1
|
Zhang S, Ren F, Wang K, Gao Y, Lu Y, Han J, Chen L, Wang H, Zhao Y. Preparation and oil-water separation properties of PAMAM-modified chitosan/cellulose sequential interpenetrating polymer network aerogels. Int J Biol Macromol 2025; 304:140704. [PMID: 39938847 DOI: 10.1016/j.ijbiomac.2025.140704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The rapid development of industries has intensified the issue of oily wastewater pollution, necessitating sustainable solutions. Biomass aerogels, known for their environmental friendliness and biocompatibility, offer promising prospects for oil-water separation. This study fabricated a polyamidoamine (PAMAM)-modified chitosan/cellulose interpenetrating polymer network aerogel via sequential cross-linking and directional freeze-drying. This method endowed the aerogel with excellent mechanical properties, including good strength at a low density (0.06-0.11 g/cm3), high anisotropy at 80 % strain, a high specific surface area (1.93-12.56 m2/g), and hydrophobicity (WCA = 139.5°). The aerogel exhibited outstanding separation efficiencies for the carbon tetrachloride/water mixture (5501.85 L·m-2·h-1) and water-in-oil emulsions (4198.60 L·m-2·h-1, 96.67 %), as well as a removal rate of 61.24 % for the cationic dye RhB. A "demulsification-adsorption synergistic separation" mechanism involving dendritic PAMAM polymers and hydrophobic functional groups was proposed, with performance initially increasing and then decreasing as the PAMAM generation number increased. Despite certain limitations, such as sensitivity to environmental factors, the prepared all-biomass aerogel offered a green, efficient, and mechanically robust solution for the treatment of oily wastewater. This study provided a sustainable strategy for fabricating multifunctional hydrophobic aerogels, paving the way for advanced applications in environmental remediation.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Fuxiong Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Kailei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yuan Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yujia Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Junping Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Haoyun Wang
- Chemicals, Minerals and Metallic Materials Inspection Center of Tianjin Customs, Tianjin 300450, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; China National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
2
|
Ding R, Shu Z, Yang J, Chen R. Selectively oxidized chitin as a degradable and biocompatible hemostat for uncontrolled bleeding and wound healing. Int J Biol Macromol 2025; 304:140906. [PMID: 39938832 DOI: 10.1016/j.ijbiomac.2025.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Chitin (CT), one of the most abundant biopolymers, is insoluble in both dilute aqueous solutions and common organic solvents. In traditional hemostatic applications, chitin must be either converted into acid-soluble chitosan by removing acetyl groups or dissolved in an alkaline aqueous solution at -20 °C. However, acetyl groups are more advantageous than amino groups in promoting hemostasis, biocompatibility, biodegradability, and wound healing. A significant challenge remains in retaining acetyl groups while directly preparing a hemostatic agent from chitin without requiring its dissociation. In this study, we have successfully applied oxidized chitin (OCT) as a hemostatic material, which is directly derived from chitin through a TEMPO-mediated selective oxidation of C6 primary hydroxyl groups to carboxyl groups. Due to its significantly higher hydrophilicity compared to chitin, OCT rapidly forms a gel upon contact with blood, efficiently sealing broken blood vessels and facilitating wound healing. Among OCTs with varying carboxylate contents and the commercial chitosan hemostat Celox™, OCT-24 demonstrated not only the best hemostatic performance in some injury models but also excellent biocompatibility and biodegradability, effectively preventing tissue adhesion and promoting wound healing. The selective oxidation offers a straightforward method for developing a highly effective hemostatic material from chitin to address uncontrolled massive bleeding.
Collapse
Affiliation(s)
- Ruochen Ding
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, China
| | - Zhan Shu
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, China
| | - Jian Yang
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, China.
