC11820249 DOI: 10.3390/polym17030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Understanding the interactions between polymers and surfactants is critical for designing advanced fluid systems used in applications such as enhanced oil recovery, drilling, and chemical processing. This study examines the effects of five surfactants: two anionic (Stepanol WA-100 and Stepwet DF-95), one cationic (HTAB), one zwitterionic (Amphosol CG), and one non-ionic (Alfonic 1412-3 Ethoxylate), on the steady shear rheology and surface activity of two polymers, namely cationic hydroxyethyl cellulose based polymer (LR-400) and anionic polyacrylamide based polymer (Praestol 2540TR). The polymer-surfactant solutions behave as shear-thinning fluids and follow the power-law model. Anionic surfactants exhibit a strong effect on the rheology of cationic polymer LR-400 solution. The consistency index rises sharply with the increase in surfactant concentration. Also, the solutions become highly shear-thinning with the increase in surfactant concentration. The effects of other surfactants on the rheology of cationic polymer solution are small to modest. None of the surfactants investigated exhibit a strong influence on the rheology of anionic polymer Praestol 2540TR. Only weak to modest effects of surfactants are observed on the rheology of anionic polymers. The surface tension of the polymer-surfactant solution decreases with the increase in surfactant concentration. Zwitterionic surfactant Amphosol CG is found to be most effective in reducing the surface tension at a given concentration in ppm. This surfactant also raises the electrical conductivity of the solution to the largest extent. From the changes in slope of surface tension versus surfactant concentration plots, the approximate values of critical aggregation concentration (CAC) and polymer saturation point (PSP) are estimated.
Collapse
Affiliation(s)
| | - Rajinder Pal
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
10
|
Noor AA, Khan MA, Zhang Y, Lv K, Sun J, Liu C, Li MC. Modified natural polymers as additives in high-temperature drilling fluids: A review. Int J Biol Macromol 2025; 287:138556. [PMID: 39657881 DOI: 10.1016/j.ijbiomac.2024.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Drilling fluids are often referred to as the "blood" of the drilling process, as they play a crucial role in determining both the efficiency and safety of drilling operations. Natural polymers, derived from renewable sources, such as cellulose, lignin, chitosan, xanthan gum, and starch, offer inherent advantages such as sustainability, biodegradability, and environmentally-friendliness when used as additives in drilling fluids. However, the inherent properties of natural polymers are adversely affected by thermal degradation due to their low heat resistance under harsh drilling conditions, where temperatures can exceed 150 °C. To address these challenges, various modification techniques, including free radical polymerization, esterification, etherification, silanization, hydroxymethylation, and ionic crosslinking, have been employed. This paper provides an overview of recent advances in the application of modified natural polymers as additives in water-based drilling fluids (WBDFs) under high-temperature drilling conditions. It begins by discussing the degradation mechanisms of natural polymers at high temperatures, followed by a review of the techniques used for their modification. Subsequently, the application of modified natural polymers as rheological and fluid loss additives in high-temperature WBDFs is briefly presented. Finally, the challenges, environmental impacts, and future considerations for the use of modified polymers are outlined to guide future development of environmentally friendly, high-performance WBDFs.
Collapse
Affiliation(s)
- Abdullahi Ahmed Noor
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Department of Petroleum Engineering, NED University of Engineering & Technology, Pakistan
| | - Yaxuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
11
|
Ma Y, Hu Y, Yang X, Shang Q, Huang Q, Hu L, Jia P, Zhou Y. Fabrication, functionalization and applications of cellulose based aerogels: A review. Int J Biol Macromol 2025; 284:138114. [PMID: 39608549 DOI: 10.1016/j.ijbiomac.2024.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs). As a third-generation aerogels, NCBAs have the advantages of high porosity, large specific surface area, low density, low dielectric constant and high adsorption, which have many potential applications in adsorption, insulation, energy storage, electromagnetics, and biomedical fields. Here, the recent reported preparation technology of nano-cellulose and NCBAs were reviewed, the preparation methods of cellulose nanocrystals, cellulose nanofibers, and bacterial cellulose were highlighted. Furthermore, the research progresses of manufacturing and applications of functional cellulose hydrogels in the field of dye adsorption, oil adsorption, heavy metal ion adsorption, carbon dioxide adsorption, thermal insulation applications, energy storage, electromagnetic interference application, and biomedicine application were reported comprehensively. Further insights into the future research direction of NCBAs were provided.
