1
|
Dai W, Xu Q, Li Q, Wang X, Zhang W, Zhou G, Chen X, Liu W, Wang W. Piezoelectric nanofilms fabricated by coaxial electrospun polycaprolactone/Barium titanate promote Achilles tendon regeneration by reducing IL-17A/NF-κB-mediated inflammation. Bioact Mater 2025; 49:1-22. [PMID: 40110584 PMCID: PMC11914770 DOI: 10.1016/j.bioactmat.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Tendon injuries are often exacerbated by persistent inflammation, which hampers tissue regeneration. In this study, we developed a noninvasive, wirelessly controlled, and self-powered piezoelectric nanofilm fabricated by coaxial electrospinning of polycaprolactone (PCL) and tetragonal barium titanate nanoparticles (BTO), and investigated its roles in modulating inflammation and repairing Achilles tendon defects as well as the mechanism in a rat model. In vitro study and in vivo study upon subcutaneous implantation showed that the piezoelectric PCL/BTO nanofilms could inhibit M1 macrophage polarization and reduce the secretion of inflammatory factors. Moreover, when bridging an Achilles tendon defect, the nanofilms could promote tenogenic gene expression including collagen deposition, and collagen remodeling, facilitate functional tendon recovery and significantly reduce tissue inflammation by suppressing M1 macrophage polarization and promoting M2 polarization. Moreover, the piezoelectric stimulation could also enhance tendon regeneration by inhibiting angiogenesis, reducing lipid deposition, and decreasing ectopic ossification. Mechanistically, the piezoelectric nanofilms reduced tissue inflammation mainly via inhibiting the nuclear factor (NF)-κB signaling pathway that is mediated by interleukin (IL)-17A secreted from CD3+ T cells, and thus to reduce proinflammatory factors, such as IL-1β and IL-6, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and tumor necrosis factor-α. These findings indicate the potential of piezoelectric stimulation in immunomodulation, and in promoting tendon regeneration via IL-17A/NF-κB-mediated pathway.
Collapse
Affiliation(s)
- Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Qi Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Surgery, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Qinglin Li
- Department of Aesthetic Surgery, Zhumadian Central Hospital, Zhumadian, 463000, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xu Chen
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Kračun D, Görlach A, Snedeker JG, Buschmann J. Reactive oxygen species in tendon injury and repair. Redox Biol 2025; 81:103568. [PMID: 40023978 PMCID: PMC11915165 DOI: 10.1016/j.redox.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Reactive oxygen species (ROS) are chemical moieties that in physiological concentrations serve as fast-acting signaling molecules important for cellular homeostasis. However, their excess either due to overproduction or inability of the antioxidant system to inactivate them results in oxidative stress, contributing to cellular dysfunction and tissue damage. In tendons, which are hypovascular, hypocellular, and composed predominantly of extracellular matrix (ECM), particularly collagen I, ROS likely play a dual role: regulating cellular processes such as inflammation, proliferation, and ECM remodeling under physiological conditions, while contributing to tendinopathy and impaired healing when dysregulated. This review explores the sources of ROS in tendons, including NADPH oxidases and mitochondria, and their role in key processes such as tissue adaptation to mechanical load and injury repair, also in systemic conditions such as diabetes. In addition, we integrate the emerging perspective that calcium signaling-mediated by mechanically activated ion channels-plays a central role in tendon mechanotransduction under daily mechanical loads. We propose that mechanical overuse (overload) may lead to hyperactivation of calcium channels, resulting in chronically elevated intracellular calcium levels that amplify ROS production and oxidative stress. Although direct evidence linking calcium channel hyperactivity, intracellular calcium dysregulation, and ROS generation under overload conditions is currently circumstantial, this review aims to highlight these connections and identify them as critical avenues for future research. By framing ROS within the context of both adaptive and maladaptive responses to mechanical load, this review provides a comprehensive synthesis of redox biology in tendon injury and repair, paving the way for future work, including development of therapeutic strategies targeting ROS and calcium signaling to enhance tendon recovery and resilience.
Collapse
Affiliation(s)
- Damir Kračun
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland; University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich, TUM University Hospital, Technical University of Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Tang D, Song H, Yan C, Luo Y, Su X, Ruan S. Hydrogel composite scaffold repairs knee cartilage defects: a systematic review. RSC Adv 2025; 15:10337-10364. [PMID: 40200956 PMCID: PMC11976716 DOI: 10.1039/d5ra01031d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Currently, the incidence of cartilage defects in knee joints owing to different causes is increasing every year, and surgery is the most common treatment strategy. In general, tissue engineering materials that mimic the structural, mechanical, and biological properties of natural bone have been widely used, with hydrogels being particularly prominent due to their good biocompatibility as well as adjustable mechanical properties. However, the inherent limitations of monolithic materials in mimicking the complex zonal organization of articular cartilage have driven significant progress in composite scaffold engineering. Herein, we briefly outline the structure of the knee joint and several common surgical approaches for knee cartilage defects. We also discuss the physical properties, functions, and preparation methods of common hydrogel composite scaffolds according to their different types. Finally, we review their application in knee cartilage defects and summarize and discuss their future prospects.