| | - Ren Chen
- Systems Engineering Institute, Academy of Military Sciences, Tianjin 300161, China
| |
Collapse
|
3
|
Rahdan F, Abedi F, Saberi A, Vaghefi Moghaddam S, Ghotaslou A, Sharifi S, Alizadeh E. Co-delivery of hsa-miR-34a and 3-methyl adenine by a self-assembled cellulose-based nanocarrier for enhanced anti-tumor effects in HCC. Int J Biol Macromol 2025; 307:141501. [PMID: 40054812 DOI: 10.1016/j.ijbiomac.2025.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The simultaneous delivery of oligonucleotides and small molecules has garnered significant interest in cancer therapy. Hepatocellular carcinoma (HCC) treatment is hindered by limited efficacy and significant side effects. Homo sapiens microRNA-34a (hsa-miR-34a) has tumor suppressor properties and like small molecule 3-methyl adenine (3MA) can inhibit autophagy. Besides, 3MA has been shown to enhance anticancer effects in combination therapies. In the present study, a novel modified-cellulose-dialdehyde (MDAC) nanocarrier responsive to lysosomal pH was designed to co-load hsa-miR-34a polyplexes and 3MA and evaluate its antitumor efficacy against HCC. Polyplexes containing hsa-miR-34a and poly L lysine (PLL) with an optimal N/P ratio exhibited a zeta potential of +9.28. These polycations significantly modulated the surface charge of 3MA MDAC for optimal cell-membrane transport and dramatically increased their stability. The PLL-miR34a/3MA MDAC NPs had loading efficiency of around 99.7 % for miR-34a and 35 % for 3MA. Comply with pH dependency, PLL-miR34a polyplex/3MA MDAC NPs worked very efficiently on the inhibiting the expression of autophagy genes (p < 0.05), preventing the formation of autophagosomal vacuoles, reducing rate of cell survival, anti-migratory effects (>100 %), and triggering apoptosis (67.15 %) in HepG2. Our cellulose-based nanocarrier may demonstrate potential for enhancing therapeutic efficacy of combination therapies headed for future clinical translation in HCC.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Sharifi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Rhein F, Sehn T, Meier MAR. Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning. Sci Rep 2025; 15:2904. [PMID: 39848976 PMCID: PMC11757746 DOI: 10.1038/s41598-025-86378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from 1H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.069 in DS on test data, demonstrating higher accuracy compared to the manual evaluation based on peak integration. Limiting the model to physically relevant areas unexpectedly showed the [Formula: see text] peak to be the strongest predictor of DS. By applying a n-best feature selection algorithm based on the F-statistic of the Pearson correlation coefficient, several relevant areas were identified and the optimized model achieved an improved MAE of 0.052. Predicting the DS of other cellulose acetate data sets yielded similar accuracy, demonstrating that the developed models are robust and suitable for efficient and accurate routine evaluations. The model solely trained on cellulose acetate was further able to predict the DS of other cellulose esters with an accuracy of [Formula: see text] in DS and model architectures for a more general analysis of cellulose esters were proposed.
Collapse
Affiliation(s)
- Frank Rhein
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany.
| | - Timo Sehn
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany
| | - Michael A R Meier
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany.
| |
Collapse
|
5
|
Wang J, Wu M, Zhang R, Li C, Li C, Zhong S, Gao Y, Meng Q, Cui X. Carboxymethylcellulose-based aggregation-induced emission antibacterial material for multifunctional applications. Int J Biol Macromol 2024; 283:137740. [PMID: 39551305 DOI: 10.1016/j.ijbiomac.2024.137740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Polysaccharides are ubiquitous in nature, typically harmless, and highly compatible with various tissues in biomedical contexts. These properties make them attractive for use in multifunctional materials. In this study, the aggregation-induced emission (AIE) antibacterial material (PLOCMC) was successfully synthesized by carboxymethylcellulose (CMC) and ε-Poly-Lysine (ε-PL). PLOCMC exhibits not only the AIE property but also a room temperature phosphorescent (RTP) phenomenon. This dual emission behavior enhances its potential applications in chemical sensing and anti-counterfeiting. Notably, PLOCMC shows low cytotoxicity and exhibits antibacterial activity against typical Gram-positive and Gram-negative bacteria, making it a potent agent against a variety of bacterial strains. Additionally, PLOCMC demonstrates specific responsiveness to Fe3+ ions and nitrite, indicating its potential utility in food safety and monitoring applications.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Meiyi Wu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266071, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
6
|
Waghmare S, Sayyad US, Chatterjee A, Mondal S. Modulation of the Chirality and Dynamics of Self-Assembled Nanocellulose-Chiral C-Dot Film for Chiral Sensing Applications. J Phys Chem Lett 2024; 15:11275-11281. [PMID: 39495275 DOI: 10.1021/acs.jpclett.4c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The detection and sensing of chirality using chiral biomaterials are growing areas of research in advanced bioelectronics. As a result, chiral-controlled biomaterials are crucial for advancing current technologies in chiral sensing applications within biosystems. A chiral carbon dot (C-dot) modulated self-assembled emissive cellulose nanocrystal (CNC) film is developed where the chirality of the CNC film can be tempered between left-handed and right-handed chirality after being doped with chiral L/D-C-dots in CNCs (C-dot-CNC film), transferring the chirality from C-dots to CNCs. The interaction between C-dots, CNCs, and carrier dynamics is investigated using a variety of steady-state and time-resolved PL spectroscopy techniques. The chiral C-dot enhanced the protonic conductivity across the CNC via the formation of hydrogen bonds with its surface functional groups and water molecules. Further, the chiral CNC-C-dots photoelectrodes demonstrate an excellent ability to distinguish between left-handed and right-handed small molecules. These findings on the underlying mechanism of spin selectivity between chiral CNC-C-dot and chiral ligand hold promise for the development of efficient chiral-sensing electronic devices.