Collapse
Affiliation(s)
- Yufeng Ma
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Xiao Yang
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China
| |
Collapse
|
12
|
Liu L, Zhang Y, Huang Y, Jiang T, Yu Q, Yang J, Yuan H. Characterization of a multifunctional enzyme from Trichoderma harzianum and its application in enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2025; 415:131701. [PMID: 39490601 DOI: 10.1016/j.biortech.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Efficient saccharification of lignocellulose to fermentable sugars is crucial for bioconversion, yet the process is often hindered by insufficient β-glucosidase, β-xylosidase, and α-L-arabinofuranosidase activities in enzyme cocktails from Trichoderma reesei. This study addresses this gap by identifying BX1, a multifunctional enzyme from the underexplored fungus Trichoderma harzianum EM0925, which demonstrates a triad of activities targeting hemicellulose-derived oligosaccharides preferentially. We used structural analysis, molecular docking, and mutation studies to elucidate the roles of specific residues (Asp389, Glu589, Gln185, Cys390, Tyr354, and Tyr526) in BX1's multifunctionality. The enzyme showed synergistic effects with cellulase and xylanase, leading to a 90.23% increase in fermentable sugar yields at 2% (w/v) solid substrate loads and a 22.14% improvement at 15% (w/v) loads when added to Celluclast 1.5L. These findings highlight BX1's potential to enhance lignocellulosic bioconversion efficiency and reduce associated costs, paving the way for more cost-effective saccharification processes and future enzyme engineering advancements.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaru Huang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tingting Jiang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qijun Yu
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Wang X, Yang Y, Zhou Z, Zhong Y, Qin M, Wang W, Li W, Tang B. Defective h-BNs-Supported Pd Nanoclusters: An Efficient Photocatalyst for Selective Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69125-69132. [PMID: 39655767 DOI: 10.1021/acsami.4c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
5-hydroxymethylfurfural (HMF) is one of the most promising biomass-based chemicals that is used to produce many kinds of important compounds. Especially, the selective conversion of HMF to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), an important chemical feedstock, has high industrial significance but is technically challenging. In this study, we present a high-performance photocatalyst for selective oxidation of HMF to HMFCA. By integrating an ultrasmall amount of palladium (Pd) nanoclusters (1.12‰ in weight) on defective hexagonal boron nitride nanosheets (Pd/defective h-BN nanosheets (dh-BNs)), outstanding photocatalytic performance can be achieved, resulting in up to a 95% HMF conversion ratio with an 82% HMFCA selectivity. The performance is considerably higher than that of pristine dh-BNs and Pd on defect-free h-BNs. More importantly, this Pd/dh-BNs catalyst maintains a high catalytic activity after eight cycles, demonstrating robust catalytic stability. Density functional theory calculations indicate that Pd/dh-BNs can lower the energy barrier for HMF oxidation and facilitate the desorption of HMFCA, which contributes to the high selectivity catalytic performance. This study not only introduces a promising photocatalyst for sustainable chemical transformations but can also provide valuable insights into the design of advanced photocatalytic material for biorefinery applications.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Zhiqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Yuling Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Miaomiao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University. Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
14
|
Nakamura T, Ishiyama T. Molecular Dynamics Study of Hydrogen Bond Structure and Tensile Strength for Hydrated Amorphous Cellulose. Biomacromolecules 2024; 25:7249-7259. [PMID: 39395038 DOI: 10.1021/acs.biomac.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Molecular dynamics (MD) simulations were conducted to investigate the hydrogen-bond (H-bond) structure and its impact on the tensile strength of hydrated amorphous cellulose. The study identifies a stable intramolecular H-bond between the hydroxyl group at position 3 and the ether oxygen at position 5 (OH3···O5). Intermolecularly, the hydroxyl groups at positions 2 (OH2) and 6 (OH6) form stable H-bonds. Young's modulus, maximum tensile strength, and corresponding strain were calculated as functions of moisture content, while the H-bond network, water cluster formation, and cellulose chain orientation during tensile simulations were analyzed to elucidate mechanical properties. The substitution effect of cellulose on Young's modulus is also examined, revealing that the substitution of OH3 for a hydrophobic group minimally affects Young's modulus, but substitutions at OH2 and OH6 significantly reduce tensile strength due to their roles as key intermolecular H-bond donor sites.
Collapse
Affiliation(s)
- Tomoka Nakamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
15
|
Khan MA, Li MC, Lv K, Sun J, Liu C, Liu X, Shen H, Dai L, Lalji SM. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr Polym 2024; 342:122355. [PMID: 39048218 DOI: 10.1016/j.carbpol.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.
Collapse
Affiliation(s)
- Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Shaine Mohammadali Lalji
- Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan
| |
Collapse
|
16
|
Xu L, Li Y, Fu J, Shi L, Li C, Ma R. Advances in Functional Cellulose Hydrogels as Electrolytes for Flexible Zinc-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1645. [PMID: 39452981 PMCID: PMC11510068 DOI: 10.3390/nano14201645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Zinc-ion batteries (ZIBs) emerge as leading candidates for a flexible energy storage system, distinguished by high capacity, affordability, and inherent safety. The integration of hydrogel electrolytes, particularly those with saturated aqueous solvents, has significantly enhanced the electrochemical performance of ZIBs while preserving their essential flexibility. Nonetheless, challenges in electrochemical performance under specific conditions highlight the nascent stage of this technology, with numerous technical hurdles awaiting resolution. Addressing these challenges, recent investigations have leveraged the unique properties of cellulose hydrogel-namely, its exceptional toughness, tensile strength, extreme temperature resilience, stimulus responsiveness, and self-healing capabilities-to innovate multifunctional flexible zinc-based batteries. This paper conducts a comprehensive review of the physicochemical attributes of cellulose hydrogel electrolytes within ZIBs. We thoroughly analyze their performance under diverse environmental conditions, offering insights into the current landscape and their future potential. By examining these aspects, we aim to underscore the developmental prospects and the challenges that lie ahead for hydrogel electrolytes in ZIBs, paving the way for further advancement in this promising field.
Collapse
Affiliation(s)
| | | | | | | | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
17
|
Zupanc A, Petkovšek M, Zdovc B, Žagar E, Zupanc M. Degradation of hydroxypropyl methylcellulose (HPMC) by acoustic and hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 109:107020. [PMID: 39126990 PMCID: PMC11365383 DOI: 10.1016/j.ultsonch.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The present study aims to investigate the degradation of HPMC on a laboratory scale by acoustic and hydrodynamic cavitation. The effects of temperature and the addition of an external oxidizing agent on the effectiveness of HPMC degradation were systematically investigated by SEC/MALS-RI, FTIR and 1H NMR. The results of the experiments without cavitation show that an external oxidizing agent alone reduces the weight-average molar mass at 60 °C in 30 min for 45.1 % (from 335 to 184 kg mol-1). However, the weight-average molar mass of HPMC decreased significantly more in the cavitation treatment, for 98.8 % (from 335 to 4 kg mol-1) in 30 min at optimal operating conditions of hydrodynamic cavitation (i.e. addition of external oxidant and 60 °C) with a concomitant narrowing of the molar mass distribution, as shown by the dispersity value, which decreased from 2.24 to 1.31. Compared to acoustic cavitation, hydrodynamic cavitation also proved to be more energy efficient. The FTIR spectra of the cavitated HPMC samples without the addition of H2O2 show negligible oxidation of the hydroxyl groups and the glycosidic bonds, confirming that mechanical effects predominate in HPMC degradation in these cases. In contrast, when H2O2 was added, FTIR and 1H NMR show typical signals for cellulose oxidation products, especially when the experiments were performed at 60 °C, confirming that chemical as well as mechanical effects are responsible for the extensive HPMC degradation in these cases. Since treatment methods that lead to lower molar masses and narrower molar mass distributions of the polymers are lacking or require longer treatment times (e.g. 24 h), mechanochemical treatment methods such as cavitation have great potential, as they enable faster polymer degradation (in our case 30 min) through a combination of mechanical and/or chemical degradation mechanisms.
Collapse
Affiliation(s)
- Andraž Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana SI-1000 Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana SI-1000 Slovenia
| | - Blaž Zdovc
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1000 Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1000 Slovenia.
| | - Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana SI-1000 Slovenia.
| |
Collapse
|
18
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Pourrafsanjani MH, Taghavi R, Hasanzadeh A, Rostamnia S. Green stabilization of silver nanoparticles over the surface of biocompatible Fe 3O 4@CMC for bactericidal applications. Int J Biol Macromol 2024; 277:134227. [PMID: 39074708 DOI: 10.1016/j.ijbiomac.2024.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The emergence of antimicrobial resistance in bacteria, especially in agents associated with urinary tract infections (UTIs), has initiated an exciting effort to develop biocompatible nanoparticles to confront their threat. Designing simple, cheap, biocompatible, and efficient nanomaterials as bactericidal agents seems to be a judicious response to this problem. Here, a solvothermal method was hired for the one-pot preparation of the cellulose gum (carboxymethyl cellulose, CMC) magnetic composite to prepare a cost-effective, efficient, and biocompatible support for the plant-based stabilization of the silver NPs. The green stabilization of the Ag NPs is performed using Euphorbia plant extract with high efficiency. Various characterization methods, including FT-IR, XRD, SEM, EDS, TEM, and VSM were used to study the composition and properties of Fe3O4@CMC/AgNPs. The composite shows well integrity and monodispersity with a mean diameter of <300 nm, indicating its potential for bio-related application. The CMC functionalities of the proposed material facilitated the stabilization of the Ag NPs, resulting in their monodispersity and enhanced performance. The manufactured composite was used as an antibacterial agent for the removal of UTIs agents, collected from 200 hospitalized patients with acute coronary syndrome, which showed promising results. This study showed that the concentration of the Ag NPs has a direct relationship with the antibacterial properties of the composite.
Collapse
Affiliation(s)
- Mojgan Hajahmadi Pourrafsanjani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
20
|
Shi H, Yu Y, Wang Y, Ning Z, Luo Z. Effect of Ionic Liquids with Different Structures on Rheological Properties of Water-Based Drilling Fluids and Mechanism Research at Ultra-High Temperatures. Molecules 2024; 29:4206. [PMID: 39275054 PMCID: PMC11397373 DOI: 10.3390/molecules29174206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
The rheology control of water-based drilling fluids at ultra-high temperatures has been one of the major challenges in deep or ultra-deep resource exploration. In this paper, the effects of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) (ILA), 1-ethyl-3-methylimidazolium tetrafluoroborate (ILB) and N-methyl, butylpyrrolidinium bis(trifluoromethanesulfonimide) (ILC) on the rheological properties and filtration loss of polymer-based slurries at ultra-high temperatures (200 °C and 240 °C) are investigated by the American Petroleum Institute (API) standards. The results show that ionic liquids with different structures could improve the high-temperature rheological properties of polymer-based drilling fluids. The rheological parameter value (YP/PV) of the polymer-based slurry formulated with ILC is slightly higher than that with ILA at the same concentration, while the YP/PV value of the polymer-based slurry with ILA is slightly higher than that with ILB, which is consistent with the TGA thermal stability of ILA, ILB, and ILC; the thermal stability of ILC with pyrrolidine cations is higher than that of ILA with imidazole cations, and the thermal stability of ILA with bis(trifluorosulfonyl)amide anions is higher than that of ILB with tetrafluoroborate anions. Cation interlayer exchange between organic cation and sodium montmorillonite can improve the rheological properties of water-based drilling fluids. And meantime, the S=O bond in bis(trifluorosulfonyl)amide ions and the hydroxyl group of sodium montmorillonite may form hydrogen bonds, which also may increase the rheological properties of water-based drilling fluids. ILA, ILB, and ILC cannot reduce the filtration loss of polymer-based drilling fluids at ultra-high temperatures.
Collapse
Affiliation(s)
- Haoxian Shi
- Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Yanjiang Yu
- Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Yingsheng Wang
- Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Zijie Ning
- Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Zhihua Luo
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
21
|
Zhang X, Yang G, Jiang Q, Fan J, Wang S, Chen J. Carboxymethyl cellulose-based photothermal film: A sustainable packaging with high barrier and tensile strength for food long-term antibacterial protection. Int J Biol Macromol 2024; 276:133910. [PMID: 39029837 DOI: 10.1016/j.ijbiomac.2024.133910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Traditional packaging materials feed the growing global food protection. However, these packaging materials are not conducive to environment and have not the ability to kill bacteria. Herein, a green and simple strategy is reported for food packaging protection and long-term antibacterial using carboxymethylcellulose-based photothermal film (CMC@CuS NPs/PVA) that consists of carboxymethyl cellulose (CMC) immobilized copper sulfide nanoparticles (CuS NPs) and polyvinyl alcohol (PVA). With satisfied oxygen transmittance (0.03 cc/m2/day) and water vapor transmittance (163.3 g/m2/day), the tensile strength, tear strength and burst strength reached to 3401.2 N/m, 845.7 mN and 363.6 kPa, respectively, which could lift 4.5 L of water. The composite film had excellent photothermal conversion efficiency and photothermal stability. Under the irradiation of near infrared (NIR), it can rapidly heated up to 197 °C within 25 s. The antibacterial analysis showed that the inhibition rate of composite film against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) could all reach >99 %. Furthermore, the synthesized CuS NPs was well immobilized and the residual rate of copper kept 98.7 % after 10 days. Noticeably, the composite film can preserve freshness of strawberries for up to 6 days. Therefore, the composite film has potential application for food antibacterial protection.
Collapse
Affiliation(s)
- Xv Zhang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Guihua Yang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Qimeng Jiang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Jiaming Fan
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Shaoguang Wang
- Asia Symbol (Shan Dong) Pulp and Paper Co., Ltd., Rizhao 276800, China
| | - Jiachuan Chen
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
22
|
Ye W, Meng L, Xi J, Bian H, Xu Z, Xiao H, Zhang L, Wu W. Superelastic carbon aerogels with anisotropic and hierarchically-enhanced cellular structure for wearable piezoresistive sensors. J Colloid Interface Sci 2024; 666:529-539. [PMID: 38613975 DOI: 10.1016/j.jcis.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.
Collapse
Affiliation(s)
- Wenjie Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), College of Electronic and Optical Engineering & College of Microelectronic, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Guan Y, Yan L, Liu H, Xu T, Chen J, Xu J, Dai L, Si C. Cellulose-derived raw materials towards advanced functional transparent papers. Carbohydr Polym 2024; 336:122109. [PMID: 38670767 DOI: 10.1016/j.carbpol.2024.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Pulp and paper are gradually transforming from a traditional industry into a new green strategic industry. In parallel, cellulose-derived transparent paper is gaining ground for the development of advanced functional materials for light management with eco-friendly, high performance, and multifunctionality. This review focuses on methods and processes for the preparation of cellulose-derived transparent papers, highlighting the characterization of raw materials linked to responses to different properties, such as optical and mechanical properties. The applications in electronic devices, energy conversion and storage, and eco-friendly packaging are also highlighted with the objective to showcase the untapped potential of cellulose-derived transparent paper, challenging the prevailing notion that paper is merely a daily life product. Finally, the challenges and propose future directions for the development of cellulose-derived transparent paper are identified.
Collapse
Affiliation(s)
- Yanhua Guan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinghuan Chen
- National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co. Ltd., 100102 Beijing, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China; Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
24
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Li J, Wang G, Sui W, Parvez AM, Xu T, Si C, Hu J. Carbon-based single-atom catalysts derived from biomass: Fabrication and application. Adv Colloid Interface Sci 2024; 329:103176. [PMID: 38761603 DOI: 10.1016/j.cis.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Single-atom catalysts (SACs) with active metals dispersed atomically have shown great potential in heterogeneous catalysis due to the high atomic utilization and superior selectivity/stability. Synthesis of SACs using carbon-neutral biomass and its components as the feedstocks provides a promising strategy to realize the sustainable and cost-effective SACs preparation as well as the valorization of underused biomass resources. Herein, we begin by describing the general background and status quo of carbon-based SACs derived from biomass. A detailed enumeration of the common biomass feedstocks (e.g., lignin, cellulose, chitosan, etc.) for the SACs preparation is then offered. The interactions between metal atoms and biomass-derived carbon carriers are summarized to give general rules on how to stabilize the atomic metal centers and rationalize porous carbon structures. Furthermore, the widespread adoption of catalysts in diverse domains (e.g., chemocatalysis, electrocatalysis and photocatalysis, etc.) is comprehensively introduced. The structure-property relationships and the underlying catalytic mechanisms are also addressed, including the influences of metal sites on the activity and stability, and the impact of the unique structure of single-atom centers modulated by metal/biomass feedstocks interactions on catalytic activity and selectivity. Finally, we end this review with a look into the remaining challenges and future perspectives of biomass-based SACs. We expect to shed some light on the forthcoming research of carbon-based SACs derived from biomass, manifestly stimulating the development in this emerging research area.
Collapse
Affiliation(s)
- Junkai Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ashak Mahmud Parvez
- Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Helmholtz Institute Freiberg for Resource Technology (HIF), Chemnitzer Str. 40 | 09599 Freiberg, Germany
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
26
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
28
|
Khan M. Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects. Gels 2024; 10:338. [PMID: 38786255 PMCID: PMC11121287 DOI: 10.3390/gels10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; ; Tel.: +966-0138601671
- Interdisciplinary Research Center for Hydrogen Technologies and Energy Storage (IRC-HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
29
|
Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH. A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system. Int J Biol Macromol 2024; 264:130525. [PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
Collapse
Affiliation(s)
- Jingwei Gong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Leilei Hou
- Department of Catalytic Chemistry and Engineering, State key-laboratory of fine chemicals, Dalian University of Technology, Dalian 116034, People's Republic of China
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Nguyen Dai Hai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, Department of Biomaterials & Bioengineering, Ho Chi Minh City, Viet Nam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
30
|
Wang S, Li X, Li Q, Sun Z, Qin M. Preparation and characterization of a novel high barrier mulching film with tunicate cellulose nanocrystals/sodium alginate/alkali lignin. Int J Biol Macromol 2024; 262:129588. [PMID: 38296668 DOI: 10.1016/j.ijbiomac.2024.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In this study, the base film (CSL) was prepared by blending tunicate cellulose nanocrystals (TCNCs) extracted from tunicate shells, with sodium alginate (SA) and alkali lignin (AL). Then, the mulching film (CSL-WK) was prepared using water-borne polyurethane (WPU) as binder to install low-energy Kaolin on the surface of CSL film. The influences of composition with different concentrations on mechanical properties were studied. The tensile strength and elongation at break of CSL-WK film could reach 86.58 MPa and 50.49 %, respectively. The mulching films were characterized by degradability test, SEM, FTIR, and TGA. TCNCs had good compatibility with SA and AL, and a rough structure was formed on the surface of the film to improve the hydrophobicity. The barrier properties, including ultraviolet resistance, water contact angle, water vapor permeability, water retention, and flame retardancy, were tested. The results showed that CSL-WK films could block 97 % of ultraviolet light, reduce about 25 % of soil water loss, and self-extinguish within 7 s of open flame ignition. Note that the secondary spraying method significantly improved the barrier property of films. This study lays a foundation for the preparation of ecologically friendly, biodegradable, and high barrier mulching film, and expands the application of marine resources.
Collapse
Affiliation(s)
- Shujie Wang
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Xiang Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Qing Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China.
| | - Menghua Qin
- College of Qilu Normal University, Jinan 250200, China
| |
Collapse
|
31
|
Xiao D, Jiang H, Zhou Y, Imran A, Zhao H, Bi Y. Preparation of smart magnetic fluids and application in sewage treatment: Copper adsorption, kinetic and isotherm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120142. [PMID: 38306855 DOI: 10.1016/j.jenvman.2024.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
The effective removal of heavy metal ions from sewage remains a critical issue, and applying the operability of magnetic materials to large volume wastewater treatment has been a significant challenge. In this paper, metal ions adsorption induced aggregation strategy is proposed to solve this contradiction. The intelligent magnetic fluid designed in this study is a well-dispersed fluid state when treating sewage, and can efficiently adsorb heavy metal ions in wastewater with high adsorption capacity and ultra-fast adsorption kinetics. More importantly, after saturation of adsorption, the magnetic fluid will transform from a well-dispersed fluid state to an agglomeration state which is easy to precipitate and separate via external magnetic field. In a simple and effective way, the particles size of magnetic nanoparticles was precisely controlled by cellulose derivatives modification to obtain a stable magnetic fluid in water. The Freundlich model best described Cu2+ adsorption on magnetite nanoparticles, the correlation coefficients from the Cu2+ adsorption on the two magnetic fluids are 0.9554 and 0.9336, n are 1.868 and 2.117, revealing a favorable adsorption of Cu2+ onto magnetic fluids. The pseudo second-order model fitted the adsorption kinetic data better, the qe are 0.1948 and 0.1315 mmol/g and the R2 are 0.9999, indicating that the adsorption of Cu2+ onto the magnetic fluid was dominated by chemisorption. Moreover, the removal rate of Cu2+ in tap water and lake water was more than 97.1%, and the removal rate of large volume sewage was 81.7%. The synthetic magnetic fluid has high adsorption capacity, ultra-fast adsorption kinetics, reusability and easy separation, indicating its potential application for the removal of heavy metal ions from large-volume sewage.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing, 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunlin Zhou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Alhassan Imran
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyan Zhao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 210009, China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, China.
| |
Collapse
|
32
|
Sun C, Ma H, Yu F, Xia S. Preparation and evaluation of hydroxyethyl cellulose-based functional polymer for highly efficient utilization of heavy oil under the harsh reservoir environments. Int J Biol Macromol 2024; 259:128972. [PMID: 38151086 DOI: 10.1016/j.ijbiomac.2023.128972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Emulsification viscosity reduction and subsequent demulsification are effective strategies to improve the utilization rate of heavy oil. However, traditional surfactants are challenged by unsatisfactory salt tolerance, inadequate stability in emulsification, difficulty in demulsification and pollution problem of oily wastewater discharge. To realize the feasibility and environment-friendliness of heavy oil utilization in the harsh reservoir environments, we designed a functional polymer and conducted a comprehensive evaluation using heavy oil samples from Chenping oil well in Shengli Oilfield. It was synthesized by grafting two hydrophobic monomers, lauryl methacrylate (LMA) and N, N-Diethylaminomethyl methacrylate (DEAEMA), onto the hydrophilia hydroxyethyl cellulose (HEC) by free-radical polymerization. The viscosity reduction rate can reach 99.57 % even under the high salinity of 26,050 mg/L. The stable oil-in-water (O/W) emulsion can be maintained for >48 h, satisfying the actual requirements for heavy oil recovery. Moreover, the emulsion can be completely demulsified in a CO2 atmosphere within 30 min, suggesting its satisfactory demulsification performance. Our study achieved the one-step transformation of heavy oil emulsion between emulsification and demulsification, which provides a green bio-based material and an ingenious strategy for enhanced oil recovery and other chemical engineering applications including oil/water separation.
Collapse
Affiliation(s)
- Caixia Sun
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hao Ma
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fuce Yu
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuqian Xia
- China Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
33
|
Zheng W, Fan L, Zhou J, Meng Z, Ye D, Xu J. Flexible, ultrathin and integrated nanopaper supercapacitor based on cationic bacterial cellulose. Int J Biol Macromol 2024; 256:128497. [PMID: 38035966 DOI: 10.1016/j.ijbiomac.2023.128497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Cellulose composite nanopaper is extensively employed in flexible energy storage systems owing to their light weight, good flexibility and high specific surface area. Nevertheless, achieving flexible and ultrathin nanopaper supercapacitors with excellent electrochemical performance remains a challenge. Herein, surface cationization of bacterial cellulose (BC) nanofibers was conducted using 2,3-epoxypropyltrimethylammonium chloride (EPTMAC). Anion-doped polypyrrole (PPy) was incorporated onto the surface of the cationic bacterial cellulose (BCE) nanofibers by an interfacial electrostatic self-assembly process. The obtained PPy@BCE electrode exhibited excellent electrochemical performance, including an areal capacitance of 3988 mF cm-2 at 1.0 mA cm-2 and a capacitance retention of 97 % after 10,000 cycles. A laminated paper-forming strategy was adopted to design and fabricate all-in-one integrated flexible supercapacitors (IFSCs) using PPy@BCE nanopaper as electrodes and BC nanopaper as a separator. The IFSCs showed superior areal capacitance (3669 mF cm-2 at 1 mA cm-2), high energy density (193.7 μWh cm-2 at a power density of 827.3 μW cm-2), and outstanding mechanical flexibility (with no significant capacitance attenuation after repeatedly bending for 1000 times). The present strategy paves a way for the large-scale production of paper-based energy storage devices.
Collapse
Affiliation(s)
- Wenfeng Zheng
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Lingling Fan
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| | - Jiangang Zhou
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Zhenghua Meng
- Wuhan University of Technology, School of Automotive Engineering, 430072 Wuhan, China
| | - Dezhan Ye
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Jie Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
34
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
35
|
Yang H, Zheng H, Duan Y, Xu T, Xie H, Du H, Si C. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int J Biol Macromol 2023; 253:126903. [PMID: 37714239 DOI: 10.1016/j.ijbiomac.2023.126903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.
Collapse
Affiliation(s)
- Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongjun Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yaxin Duan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxiang Xie
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
36
|
Ali I, Ahmad M, Ridha S, Iferobia CC, Lashari N. Enhancing drilling mud performance through CMITS-modified formulations: rheological insights and performance optimization. RSC Adv 2023; 13:32904-32917. [PMID: 38025871 PMCID: PMC10630931 DOI: 10.1039/d3ra06008j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In the context of deep well drilling, the addition of functionalized additives into mud systems becomes imperative due to the adverse impact of elevated borehole temperatures and salts on conventional additives, causing them to compromise their intrinsic functionalities. Numerous biomaterials have undergone modifications and have been evaluated in drilling muds. However, the addition of dually modified tapioca starch in bentonite-free mud systems remains a notable gap within the existing literature. This study aims to examine the performance of dually modified carboxymethyl irradiated tapioca starch (CMITS) under high temperature and salt-containing conditions employing central composite design approach; the study evaluates the modified starch's impact on mud rheology, thermal stability, and salt resistance. The findings indicated that higher DS (0.66) and CMITS concentrations (8 ppb) improved plastic viscosity (PV), yield point (YP) and gel strength (GS), while increased salt and temperature decreased it, demonstrating the complex interplay of these factors on mud rheology. The developed empirical models suggested that DS 0.66 starch addition enhanced rheology, especially at elevated temperatures, demonstrating improved borehole cleaning potential, supported by quadratic model performance indicators in line with American Petroleum Institute (API) ranges. The optimized samples showed a non-Newtonian behavior, and Power-law model fitting yields promising results for improved cuttings transportation with starch additives.
Collapse
Affiliation(s)
- Imtiaz Ali
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
- Department of Petroleum and Gas Engineering, BUITEMS Pakistan
| | - Maqsood Ahmad
- Department of Geosciences, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Syahrir Ridha
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Cajetan Chimezie Iferobia
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Najeebullah Lashari
- Department of Petroleum and Gas Engineering, Dawood University of Engineering & Technology M. A. Jinnah Road Karachi 74800 Pakistan
| |
Collapse
|
37
|
Khalid MY, Arif ZU, Noroozi R, Hossain M, Ramakrishna S, Umer R. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications. Int J Biol Macromol 2023; 251:126287. [PMID: 37573913 DOI: 10.1016/j.ijbiomac.2023.126287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
Collapse
Affiliation(s)
- Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, 51041, Pakistan.
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Xu J, Zhou Z, Zhang X, Xu Y. A Simple and Effective Method to Enhance the Mechanical Properties, Dimensional Stability, and Mildew Resistance of Bamboo Scrimber. Polymers (Basel) 2023; 15:4162. [PMID: 37896412 PMCID: PMC10610577 DOI: 10.3390/polym15204162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Given the increasingly prominent contradiction between the supply of and demand for wood, the abundant resource of bamboo can be a good substitute. Bamboo scrimber can effectively improve the utilization rate of bamboo and has good mechanical properties. However, bamboo scrimber has the problem of poor mildew resistance, and does not meet the requirements for outdoor applications. In this study, in order to further improve the mildew resistance and mechanical properties of bamboo scrimber, alkali treatment was used to remove some nutrients from the bamboo bundles and change the pH of the bamboo scrimber. The results showed that nutrients such as hemicellulose, lignin, starch, and sugar were notably removed from bamboo bundles, and the pH of bamboo was slightly alkaline. The anti-mildew effect was significantly enhanced, which could allow use in outdoor environments, and the mechanical properties and dimensional stability were also improved. Among them, TB6 bamboo scrimber showed comprehensively excellent properties. The infection time in the laboratory mildew test increased from 3 days to more than 30 days, and the infection time in the outdoor mildew resistance test increased from 1 week to more than 8 weeks; the static bending intensity of TB6 increased by 62.6% to 150 MPa, and the bending modulus increased by 71.7% to 14.2 GPa; the change rate of water absorption thickness was reduced to 0.58%. This modification method effectively improved the mildew resistance of bamboo scrimber, while maintaining high mechanical strength, and provides a new method for the outdoor application of bamboo scrimber.
Collapse
Affiliation(s)
- Jiayu Xu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Hangzhou 311300, China
| | - Zhezhe Zhou
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100107, China
| | - Xiaochun Zhang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Hangzhou 311300, China
| | - Yantao Xu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Hangzhou 311300, China
| |
Collapse
|
39
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
40
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
41
|
Pérez-Silva I, Canales-Feliciano GD, Rodríguez JA, Mendoza-Huizar LH, Pérez-Estrada S, Ibarra IS, Páez-Hernández ME. The Evaluation of Cellulose Acetate Capsules Functionalized for the Removal of Cd(II). Polymers (Basel) 2023; 15:3917. [PMID: 37835966 PMCID: PMC10575433 DOI: 10.3390/polym15193917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cellulose acetate is derived from cellulose and has the characteristics of biodegradability and reusability. So, it has been used for the elimination of toxic compounds capable of producing different diseases, such as cadmium, that result from human and industrial activity. For this reason, capsules functionalized with Cyanex 923 were prepared and characterized by FTIR spectroscopy, Energy Dispersive X-ray Spectroscopy (EDX), and SEM. The functionalized capsules were used for removing and recovering Cd(II) by modifying variables such as HCl concentration in the extraction medium and carrier content in the capsules, among others. The extraction of cadmium from battery leachates and the three isotherm models, Langmuir, Freundlich, and Dubinin Radushkevich, were also tested to model the cadmium removal process. The results showed a favorable physical sorption with a good capacity for extraction and the possibility of reusing the capsules for up to seven cycles without a decrease in the percentage of cadmium recovery.
Collapse
Affiliation(s)
- Irma Pérez-Silva
- Academic Area of Chemistry, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma C.P. 42184, Hidalgo, Mexico
| | | | | | | | | | | | - M. Elena Páez-Hernández
- Academic Area of Chemistry, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma C.P. 42184, Hidalgo, Mexico
| |
Collapse
|
42
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
43
|
Wang Z, Yang L, Dai L, Huang Z, Wu K, Liu B. Scalable Production of 2D Minerals by Polymer Intercalation and Adhesion for Multifunctional Applications. SMALL METHODS 2023; 7:e2300529. [PMID: 37246257 DOI: 10.1002/smtd.202300529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Natural and sustainable 2D minerals have many unique properties and may reduce reliance on petroleum-based products. However, the large-scale production of 2D minerals remains challenging. Herein, a green, scalable, and universal polymer intercalation and adhesion exfoliation (PIAE) method to produce 2D minerals such as vermiculite, mica, nontronite, and montmorillonite with large lateral sizes and high efficiency, is developed. The exfoliation relies on the dual functions of polymers involving intercalation and adhesion to expand interlayer space and weaken interlayer interactions of minerals, facilitating their exfoliation. Taking vermiculite as an example, the PIAE produces 2D vermiculite with an average lateral size of 1.83 ± 0.48 µm and thickness of 2.40 ± 0.77 nm at a yield of ≈30.8%, surpassing state-of-the-art methods in preparing 2D minerals. Flexible films are directly fabricated by the 2D vermiculite/polymer dispersion, exhibiting outstanding performances including mechanical strength, thermal resistance, ultraviolet shielding, and recyclability. The representative application of colorful multifunctional window coatings in sustainable buildings is demonstrated, indicating the potential of massively produced 2D minerals.
Collapse
Affiliation(s)
- Zhongyue Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Keyou Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
44
|
Jiang L, Wang P, Shu Y, Jin P, Xu L, Xu C, Guo L. A colloidal gold immunoassay strip assay for cadmium detection in oilfield chemicals. Analyst 2023; 148:4166-4173. [PMID: 37522178 DOI: 10.1039/d3an01075a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cadmium ions (Cd2+) are some of the major pollutants in oilfield chemicals. To reduce the pollution of oilfield chemicals, it is necessary to detect and control the content of Cd2+. In this study, we synthesized a highly sensitive and specific monoclonal antibody against Cd2+ with an IC50 of 1.97 ng mL-1 and no cross-reactivity. Based on this antibody, a colloidal gold immunoassay strip detection assay with an IC50 of 1 mg kg-1 and a detection range of 1.0-20 mg kg-1 in oilfield chemicals was developed. This assay could be completed in 20 min and can be used for Cd2+ on-site testing in oilfield chemicals and improve supervision efficiency in oil exploration and development.
Collapse
Affiliation(s)
- Luming Jiang
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Peng Wang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 10083, China
- Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Building B, No. 1368 Wuzhong Avenue, Suzhou, Jiangsu, 215000, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
45
|
Yang Y, Xu X, He H, Huo D, Li X, Dai L, Si C. The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int J Biol Macromol 2023; 242:124773. [PMID: 37150369 DOI: 10.1016/j.ijbiomac.2023.124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
The increasing depletion of oil resources and the environmental problems caused by using much fossil energy in the rapid development of society. The bio-oil becomes a promising alternative energy source to fossil. However, bio-oil cannot be directly utilized, owing to its high proportion of oxygenated compounds with low calorific value and poor thermal stability. Catalytic hydrodeoxygenation (HDO) is one of the most effective methods for refining oxygenated compounds from bio-oil. HDO catalysts play a crucial role in the HDO reaction. This review emphasizes the description of the main processing of HDO and various catalytic systems for bio-oil, including noble/non-noble metal catalysts, porous organic polymer catalysts, and polar solvents. A discussion based on recent studies and evaluations of different catalytic materials and mechanisms is considered. Finally, the challenges and future opportunities for the development of catalytic hydrodeoxygenation for bio-oil upgradation are looked forward.
Collapse
Affiliation(s)
- Yanfan Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haodong He
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Huo
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co., Ltd, Beijing 100102, China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
46
|
Dong D, Chen R, Jia J, Zhao C, Chen Z, Lu Q, Sun Y, Huang W, Wang C, Li Y, He H. Tailoring and application of a multi-responsive cellulose nanofibre-based 3D nanonetwork wound dressing. Carbohydr Polym 2023; 305:120542. [PMID: 36737193 DOI: 10.1016/j.carbpol.2023.120542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The rapid loss of drugs and the weak curative effects due to cyclical urination are the main reasons why wound heal with difficulty after bladder tumour resection. Here, a bioinspired cellulose nanofibre (CNF)-based magnetic 3D nanonetwork wound dressing with excellent tissue adhesion and biocompatibility is designed by the assembly of pH- and near infrared-responsive CNF nanoskeletons, magnetic switching Fe3O4 nanoparticles, and temperature switching Pluronic®F-127. The dressing with high loading capacity for mitomycin and indocyanine green can form a sticky 3D nanonetwork at the wound site and remain for a long time to release drugs through an external magnetic field. Interestingly, the dressing possessed excellent antibacterial activity, bacterial biofilm elimination, T24 tumour cell killing, and wound healing promotion through photothermal, photodynamic, and chemotherapy. Therefore, it has promising application for bladder postoperative infected wound healing to avoid rapid loss of drugs due to cyclical urination.
Collapse
Affiliation(s)
- Die Dong
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Jihong Jia
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Weiyi Huang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chunfang Wang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China.
| | - Yao Li
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
47
|
Filimon A, Onofrei MD, Bargan A, Stoica I, Dunca S. Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing. Polymers (Basel) 2023; 15:polym15071625. [PMID: 37050239 PMCID: PMC10096613 DOI: 10.3390/polym15071625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The progress achieved in recent years in the biomedical field justifies the objective evaluation of new techniques and materials obtained by using silver in different forms as metallic silver, silver salts, and nanoparticles. Thus, the antibacterial, antiviral, antifungal, antioxidant, and anti-inflammatory activity of silver nanoparticles (AgNPs) confers to newly obtained materials characteristics that make them ideal candidates in a wide spectrum of applications. In the present study, the use of hydroxypropyl methyl cellulose (HPMC) in the new formulation, by embedding AgNPs with antibacterial activity, using poly(N-vinylpyrrolidone) (PVP) as a stabilizing agent was investigated. AgNPs were incorporated in HPMC solutions, by thermal reduction of silver ions to silver nanoparticles, using PVP as a stabilizer; a technique that ensures the efficiency and selectivity of the obtained materials. The rheological properties, morphology, in vitro antimicrobial activity, and stability/catching of Ag nanoparticles in resulting HPMC/PVP-AgNPs materials were evaluated. The obtained rheological parameters highlight the multifunctional roles of PVP, focusing on the stabilizing effect of new formulations but also the optimization of some properties of the studied materials. The silver amount was quantified using the spectroscopy techniques (energy-dispersive X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX)), while formation of the AgNPs was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Also, the morphological examination (Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM)) by means of the texture roughness parameters has evidenced favorable characteristics for targeted applications. Antibacterial activity was tested against Escherichia coli and Staphylococcus aureus and was found to be substantially improved was silver was added in the studied systems.
Collapse
Affiliation(s)
- Anca Filimon
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Mihaela Dorina Onofrei
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Alexandra Bargan
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Iuliana Stoica
- Atomic Force Microscopy Laboratory, Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Simona Dunca
- Department of Microbiology, Biology Faculty, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Bvd., 700506 Iasi, Romania
| |
Collapse
|
48
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
49
|
Dai H, Luo Y, Huang Y, Ma L, Chen H, Fu Y, Yu Y, Zhu H, Wang H, Zhang Y. Recent advances in protein-based emulsions: The key role of cellulose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Lignin microparticles-reinforced cellulose filter paper for simultaneous removal of emulsified oils and dyes. Int J Biol Macromol 2023; 230:123120. [PMID: 36603724 DOI: 10.1016/j.ijbiomac.2022.123120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
The presence of multiple pollutants in wastewater, often with complex interactions, poses a significant challenge for conventional membranes to effectively remove multiple pollutants simultaneously. Herein, a lignin microparticles-reinforced cellulose filter paper (FP@AL-LS-DA) was fabricated via an aldol condensation between lignin and cellulose filter paper and cross-linking with dopamine hydrochloride (DA), which showed desired rejection of oil-in-water emulsions and dyes. Characterizations revealed that the addition of lignin and DA effectively narrowed the pore size (from 4.45 μm to 2.01 μm) and enhanced the rigidity and stability of the cellulose filter paper, thus making it not easily damaged in the water environment and showing excellent tolerance to strong acid and high-salt environments. The oil-in-water emulsions removal efficiency was higher than 99 % even after ten times usage, and the oil flux was kept stable at 52.54 L·m-2·h-1, indicating that FP@AL-LS-DA had outstanding reusability and stability. Remarkably, FP@AL-LS-DA showed excellent removal efficiency (>99 %) for complex pollutants containing dyes and oil-in-water emulsions. In this work, we demonstrate a lignin microparticles-reinforced cellulose filter paper that is simple to prepare and can efficiently separate oil-in-water emulsions and remove dyes.
Collapse
|