Collapse
Affiliation(s)
- Dongxu Tang
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| | - Hao Song
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| | - Changzheng Yan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| | - Yanfei Luo
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| | - Xudong Su
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| | - Shiqiang Ruan
- Department of Orthopaedics Surgery, The First People's Hospital of Zunyi City, (The Third Affiliated Hospital of Zunyi Medical University) Zunyi 563000 China
| |
Collapse
|
4
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S. Biopolymeric Scaffolds with Melatonin for Tissue Engineering-A Review. Int J Mol Sci 2025; 26:2520. [PMID: 40141163 PMCID: PMC11942045 DOI: 10.3390/ijms26062520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Melatonin, a natural hormone with antioxidant, anti-inflammatory, and regenerative properties, has gained increasing attention in tissue engineering for its ability to enhance the therapeutic potential of biopolymeric scaffolds. These scaffolds, designed to mimic the extracellular matrix, provide structural support and a bioactive environment for tissue regeneration. By integrating melatonin, researchers aim to create multifunctional scaffolds that promote cell proliferation, modulate inflammatory responses, and improve wound healing outcomes. Challenges in utilizing melatonin include maintaining its stability under light, heat, and oxygen exposure, and optimizing its release profile for sustained therapeutic effects. Innovative fabrication methods, such as electrospinning, 3D printing, and lyophilization, have enabled precise control over scaffold architecture and melatonin delivery. These techniques ensure enhanced interactions with target tissues and tailored regeneration processes. Combining melatonin with growth factors, cytokines, and antimicrobial agents offers the potential for multifunctional applications, from chronic wound management to bone and nerve regeneration. Continued research in this field promises transformative solutions in regenerative medicine, expanding the clinical applicability of melatonin-enriched scaffolds. This review highlights the current progress, challenges, and opportunities associated with harnessing melatonin's therapeutic potential within tissue engineering frameworks.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Laboratory for Functional Polymeric Materials, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Zhang ZJ, Sun W, Wang C, Lai B, Yan JN, Wu HT. Encapsulation of melatonin in zein/pectin composite nanoparticles: Fabrication, characterization, and in vitro release property. Food Chem 2025; 465:142051. [PMID: 39591706 DOI: 10.1016/j.foodchem.2024.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
In this study, the encapsulation of melatonin (MT) in zein nanoparticles was investigated via anti-solvent co-precipitation method with pectin stabilization. Compared with MT-loaded zein nanoparticles (MT-Z NPs), 1.0 mg/mL pectin led to a 92.1 % of MT encapsulation efficiency, a 5.4 % of MT loading, a particle size growth from 111.3 to 294.8 nm, a ζ-potential reduction from +4.8 to -41.4 mV, and an irregular surface shape. Moreover, the hypsochromic and redshifts of the OH and amide I bands, and undetected MT crystalline characteristic peaks in MT-loaded zein/pectin nanoparticles (MT-Z/P NPs) revealed successful MT embedment governed by hydrogen and hydrophobic forces. The binding energies of zein with MT and pectin (-6.89 and - 7.01 kcal/mol) confirmed the stability of complex. MT-Z/P NPs prolonged MT release from 92.3 % to 63.6 % at 6 h in gastrointestinal tract (GIT) compared with MT-Z NPs, which could be a desirable MT delivery material in food industry.
Collapse
Affiliation(s)
- Zhu-Jun Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Lun W, Wang H, Li M, Ma J, Ding Y, Zheng X, Cao X, Li Q. Fabrication of MnO 2-Modified Decellularized Tendon Membrane for Enhancing Tendon Repair. Adv Healthc Mater 2025; 14:e2402584. [PMID: 39491818 DOI: 10.1002/adhm.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Repairing tendon/ligament injuries is a major challenge in sports medicine. It has been reported that tendon injury healing is hindered by massive production of reactive oxygen species (ROS). Manganese oxides nanoparticles are generally non-toxic, can scavenge ROS, promote tissue regeneration, and hold promise for sustainable nanotechnologies. However, the effective and safe integration of MnO2 nanoparticles on decellularized scaffold mediating tissue repair is still a great challenge. To address these issues, an in situ MnO2-modified decellularized scaffold is developed to enhance tendon regeneration through improving microenvironment. The decellularized fibrous membrane is designed and prepared using the central tendon of the porcine diaphragm. Then MnO2 nanozymes are in situ grown on the collagen fibers using tannic acid (TA) as cross-linking agent and reducing agent. The results showed that MnO2-modified scaffold eliminates excessive accumulation of ROS in cells, protects mitochondrial, and maintains the phenotype of tendon cells in an oxidative stress environment. Notably, it is found that the MnO2-modified scaffold exhibits good biocompatibility and is able to promote the tendon healing in the rat patellar tendon defect model. Altogether, this study confirmed that this nanozyme-functionalized decellularized extracellular matrix effectively enhanced tendon repair by scavenging ROS, which provides new strategies for enhancing tendon regeneration.
Collapse
Affiliation(s)
- Wanqing Lun
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Mengyuan Li
- Division of Joint Osteopathy and Traumatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
| | - Jiuzhi Ma
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Yilin Ding
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaodong Cao
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
8
|
Brako F, Nkwo M. Leveraging artificial intelligence for better translation of fibre-based pharmaceutical systems into real-world benefits. Pharm Dev Technol 2024; 29:793-804. [PMID: 39166418 DOI: 10.1080/10837450.2024.2395422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
The increasing prominence of biologics in the pharmaceutical market requires more advanced delivery systems to deliver these delicate and complex drug molecules for better therapeutic outcomes. Fibre technology has emerged as a promising approach for creating controlled and targeted drug delivery systems. Fibre-based drug delivery systems offer unprecedented opportunities for improving drug administration, fine-tuning release profiles, and advancing the realm of personalized medicine. These applications range from localized delivery at specific tissue sites to systemic drug administration while safeguarding the stability and integrity of delicate therapeutic compounds. Notwithstanding the promise of fibre-based drug delivery, several challenges such as non-scalability impede cost-effectiveness in the mass production of fibre systems. Biocompatibility and toxicity concerns must also be addressed. Furthermore, issues relating to stability, in-vitro in-vivo correlations, degradation rates, and by-product safety present additional hurdles. Pharmacoinformatics shows the impact of technologies in pharmaceutical processes. Emerging technologies such as Artificial Intelligence (AI) are a transformative force, progressively being applied to enhance various facets of pharmacy, medication development, and clinical healthcare support. However, there is a dearth of studies about the integration of AI in facilitating the translation of predominantly lab-scale pharmaceutical technologies into real-world healthcare interventions. This article explores the application of AI in fibre technology, its potential, challenges, and practical applications within the pharmaceutical field. Through a comprehensive analysis, it presents how the immense capabilities of AI can be leveraged with existing fibre technologies to revolutionize drug delivery and shape the future of therapeutic interventions by enhancing scalability, material integrity, synthesis, and development.
Collapse
Affiliation(s)
- Francis Brako
- Department of Engineering and Science, University of Greenwich, London, UK
| | - Makuochi Nkwo
- Department of Engineering and Science, School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, London, UK
| |
Collapse
|
9
|
Ciardulli MC, Lovecchio J, Parolini O, Giordano E, Maffulli N, Della Porta G. Fibrin Scaffolds Perfused with Transforming Growth Factor-β1 as an In Vitro Model to Study Healthy and Tendinopathic Human Tendon Stem/Progenitor Cells. Int J Mol Sci 2024; 25:9563. [PMID: 39273510 PMCID: PMC11395617 DOI: 10.3390/ijms25179563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-β1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
| | - Joseph Lovecchio
- School of Science and Engineering, Reykjavík University, 102 Reykjavík, Iceland
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavík, Iceland
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00136 Rome, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Translational Nanomedicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
10
|
Zhong Y, Wei ET, Wu L, Wang Y, Lin Q, Wu N, Chen H, Tang N. Novel Biomaterials for Wound Healing and Tissue Regeneration. ACS OMEGA 2024; 9:32268-32286. [PMID: 39100297 PMCID: PMC11292631 DOI: 10.1021/acsomega.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Skin is the first defense barrier of the human body, which can resist the invasion of external dust, microorganisms and other pollutants, and ensure that the human body maintains the homeostasis of the internal environment. Once the skin is damaged, the health threat to the human body will increase. Wound repair and the human internal environment are a dynamic process. How to effectively accelerate the healing of wounds without affecting the internal environment of the human body and guarantee that the repaired tissue retains its original function as much as possible has become a research hotspot. With the advancement of technology, researchers have combined new technologies to develop and prepare various types of materials for wound healing. This article will introduce the wound repair materials developed and prepared in recent years from three types: nanofibers, composite hydrogels, and other new materials. The paper aims to provide reference for researchers in related fields to develop and prepare multifunctional materials. This may be helpful to design more ideal materials for clinical application, and then achieve better wound healing and regeneration effects.
Collapse
Affiliation(s)
- Yi Zhong
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Er-ting Wei
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Leran Wu
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Yong Wang
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Qin Lin
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nihuan Wu
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Hongpeng Chen
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nan Tang
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
11
|
Dou Y, Zhai H, Li H, Xing H, Zhu C, Xuan Z. Endothelial cells-derived exosomes-based hydrogel improved tendinous repair via anti-inflammatory and tissue regeneration-promoting properties. J Nanobiotechnology 2024; 22:401. [PMID: 38982446 PMCID: PMC11232200 DOI: 10.1186/s12951-024-02607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.
Collapse
Affiliation(s)
- Yichen Dou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hong Zhai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hanlin Xing
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Cheng Zhu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Zhaopeng Xuan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China.
| |
Collapse
|
12
|
Xia X, Fang Z, Qian Y, Zhou Y, Huang H, Xu F, Luo Z, Wang Q. Role of oxidative stress in the concurrent development of osteoporosis and tendinopathy: Emerging challenges and prospects for treatment modalities. J Cell Mol Med 2024; 28:e18508. [PMID: 38953556 PMCID: PMC11217991 DOI: 10.1111/jcmm.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Both osteoporosis and tendinopathy are widely prevalent disorders, encountered in diverse medical contexts. Whilst each condition has distinct pathophysiological characteristics, they share several risk factors and underlying causes. Notably, oxidative stress emerges as a crucial intersecting factor, playing a pivotal role in the onset and progression of both diseases. This imbalance arises from a dysregulation in generating and neutralising reactive oxygen species (ROS), leading to an abnormal oxidative environment. Elevated levels of ROS can induce multiple cellular disruptions, such as cytotoxicity, apoptosis activation and reduced cell function, contributing to tissue deterioration and weakening the structural integrity of bones and tendons. Antioxidants are substances that can prevent or slow down the oxidation process, including Vitamin C, melatonin, resveratrol, anthocyanins and so on, demonstrating potential in treating these overlapping disorders. This comprehensive review aims to elucidate the complex role of oxidative stress within the interlinked pathways of these comorbid conditions. By integrating contemporary research and empirical findings, our objective is to outline new conceptual models and innovative treatment strategies for effectively managing these prevalent diseases. This review underscores the importance of further in-depth research to validate the efficacy of antioxidants and traditional Chinese medicine in treatment plans, as well as to explore targeted interventions focused on oxidative stress as promising areas for future medical advancements.
Collapse
Affiliation(s)
- Xianting Xia
- Department of OrthopaedicsKunshan Sixth People's HospitalKunshanJiangsuChina
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoningChina
| | - Yinhua Qian
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Yu Zhou
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Haoqiang Huang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Feng Xu
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| | - Zhiwen Luo
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
- Department of Sports MedicineHuashan Hospital, Fudan UniverstiyShanghaiChina
| | - Qing Wang
- Department of OrthopaedicsKunshan Hospital of Chinese MedicineKunshanJiangsuChina
| |
Collapse
|
13
|
Guo Q, Yin T, Huang W, Nan R, Xiang T, Zhou S. Hybrid Hydrogels for Immunoregulation and Proangiogenesis through Mild Heat Stimulation to Accelerate Whole-Process Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2304536. [PMID: 38519046 DOI: 10.1002/adhm.202304536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Intense and persistent oxidative stress, excessive inflammation, and impaired angiogenesis severely hinder diabetic wound healing. Bioactive hydrogel dressings with immunoregulatory and proangiogenic properties have great promise in treating diabetic wounds. However, the therapeutic effects of dressings always depend on drugs with side effects, expensive cytokines, and cell therapies. Herein, a novel dynamic borate-bonds crosslinked hybrid multifunctional hydrogel dressings with photothermal properties are developed to regulate the microenvironment of diabetic wound sites and accelerate the whole process of its healing without additional medication. The hydrogel is composed of phenylboronic acid-modified chitosan and hyaluronic acid (HA) crosslinked by tannic acid (TA) through borate bonds and Prussian blue nanoparticles (PBNPs) with photothermal response characteristics are embedded in the polymer networks. The results indicate hydrogels show inherent broad-spectrum antioxidative activities through the integrated interaction of borate bonds, TA, and PBNPs. Meanwhile, combined with the regulation of macrophage phenotype by HA, the inflammatory microenvironment of diabetic wounds is transformed. Moreover, the angiogenesis is then enhanced by the mild photothermal effect of PBNPs, followed by promoted epithelialization and collagen deposition. In summary, this hybrid hydrogel system accelerates all stages of wound repair through antioxidative stress, immunomodulation, and proangiogenesis, showing great potential applications in diabetic wound management.
Collapse
Affiliation(s)
- Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Rui Nan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
14
|
Lv N, Hou M, Deng L, Hua X, Zhou X, Liu H, Zhu X, Xu Y, Qian Z, Li Q, Liu M, He F. A sponge-like nanofiber melatonin-loaded scaffold accelerates vascularized bone regeneration via improving mitochondrial energy metabolism. Mater Today Bio 2024; 26:101078. [PMID: 38765244 PMCID: PMC11101953 DOI: 10.1016/j.mtbio.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of in vivo experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Department of Orthopaedics, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopaedics, Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222003, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lei Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xi Hua
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Mingming Liu
- Department of Orthopaedics, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopaedics, Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222003, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| |
Collapse
|
15
|
Kiratitanaporn W, Guan J, Berry DB, Lao A, Chen S. Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning. Tissue Eng Part A 2024; 30:280-292. [PMID: 37747804 DOI: 10.1089/ten.tea.2023.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The ability to precisely control a scaffold's microstructure and geometry with light-based three-dimensional (3D) printing has been widely demonstrated. However, the modulation of scaffold's mechanical properties through prescribed printing parameters is still underexplored. This study demonstrates a novel 3D-printing workflow to create a complex, elastomeric scaffold with precision-engineered stiffness control by utilizing machine learning. Various printing parameters, including the exposure time, light intensity, printing infill, laser pump current, and printing speed were modulated to print poly (glycerol sebacate) acrylate (PGSA) scaffolds with mechanical properties ranging from 49.3 ± 3.3 kPa to 2.8 ± 0.3 MPa. This enables flexibility in spatial stiffness modulation in addition to high-resolution scaffold fabrication. Then, a neural network-based machine learning model was developed and validated to optimize printing parameters to yield scaffolds with user-defined stiffness modulation for two different vat photopolymerization methods: a digital light processing (DLP)-based 3D printer was utilized to rapidly fabricate stiffness-modulated scaffolds with features on the hundreds of micron scale and a two-photon polymerization (2PP) 3D printer was utilized to print fine structures on the submicron scale. A novel 3D-printing workflow was designed to utilize both DLP-based and 2PP 3D printers to create multiscale scaffolds with precision-tuned stiffness control over both gross and fine geometric features. The described workflow can be used to fabricate scaffolds for a variety of tissue engineering applications, specifically for interfacial tissue engineering for which adjacent tissues possess heterogeneous mechanical properties (e.g., muscle-tendon).