Collapse
Affiliation(s)
- Sapna Waghmare
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Umarfaruk S Sayyad
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Arunavo Chatterjee
- Indian Institute of Science Education and Research, Kolkata 741246, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
7
|
Sun X, Jiang F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr Polym 2024; 341:122305. [PMID: 38876711 DOI: 10.1016/j.carbpol.2024.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In recent years, the remarkable progress in nanotechnology has ignited considerable interest in investigating nanocelluloses, an environmentally friendly and sustainable nanomaterial derived from cellulosic feedstocks. Current research primarily focuses on the preparation and applications of nanocelluloses. However, to enhance the efficiency of nanofibrillation, reduce energy consumption, and expand nanocellulose applications, chemical pre-treatments of cellulose fibers have attracted substantial interest and extensive exploration. Various chemical pre-treatment methods yield nanocelluloses with diverse functional groups. Among these methods, periodate oxidation has garnered significant attention recently, due to the formation of dialdehyde cellulose derived nanocellulose, which exhibits great promise for further modification with various functional groups. This review seeks to provide a comprehensive and in-depth examination of periodate oxidation-mediated nanocelluloses (PONCs), including their preparation, functionalization, hierarchical structural design, and applications. We believe that PONCs stand as highly promising candidates for the development of novel nano-cellulosic materials.
Collapse
Affiliation(s)
- Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
8
|
Califano D, Schoevaart R, Barnard KE, Callaghan C, Mattia D, Edler KJ. Diaminated Cellulose Beads as a Sustainable Support for Industrially Relevant Lipases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7703-7712. [PMID: 38783841 PMCID: PMC11110057 DOI: 10.1021/acssuschemeng.3c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Environmentally persistent polystyrene or polyacrylic beads are used as supports in enzyme large-scale bioprocesses, including conversion glucose isomerization for high-fructose corn syrup production, hydrolysis of lactose, and synthesis of active pharmaceutical ingredients. In this paper, we report the development of a novel sustainable and scalable method to produce diaminated cellulose beads (DAB) as highly efficient alternative supports for industrially relevant lipases. Regenerated cellulose beads were grafted with diaminated aliphatic hydrocarbons via periodate oxidation and reductive amination. The oxidation step indicated that aldehyde content can be easily tuned through the reaction time and concentration of reactants. Reductive amination of dialdehyde cellulose was more efficient as the length of the diaminated hydrocarbon compound increased. Morphological analysis of DAB showed that cellulose chemical grafting enabled the preservation of the bead shape and internal structure upon freeze-drying. Enzymatic degradability studies demonstrated that chemical functionalization did not undermine enzyme cellulose hydrolysis. The addition of aminated moieties on cellulose dramatically increased absorption efficiency for all industrially relevant lipases used, reaching 100% for Thermomyces lanuginosus lipase (TLL). Storage and recyclability experiments demonstrated that enzymes were retained and recyclable for at least nine cycles, although the activity gradually declined after each cycle. Medium chain triacylglycerol hydrolysis in a SpinChem reactor using TLL immobilized on 1,6 DAB exhibited higher activity compared to acrylic beads (588 vs 459 U/g) suggesting that biodegradable cellulose-based materials could be a valid and attractive alternative to plastics carriers.
Collapse
Affiliation(s)
| | - Rob Schoevaart
- ChiralVision, 44 Hoog-Harnasch, 2635 DL Den Hoorn, The Netherlands
| | | | - Ciarán Callaghan
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Davide Mattia
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
9
|
Riddell LA, Lindner JPB, de Peinder P, Meirer F, Bruijnincx PCA. Rapid Lignin Thermal Property Prediction through Attenuated Total Reflectance-Infrared Spectroscopy and Chemometrics. CHEMSUSCHEM 2024; 17:e202301464. [PMID: 38194292 DOI: 10.1002/cssc.202301464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.
Collapse
Affiliation(s)
- Luke A Riddell
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, 3584CG, Utrecht, The Netherlands
| | | | - Peter de Peinder
- VibSpec, Haaftenlaan 28, 4006 XL, Tiel, The Netherlands
- Inorganic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Pieter C A Bruijnincx
- Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
10
|
Simon J, Schlapp-Hackl I, Sapkota J, Ristolainen M, Rosenau T, Potthast A. Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature. CHEMSUSCHEM 2024; 17:e202300791. [PMID: 37923704 DOI: 10.1002/cssc.202300791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.
Collapse
Affiliation(s)
- Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Inge Schlapp-Hackl
- Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Matti Ristolainen
- NE Research Center, UPM Pulp Research and Innovations, 53200, Lappeenranta, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
11
|
Ivanovska A, Milošević M, Lađarević J, Jankoska M, Matić T, Svirčev Z, Kostić M. A step towards tuning the jute fiber structure and properties by employing sodium periodate oxidation and coating with alginate. Int J Biol Macromol 2024; 257:128668. [PMID: 38092097 DOI: 10.1016/j.ijbiomac.2023.128668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This paper outlines a novel simple protocol for tuning the structure and properties of jute using sodium periodate (NaIO4) oxidation and coating with alginate. When compared to the raw jute, fabrics oxidized with a 0.2 or 0.4 % NaIO4 solution for 30-120 min exhibited an increased aldehyde group content (0.185 vs. 0.239-0.398 mmol/g), a significantly increased negative zeta potential (from -8.57 down to -20.12 mV), a slight disruption of fiber crystallinity, 15.1-37.5 % and 27.9-49.8 % lower fabric maximum force and stiffness, respectively. Owing to the removal of hydrophobic surface barrier, decreased crystallinity index and the presence of micropores on the fabrics' surfaces, oxidized fabrics have a 22.3-29.6 % improved ability for moisture sorption compared to raw fabric. Oxidized fabrics characterized by very long wetting times and excellent antioxidant activities (> 98 %), can find applications as hydrophobic packaging materials. To further extend the utilization of jute in biocarpet engineering such as water-binding geo-prebiotic supports, oxidized fabrics were coated with alginate resulting in 7.9-24.9 % higher moisture sorption and 352-660 times lower wetting times than their oxidized counterparts. This modification protocol has never been applied to lignocellulosic fibers and sheds new light on obtaining jute fabrics with tuned structure and properties intended for various applications.
Collapse
Affiliation(s)
- Aleksandra Ivanovska
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Marija Milošević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Jelena Lađarević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Maja Jankoska
- Ss. Cyril and Methodius University in Skopje, Faculty of Technology and Metallurgy, Ruger Boskovic 16, 1000 Skopje, North Macedonia.
| | - Tamara Matić
- University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Åbo Akademi University, Faculty of Science and Engineering, Tykistökatu 6A, 20520 Turku, Finland.
| | - Mirjana Kostić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| |
Collapse
|
12
|
Sultana N, Edlund U, Guria C, Westman G. Kinetics of Periodate-Mediated Oxidation of Cellulose. Polymers (Basel) 2024; 16:381. [PMID: 38337270 DOI: 10.3390/polym16030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The oxidation of cellulose to dialdehyde cellulose (DAC) is a process that has received increased interest during recent years. Herein, kinetic modeling of the reaction with sodium periodate as an oxidizing agent was performed to quantify rate-limiting steps and overall kinetics of the cellulose oxidation reaction. Considering a pseudo-first-order reaction, a general rate expression was derived to elucidate the impact of pH, periodate concentration, and temperature on the oxidation of cellulose and concurrent formation of cellulose degradation products. Experimental concentration profiles were utilized to determine the rate constants for the formation of DAC (k1), degradation constant of cellulose (k2), and degradation of DAC (k3), confirming that the oxidation follows a pseudo-first-order reaction. Notably, the increase in temperature has a more pronounced effect on k1 compared to the influence of IO4- concentration. In contrast, k2 and k3 display minimal changes in response to IO4- concentration but increase significantly with increasing temperature. The kinetic model developed may help with understanding the rate-limiting steps and overall kinetics of the cellulose oxidation reaction, providing valuable information for optimizing the process toward a faster reaction with higher yield of the target product.
Collapse
Affiliation(s)
- Nazmun Sultana
- Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Organic Chemistry, Chemistry, and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-Based Thermoplastics, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- FibRe-Centre for Lignocellulose-Based Thermoplastics, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Chandan Guria
- Department of Petroleum Engineering, Indian Institute of Technology (IIT-Indian School of Mines), Dhanbad 826 004, India
| | - Gunnar Westman
- Organic Chemistry, Chemistry, and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-Based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
13
|
Falsafi SR, Topuz F, Rostamabadi H. Dialdehyde carbohydrates - Advanced functional materials for biomedical applications. Carbohydr Polym 2023; 321:121276. [PMID: 37739495 DOI: 10.1016/j.carbpol.2023.121276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
14
|
Yang S, Shi Y, Wang X, Liu Y, Ren Y, Li W, Zhang H, Dai X, Sun W, Lai B. Selective elimination of sulfonamide antibiotics upon periodate/catechol process: Dominance of quinone intermediates. WATER RESEARCH 2023; 242:120317. [PMID: 37441871 DOI: 10.1016/j.watres.2023.120317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Natural organic matter, specifically ortho-quinones organics among them, was considered can participate in the transformation of sulfonamide antibiotics (SAs). Herein, based on targeted oxidizing for ortho-dihydroxyl structures (catechol as the model) upon periodate, an efficient approach for SAs elimination was introduced. Results first indicated the generation of ortho-benzoquinone (o-BQ) within periodate/catechol system progresses readily (the energy barriers for 9.6854 kcal/mol). The near-complete eliminations were observed towards sulfamethoxazole (SMX) in periodate/catechol system (with the rate of 0.4229 min-1) as well as other SAs and exhibited unprecedented resistance to operating parameters. Besides, periodate converts little into toxic low-valent iodate species during the reaction process, and both the cytotoxicity and acute toxicity assays revealed a significant decline in antibiotics bioactivity. Mechanistic insight revealed that o-BQ dominated the degradation process, comprehensive analysis further confirmed Michael addition reaction was the first degradation stage, in which electrons flow from o-BQ to SMX and form covalent bonds upon aniline. Furthermore, several catechol derivatives were used to verify the universality of the mechanism, and their wide distribution in both subsurface and wastewater implies the potential applications. Overall, the mechanisms elucidated behind this research proposed an efficient strategy for eliminating trace SAs in aqueous environments and selectively removing SAs from complex wastewater matrices.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wei Li
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; China MCC5 Group Corp., Ltd, Chengdu 610063, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | | | - Weiyi Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Xu Y, Xu Y, Deng W, Chen H, Xiong J. Extracting dialdehyde cellulose nanocrystals using choline chloride/urea-based deep eutectic solvents: A comparative study in NaIO 4 pre-oxidation and synchronous oxidation. Int J Biol Macromol 2023; 246:125604. [PMID: 37392908 DOI: 10.1016/j.ijbiomac.2023.125604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Dialdehyde cellulose nanocrystals (DCNC) are defined as C2 and C3 aldehyde nanocellulose, which can be used as raw materials for nanocellulose derivatization, owing to the high activity of aldehyde groups. Herein, a comparative study in NaIO4 pre-oxidation and synchronous oxidation is investigated for DCNC extraction via choline chloride (ChCl)/urea-based deep eutectic solvent (DES). Ring-liked DCNC with an average particle size of 118 ± 11 nm, a yield of 49.25 %, an aldehyde group content of 6.29 mmol/g, a crystallinity of 69 %, and rod-liked DCNC with an average particle size of 109 ± 9 nm, a yield of 39.40 %, an aldehyde group content of 3.14 mmol/g, a crystallinity of 75 % can be extracted via optimized DES treatment combined with pre-oxidation and synchronous oxidation, respectively. In addition, the average particle size, size distribution, and aldehyde group content of DCNC were involved. TEM, FTIR, XRD, and TGA results reveal the variation of microstructure, chemical structure, crystalline structure, and thermostability of two kinds of DCNC during extraction even though the obtained DCNC exhibiting different micromorphology, pre-oxidation, or synchronous oxidation during ChCl/urea-based DES treatment can be considered as an efficient approach for DCNC extraction.
Collapse
Affiliation(s)
- Yang Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Wenhuan Deng
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Hao Chen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an, Shaanxi 710021, China
| | - Jianhua Xiong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
16
|
Debugging periodate oxidation of cellulose: Why following the common protocol of quenching excess periodate with glycol is a bad idea. Carbohydr Polym 2023; 310:120691. [PMID: 36925234 DOI: 10.1016/j.carbpol.2023.120691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Periodate oxidation of cellulose to produce "dialdehyde cellulose" (DAC) has lately received increasing attention in sustainable materials development. Despite the longstanding research interest and numerous reported studies, there is still an enormous variation in the proposed preparation and work-up protocols. This apparently reduces comparability and causes reproducibility problems in DAC research. Two simple but prevalent work-up protocols, namely glycol quenching and filtration/washing, were critically examined and compared, resulting in this cautionary note. Various analytical techniques were applied to quantify residual iodine species and organic contaminations from quenching side reactions. The commonly practiced glycol addition cannot remove all oxidising iodine compounds. Both glycol and the formed formaldehyde are incorporated into DAC's polymeric structure. Quenching of excess periodate with glycol can thus clearly be discouraged. Instead, simple washing protocols are recommended which do not bear the risk of side reactions with organic contaminants. While simple washing was sufficient for mildly oxidised celluloses, higher oxidised samples were more likely to trap residual (per)iodate, as determined by thiosulfate titration. For work-up, simple washing with water is proposed while determining potential iodine contaminations after washing with a simple colorimetric test and, if needed, removal of residual periodate by washing with an aqueous sodium thiosulfate solution.
Collapse
|
17
|
Nicolas M, Serghei A, Lucas C, Beyou E, Fumagalli M. Grafting of polyamines onto periodate oxidized nanocellulose, and its application to the fabrication of ionic nanopapers. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Simon J, Fliri L, Sapkota J, Ristolainen M, Miller SA, Hummel M, Rosenau T, Potthast A. Reductive Amination of Dialdehyde Cellulose: Access to Renewable Thermoplastics. Biomacromolecules 2023; 24:166-177. [PMID: 36542819 PMCID: PMC9832504 DOI: 10.1021/acs.biomac.2c01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).
Collapse
Affiliation(s)
- Jonas Simon
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria
| | - Lukas Fliri
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Janak Sapkota
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Matti Ristolainen
- NE Research
Center, UPM Pulp Research and Innovations, Lappeenranta53200, Finland
| | - Stephen A. Miller
- The
George and Josephine Butler Laboratory for Polymer Research, Department
of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Michael Hummel
- Department
of Bioproducts and Biosystems, Aalto University, Aalto0076, Finland
| | - Thomas Rosenau
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| | - Antje Potthast
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse
24, Tulln3430, Austria,
| |
Collapse
|
19
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
20
|
Palasingh C, Nakayama K, Abik F, Mikkonen KS, Evenäs L, Ström A, Nypelö T. Modification of xylan via an oxidation-reduction reaction. Carbohydr Polym 2022; 292:119660. [PMID: 35725206 DOI: 10.1016/j.carbpol.2022.119660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan. This paper elucidates the procedure for the periodate oxidation of xylan into dialdehyde xylan and its further reduction into a dialcohol form and is focused on the modification work up. The oxidation-reduction reaction decreased the molecular weight of xylan while increased the dispersity more than 50%. Unlike the unmodified xylan, all the modified grades could be solubilized in water, which we see essential for facilitating the future engineering applications of xylan. The selection of quenching and purification procedures and pH-adjustment of the reduction step had no significant effect on the degree of oxidation, molecular weight and only a minor effect on the hydrodynamic radius in water. Hence, it is possible to choose the simplest oxidation-reduction route without time consuming purification steps within the sequence.
Collapse
Affiliation(s)
- Chonnipa Palasingh
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Koyuru Nakayama
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Felix Abik
- Department of Food and Nutrition, 00014 University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science, 00014 University of Helsinki, Finland
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anna Ström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
21
|
Panaitescu DM, Stoian S, Frone AN, