1
|
Elouali S, Hamdan YA, Benali S, Lhomme P, Gosselin M, Raquez JM, Rhazi M. Extraction of chitin and chitosan from Hermetia illucens breeding waste: A greener approach for industrial application. Int J Biol Macromol 2024; 285:138302. [PMID: 39638207 DOI: 10.1016/j.ijbiomac.2024.138302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Sustainably exploiting the waste of the black soldier fly (BSF) to produce chitin and chitosan remains a challenge. This work valorizes the pupal cases of BSF for chitin and chitosan extraction. Four chemical extraction processes have been employed. Process 1, the standard method for this source, served as a control. Processes 2 and 3 were designed to assess and select the most effective delipidation method, while the optimized Process 4 involved autoclave conditions (121 °C-2.2 Bar). All chitin derivatives obtained were characterized by FTIR, SEM, XRD, 1H NMR, TGA, potentiometry, viscosimetry, and ICP-OES. Extraction using Process 4 (P4) proved to be the most efficient, demonstrating a deproteinization efficiency of 94.25 ± 0.6 % in a total reaction time of 1.15 ± 0.08 h and water consumption of 250 ± 26.86 L/kg, significantly lower than in other processes. In terms of yield, this process resulted in chitin and chitosan with respective yields of 34.74 ± 1.15 % and 83.33 ± 1.28 %, outperforming the other methods. Regarding physicochemical properties, P4 produced chitin and chitosan with improved thermal stability, with DTGmax values of 421 °C and 345 °C respectively. Additionally, the crystallinity of chitin was reduced by 25.68 %. For chitosan, the degree of acetylation (DA) was the lowest, while maintaining a high molecular weight of 220,378 g.mol-1. These results confirm that P4 is efficient and environmentally friendly, making it well-suited for industrial applications.
Collapse
Affiliation(s)
- Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium.
| | - Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Samira Benali
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Patrick Lhomme
- Laboratory of Zoology, Research Institute for Bioscience, Mons University, Mons 7000, Belgium; International Centre For Agricultural Research In The Dry Areas, Rabat 10000, Morocco
| | - Matthias Gosselin
- Laboratory of Entomology, Haute École Provinciale de Hainaut - Condorcet, Ath, Belgium
| | - Jean-Marie Raquez
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
2
|
Zhang X, Yang F, Xiao J, Qu H, Jocelin NF, Ren L, Guo Y. Analysis and comparison of machine learning methods for species identification utilizing ATR-FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123713. [PMID: 38056185 DOI: 10.1016/j.saa.2023.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Accurate identification of insect species holds paramount significance in diverse fields as it facilitates a comprehensive understanding of their ecological habits, distribution range, and impact on both the environment and humans. While morphological characteristics have traditionally been employed for species identification, the utilization of empty pupariums for this purpose remains relatively limited. In this study, ATR-FTIR was employed to acquire spectral information from empty pupariums of five fly species, subjecting the data to spectral pre-processing to obtain average spectra for preliminary analysis. Subsequently, PCA and OPLS-DA were utilized for clustering and classification. Notably, two wavebands (3000-2800 cm-1 and 1800-1300 cm-1) were found to be significant in distinguishing A. grahami. Further, we established three machine learning models, including SVM, KNN, and RF, to analyze spectra from different waveband groups. The biological fingerprint region (1800-1300 cm-1) demonstrated a substantial advantage in identifying empty puparium species. Remarkably, the SVM model exhibited an impressive accuracy of 100 % in identifying all five fly species. This study represents the first instance of employing infrared spectroscopy and machine learning methods for identifying insect species using empty pupariums, providing a robust research foundation for future investigations in this area.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ngando Fernand Jocelin
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
3
|
Hamdan YA, Elouali S, Eladlani N, Lefeuvre B, Oudadesse H, Rhazi M. Investigation on Akis granulifera (Coleoptera, Sahlberg, 1823) as a potential source of chitin and chitosan: Extraction, characterization and hydrogel formation. Int J Biol Macromol 2023; 252:126292. [PMID: 37573901 DOI: 10.1016/j.ijbiomac.2023.126292] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
The majority of studies have focused on the industrial exploitation of marine fisheries waste through the production of natural bioactive bioploymeres such as chitin and chitosan. However, in recent years, beetles are increasingly attracting the interest of scientists as a source of chitin and chitosan for the preparation of hydrogels for sustainable engineering development. In the present work, we focus on the study for the first time a new Moroccan species of beetle (Akis granulifera Sahlberg, 1823), for the extraction of chitin and the elaboration of chitosan. A chemical extraction process was used. Then, physicochemical characterizations by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, Potentiometry, Viscosimetry, and elemental analysis were performed. In addition, to evaluate its physicochemical quality, the elaborated chitosan is combined with alginate to form a hydrogel. This hydrogel was effectively characterized by SEM, DRX and FTIR to show the potential of chitosan from Akis granulifera in biomaterial applications.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | - Nadia Eladlani
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco.
| | | | | | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| |
Collapse
|
4
|
Gilic M, Ghobara M, Reissig L. Tuning SERS Signal via Substrate Structuring: Valves of Different Diatom Species with Ultrathin Gold Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101594. [PMID: 37242011 DOI: 10.3390/nano13101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The discovered light modulation capabilities of diatom silicious valves make them an excellent toolkit for photonic devices and applications. In this work, a reproducible surface-enhanced Raman scattering (SERS) enhancement was achieved with hybrid substrates employing diatom silica valves coated with an ultrathin uniform gold film. Three structurally different hybrid substrates, based on the valves of three dissimilar diatom species, have been compared to elucidate the structural contribution to SERS enhancement. The comparative analysis of obtained results showed that substrates containing cylindrical Aulacoseira sp. valves achieved the highest enhancement, up to 14-fold. Numerical analysis based on the frequency domain finite element method was carried out to supplement the experimental results. Our results demonstrate that diatom valves of different shapes can enhance the SERS signal, offering a toolbox for SERS-based sensors, where the magnitude of the enhancement depends on valve geometry and ultrastructure.
Collapse
Affiliation(s)
- Martina Gilic
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
5
|
Feng H, Wang Z, Sajab MS, Abdul PM, Ding G. A novel chitinous nanoparticles prepared and characterized with black soldier fly (Hermetia illucens L.) using steam flash explosion treatment. Int J Biol Macromol 2023; 230:123210. [PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Haiyue Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China.
| |
Collapse
|
6
|
Ghobara M, Oschatz C, Fratzl P, Reissig L. Numerical Analysis of the Light Modulation by the Frustule of Gomphonema parvulum: The Role of Integrated Optical Components. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010113. [PMID: 36616023 PMCID: PMC9823621 DOI: 10.3390/nano13010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications.
Collapse
Affiliation(s)
- Mohamed Ghobara
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cathleen Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Louisa Reissig
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
7
|
Liao J, Huang H. Preparation, Characterization and Gelation of a Fungal Nano Chitin Derived from Hericium erinaceus Residue. Polymers (Basel) 2022; 14:474. [PMID: 35160463 PMCID: PMC8838266 DOI: 10.3390/polym14030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Nano chitin is a promising biocompatible material with wide applications. In this work, a fungal-derived nano chitin was prepared from Hericium erinaceus residue via mineral/protein purification and subsequent TEMPO-mediated oxidation. The structure, dispersity, and gelation ability of the prepared fungal nano chitin were studied. The results showed that the average length and width of the prepared fungal nano chitin were 336.6 nm and 6.4 nm, respectively, and the aspect ratio exceeded 50:1. The nano chitin retained the basic structure of chitin, while the crystallization index was improved. In addition, the dispersity of the nano chitin in aqueous media was evaluated by the effective diameter, and the polydispersion index was mainly affected by pH and ionic strength. Under acetic acid "gas phase coagulation", the prepared nano chitin dispersions with mass concentrations of 0.2, 0.4, 0.6, and 0.8% were converted into gels by enhanced hydrogen bond crosslinking between nano chitins.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Ma J, Faqir Y, Tan C, Khaliq G. Terrestrial insects as a promising source of chitosan and recent developments in its application for various industries. Food Chem 2021; 373:131407. [PMID: 34715633 DOI: 10.1016/j.foodchem.2021.131407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
Chitosan is a deacetylated form of chitin and increasingly important amino-polysaccharide used in many various sectors including agriculture, food, and biomedicine. However, chitosan from marine sources has several adverse effects, including allergenic components harmful to human health. Furthermore, marine resources are seasonal, and availability is limited due to dependency on environmental conditions and climate change. In addition, shell infection in crustaceans and environmental contamination make the harvesting of chitin and chitosan problematic. In recent years, chitosan from terrestrial insects has attracted considerable interest. The discoveries show insect chitosan is more advantageous compared to crustacean chitosan. In addition, we were unable to find any literature about the adverse effects of insect chitosan thus far. This review aims to reveal information regarding crustacean and terrestrial insect chitosan and recent advances in chitosan sources. Applications from specific insect orders and perspectives for further study will also be highlighted, including medical and sensing applications.
Collapse
Affiliation(s)
- Jiahua Ma
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yahya Faqir
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Ghulam Khaliq
- Department of Horticulture, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| |
Collapse
|