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - David B Berry
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
17
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
18
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
19
|
Wang M, Yang C, Deng H, Du Y, Xiao L, Shi X. Programmable Electrical Signals Induce Anisotropic Assembly of Multilayer Chitosan Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38317428 DOI: 10.1021/acs.langmuir.3c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Multilayer hydrogels are widely used in biomedical-related fields due to their complex and variable spatial structures. Various strategies have been developed for preparing multilayer hydrogels, among which electrically induced self-assembly provides a simple and effective method for multilayer hydrogel fabrication. By application of an oscillatory electrical signal sequence, multilayer hydrogels with distinct boundaries can be formed according to the provided programmable signals. In this work, we establish an electrical field in microfluidics combined with polarized light microscopy for in situ visualization of anisotropic construction of multilayer chitosan hydrogel. The noninvasive, real-time birefringence images allow us to monitor the orientation within the hydrogel in response to electrical signals. An increased birefringence was observed from the solution-gel side to the electrode surface side, and a brief electrical signal interruption did not affect the anisotropic assembly process. This understanding of the oscillatory electrical signal-induced hydrogel anisotropy assembly allows us to fabricate chitosan hydrogels with a complex and spatially varying structure.
Collapse
Affiliation(s)
- Manya Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Ling Xiao
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| |
Collapse
|
20
|
Lima TDPDL, Canelas CADA, Dutra JDCF, Rodrigues APD, Brígida RTSS, Concha VOC, da Costa FAM, Passos MF. Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests. Polymers (Basel) 2023; 15:4403. [PMID: 38006127 PMCID: PMC10674666 DOI: 10.3390/polym15224403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue engineering is vital in treating injuries and restoring damaged tissues, aiming to accelerate regeneration and optimize the complex healing process. In this study, multizonal scaffolds, designed to mimic tissues with bilayer architecture, were prepared using the rotary jet spinning technique (RJS scaffolds). Polycaprolactone and different concentrations of alginate hydrogel (2, 4, and 6% m/v) were used. The materials were swollen in pracaxi vegetable oil (PO) (Pentaclethra macroloba) and evaluated in terms of surface morphology, wettability, functional groups, thermal behavior, crystallinity, and cytotoxicity. X-ray diffraction (XRD) showed the disappearance of the diffraction peak 2θ = 31.5° for samples from the polycaprolactone/pracaxi/alginate (PCLOA) group, suggesting a reduction of crystallinity according to the presence of PO and semi-crystalline structure. Wettability gradients (0 to 80.91°) were observed according to the deposition layer and hydrogel content. Pore diameters varied between 9.27 μm and 37.57 μm. Molecular interactions with the constituents of the formulation were observed via infrared spectra with Fourier transform (FTIR), and their influence was detected in the reduction of the maximum degradation temperature within the groups of scaffolds (polycaprolactone/alginate (PCLA) and PCLOA) about the control. In vitro tests indicated reduced cell viability in the presence of alginate hydrogel and PO, respectively.
Collapse
Affiliation(s)
- Tainara de Paula de Lima Lima
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
| | | | - Joyce da Cruz Ferraz Dutra
- Microbiology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Ana Paula Drummond Rodrigues
- Electron Microscopy Laboratory, Evandro Chagas Institute, Ministry of Health, Belém 66093-020, PA, Brazil; (A.P.D.R.); (R.T.S.S.B.)
| | | | | | | | - Marcele Fonseca Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Materials Science and Engineering Program, Federal University of Pará, Ananindeua 67130-660, PA, Brazil;
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (C.A.d.A.C.); (F.A.M.d.C.)
| |
Collapse
|
21
|
Rinoldi C, Kijeńska-Gawrońska E, Heljak M, Jaroszewicz J, Kamiński A, Khademhosseini A, Tamayol A, Swieszkowski W. Mesoporous Particle Embedded Nanofibrous Scaffolds Sustain Biological Factors for Tendon Tissue Engineering. ACS MATERIALS AU 2023; 3:636-645. [PMID: 38089667 PMCID: PMC10636765 DOI: 10.1021/acsmaterialsau.3c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2024]
Abstract
In recent years, fiber-based systems have been explored in the frame of tissue engineering due to their robustness in recapitulating the architecture and mechanical properties of native tissues. Such scaffolds offer anisotropic architecture capable of reproducing the native collagen fibers' orientation and distribution. Moreover, fibrous constructs might provide a biomimetic environment for cell encapsulation and proliferation as well as influence their orientation and distribution. In this work, we combine two fiber fabrication techniques, such as electrospinning and wet-spinning, in order to obtain novel cell-laden 3D fibrous layered scaffolds which can simultaneously provide: (i) mechanical support; (ii) suitable microenvironment for 3D cell encapsulation; and (iii) loading and sustained release of growth factors for promoting the differentiation of human bone marrow-derived mesenchymal stem cells (hB-MSCs). The constructs are formed from wet-spun hydrogel fibers loaded with hB-MSCs deposited on a fibrous composite electrospun matrix made of polycaprolactone, polyamide 6, and mesoporous silica nanoparticles enriched with bone morphogenetic protein-12 (BMP-12). Morphological and mechanical characterizations of the structures were carried out, and the growth factor release was assessed. The biological response in terms of cell viability, alignment, differentiation, and extracellular matrix production was investigated. Ex vivo testing of the layered structure was performed to prove the layers' integrity when subjected to mechanical stretching in the physiological range. The results reveal that 3D layered scaffolds can be proposed as valid candidates for tendon tissue engineering.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
- Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ewa Kijeńska-Gawrońska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
- Centre
for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw 02-822, Poland
| | - Marcin Heljak
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Jakub Jaroszewicz
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Artur Kamiński
- Department
of Transplantology and Central Tissue Bank, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Ali Khademhosseini
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ali Tamayol
- Department
of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
- Department
of Biomedical Engineering, University of
Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Wojciech Swieszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
22
|
Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, Kandil S. Regeneration of critical-sized grade II furcation using a novel injectable melatonin-loaded scaffold. Oral Dis 2023; 29:3583-3598. [PMID: 35839150 DOI: 10.1111/odi.14314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin. MATERIALS AND METHODS A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis. RESULTS Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment. CONCLUSIONS Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.
Collapse
Affiliation(s)
- Mohamed Abdelrasoul
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Gehan Kotry
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Marwa Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jahangir Kamaldin
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Bertam, Malaysia
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Ren X, Zhuang H, Zhang Y, Zhou P. Cerium oxide nanoparticles-carrying human umbilical cord mesenchymal stem cells counteract oxidative damage and facilitate tendon regeneration. J Nanobiotechnology 2023; 21:359. [PMID: 37789395 PMCID: PMC10546722 DOI: 10.1186/s12951-023-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tendon injuries have a high incidence and limited treatment options. Stem cell transplantation is essential for several medical conditions like tendon injuries. However, high local concentrations of reactive oxygen species (ROS) inhibit the activity of transplanted stem cells and hinder tendon repair. Cerium oxide nanoparticles (CeONPs) have emerged as antioxidant agents with reproducible reducibility. RESULTS In this study, we synthesized polyethylene glycol-packed CeONPs (PEG-CeONPs), which were loaded into the human umbilical cord mesenchymal stem cells (hUCMSCs) to counteract oxidative damage. H2O2 treatment was performed to evaluate the ROS scavenging ability of PEG-CeONPs in hUCMSCs. A rat model of patellar tendon defect was established to assess the effect of PEG-CeONPs-carrying hUCMSCs in vivo. The results showed that PEG-CeONPs exhibited excellent antioxidant activity both inside and outside the hUCMSCs. PEG-CeONPs protect hUCMSCs from senescence and apoptosis under excessive oxidative stress. Transplantation of hUCMSCs loaded with PEG-CeONPs reduced ROS levels in the tendon injury area and facilitated tendon healing. Mechanistically, NFκB activator tumor necrosis factor α and MAPK activator dehydrocrenatine, reversed the therapeutic effect of PEG-CeONPs in hUCMSCs, indicating that PEG-CeONPs act by inhibiting the NFκB and MAPK signaling pathways. CONCLUSIONS The carriage of the metal antioxidant oxidase PEG-CeONPs maintained the ability of hUCMSCs in the injured area, reduced the ROS levels in the microenvironment, and facilitated tendon regeneration. The data presented herein provide a novel therapeutic strategy for tendon healing and new insights into the use of stem cells for disease treatment.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Fratini C, Weaver E, Moroni S, Irwin R, Dallal Bashi YH, Uddin S, Casettari L, Wylie MP, Lamprou DA. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. BIOMATERIALS ADVANCES 2023; 153:213557. [PMID: 37441958 DOI: 10.1016/j.bioadv.2023.213557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Costanza Fratini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Sofia Moroni
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton Park, Abingdon OX14 4RY, United Kingdom
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
25
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
26
|
Guan X, Zhang B, Liu S, An M, Han Q, Li D, Rao P. Facile degradation of chitosan-sodium alginate-chromium (III) gel in relation to leather re-tanning and filling. Int J Biol Macromol 2023; 240:124437. [PMID: 37060985 DOI: 10.1016/j.ijbiomac.2023.124437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Natural polysaccharide hydrogel, exemplified by chitosan‑sodium alginate (CS-SA), has been prevailing in adsorption of chromium (III) (Cr(III)) containing contaminant. However, the traditional desorption of CS-SA-Cr(III) to recycle the adsorbent faces the problems including chemical desorbents secondary pollution, resource waste of the terminal CS-SA adsorbents, and tedious work of reusing the desorbed Cr(III). Herein, the adsorption product, CS-SA-Cr(III) gel, was degraded to CS/SA/Cr(III) sol and applied in leather re-tanning and filling processes directly. To achieve this goal, three degradation methods were used to transform the gel to sol. Due to the excellent overall performance of the CS/SA/Cr(III)-HMD4 sol (obtained by the hydrothermal-mechanical degradation method for 4 h (HMD4)), including wide size and distribution range, moderate viscosity (54 ± 3.1 mPa·s), high electronegativity (-38.6 ± 5.8 mV), and good stability, the resultant leather after re-tanning and filling by the sol achieved fascinating properties such as good thermal stability (Ts, 116.8 ± 1.8 °C; Td, 94.2 ± 1.7 °C), mechanical performance (tensile strength, 6.9 ± 0.52 MPa; elongation at break, 95 ± 3.0 %), and superduper thickening rate (31.8 %). Moreover, the mechanism of good re-tanning and filling effects was deciphered. Therefore, this work intends to overcome the limitation of traditional desorption technology and further realizes the high-valued application of the exhausted CS-SA-Cr(III) in leather re-tanning and filling processes.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China.
| | - Bingyuan Zhang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Shiyong Liu
- Chengdu Decoli Polymer Materials Corporation Limited, Chengdu 610065, PR China
| | - Meng An
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Dongping Li
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Ping Rao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
27
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|
28
|
Hojabri M, Tayebi T, Kasravi M, Aghdaee A, Ahmadi A, Mazloomnejad R, Tarasi R, Shaabani A, Bahrami S, Niknejad H. Wet-spinnability and crosslinked Fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. Int J Biol Macromol 2023; 240:124492. [PMID: 37072060 DOI: 10.1016/j.ijbiomac.2023.124492] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Researchers have examined different bio-inspired materials in tissue engineering and regenerative medicine to fabricate scaffolds to address tendon regeneration requirements. We developed fibers based on alginate (Alg) and hydroxyethyl cellulose (HEC) by wet-spinning technique to mimic the fibrous sheath of ECM. Various proportions (25:75, 50:50, 75:25) of 1 % Alg and 4 % HEC were blended to this aim. Two steps of crosslinking with different concentrations of CaCl2 (2.5 and 5 %) and glutaraldehyde (2.5 %) were used to improve physical and mechanical properties. The fibers were characterized by FTIR, SEM, swelling, degradation, and tensile tests. The in vitro proliferation, viability, and migration of tenocytes on the fibers were also evaluated. Moreover, the biocompatibility of implanted fibers was investigated in an animal model. The results showed ionic and covalent molecular interactions between the components. In addition, by properly maintaining surface morphology, fiber alignment, and swelling, lower concentrations of HEC in the blending provided good degradability and mechanical features. The mechanical strength of fibers was in the range of collagenous fibers. Increasing the crosslinking led to significantly different mechanical behaviors in terms of tensile strength and elongation at break. Because of good in vitro and in vivo biocompatibility, tenocyte proliferation, and migration, the biological macromolecular fibers could serve as desirable tendon substitutes. This study provides more practical insight into tendon tissue engineering in translational medicine.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Aghdaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Zhang G, Zhen A, Chen J, Du B, Luo F, Li J, Tan H. In Vitro Effects of Waterborne Polyurethane 3D Scaffolds Containing Poly(lactic-co-glycolic acid)s of Different Lactic Acid/Glycolic Acid Ratios on the Inflammatory Response. Polymers (Basel) 2023; 15:polym15071786. [PMID: 37050400 PMCID: PMC10097270 DOI: 10.3390/polym15071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
The physical and chemical properties of tissue engineering scaffolds have considerable effects on the inflammatory response at the implant site in soft tissue repair. The development of inflammation-modulating polymer scaffolds for soft tissue repair is attracting increasing attention. In this study, in order to regulate the inflammatory response at the implant site, a series of waterborne polyurethane (WPU) scaffolds with different properties were synthesized using polyethylene glycol (PEG), polycaprolactone (PCL) and poly (lactic acid)–glycolic acid copolymers (PLGAs) with three lactic acid/glycolic acid (LA/GA) ratios as the soft segments. Then, scaffolds were obtained using freeze-drying. The WPU scaffolds exhibited a porous cellular structure, high porosity, proper mechanical properties for repairing nerve tissue and an adjustable degradation rate. In vitro cellular experiments showed that the degradation solution possessed high biocompatibility. The in vitro inflammatory response of C57BL/6 mouse brain microglia (immortalized) (BV2) cells demonstrated that the LA/GA ratio of the PLGA in WPU scaffolds can regulate the external inflammatory response by altering the secretion of IL-10 and TNF-α. Even the IL-10/TNF-α of PU5050 (3.64) reached 69 times that of the control group (0.053). The results of the PC12 culture on the scaffolds showed that the scaffolds had positive effects on the growth, proliferation and differentiation of nerve cells and could even promote the formation of synapses. Overall, these scaffolds, particularly the PU5050, indeed prevent BV2 cells from differentiating into a pro-inflammatory M1 phenotype, which makes them promising candidates for reducing the inflammatory response and repairing nerve tissue. Furthermore, PU5050 had the best effect on preventing the transformation of BV2 cells into the pro-inflammatory M1 phenotype.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ao Zhen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinlin Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bohong Du
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
Zhang Y, Xue Y, Ren Y, Li X, Liu Y. Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers (Basel) 2023; 15:polym15061566. [PMID: 36987348 PMCID: PMC10054061 DOI: 10.3390/polym15061566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold's superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
Collapse
Affiliation(s)
- Yiming Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| | - Yueguang Xue
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yan Ren
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Li
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
31
|
Wang H, Yu R, Wang M, Wang S, Ouyang X, Yan Z, Chen S, Wang W, Wu F, Fan C. Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1. J Control Release 2023; 356:162-174. [PMID: 36868516 DOI: 10.1016/j.jconrel.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Tendon injury is one of the most common musculoskeletal disorders that impair joint mobility and lower quality of life. The limited regenerative capacity of tendon remains a clinical challenge. Local delivery of bioactive protein is a viable therapeutic approach for tendon healing. Insulin-like growth factor binding protein 4 (IGFBP-4) is a secreted protein capable of binding and stabilizing insulin-like growth factor 1 (IGF-1). Here, we applied an aqueous-aqueous freezing-induced phase separation technology to obtain the IGFBP4-encapsulated dextran particles. Then, we added the particles into poly (L-lactic acid) (PLLA) solution to fabricate IGFBP4-PLLA electrospun membrane for efficient IGFBP-4 delivery. The scaffold showed excellent cytocompatibility and a sustained release of IGFBP-4 for nearly 30 days. In cellular experiments, IGFBP-4 promoted tendon-related and proliferative markers expression. In a rat Achilles tendon injury model, immunohistochemistry and quantitative real-time polymerase chain reaction confirmed better outcomes by using the IGFBP4-PLLA electrospun membrane at the molecular level. Furthermore, the scaffold effectively promoted tendon healing in functional performance, ultrastructure and biomechanical properties. We found addition of IGFBP-4 promoted IGF-1 retention in tendon postoperatively and then facilitated protein synthesis via IGF-1/AKT signaling pathway. Overall, our IGFBP4-PLLA electrospun membrane provides a promising therapeutic strategy for tendon injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Ruyue Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Meng Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Shuai Chen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Wei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China.
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China.
| |
Collapse
|
32
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
34
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
35
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
36
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
37
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
38
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
39
|
Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. BIOMATERIALS ADVANCES 2022; 135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury (PNI) caused by injury may influence the patients' lifelong mobility unless there is an appropriate treatment. Tissue engineering has become a hot field to replace traditional autologous nerve transplantation due to its low surgical damage and easy-to-industrial advantages. Graphene (GR) is a kind of carbon nanomaterial with good electrical and mechanical properties that satisfy the demand for a good tissue scaffold for nerve regeneration. Herein, a novel and biosafe hydrogel is fabricated by using graphene and sodium alginate (GR-SA) together. This hydrogel not only can mimic the nerve growth microenvironment but also can promote the expression of neurotrophic substances and growth factors. Additionally, GR-SA hydrogel can significantly reduce inflammatory factors. Moreover, the results of both in vitro and in vivo tests demonstrate that GR-SA hydrogel has a promising prospect in PNI regeneration.
Collapse
|
40
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
41
|
Assessment of Melatonin-Cultured Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials for Wound Healing. Antioxidants (Basel) 2022; 11:antiox11030570. [PMID: 35326220 PMCID: PMC8945360 DOI: 10.3390/antiox11030570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CTS) and collagen (Coll) are natural biomaterials that have been extensively used in tissue engineering or wound healing applications, either separately or as composite materials. Most methods to fabricate CTS/Coll matrices employ chemical crosslinking to obtain solid and stable scaffolds with the necessary porosity and mechanical properties to facilitate regeneration. In this study, we comparatively assessed the physicochemical properties of 3D scaffolds loaded with a cross-linker, glyoxal. Using a scanning electron microscope, we evaluated the microstructure of resultant matrices and their mechanistic testing by the determination of the compressive modulus (Emod), the maximum force (Fmax), thermogravimetric analysis (TG), Fourier Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR-ATR), and proliferation rate in vitro using human epidermal keratinocytes and dermal fibroblasts cultured in presence of melatonin solution (10−5 M). We observed that enhanced content of collagen (50CTS/50Coll or 20CTS/80Coll compared to 80CTS/20Coll) significantly elevated the physicochemical capacities of resultant materials. Besides, presence of 5% glyoxal increased porosity, Emod and Fmax, compared to scaffolds without glyoxal. Finally, keratinocytes and dermal fibroblasts cultured on subjected matrices in presence of melatonin revealed a prominently enhanced growth rate. This indicates that the combination of glyoxal and melatonin make it imperative to consider these materials as a promising approach for targeting skin tissue engineering or regenerative dermatology.
Collapse
|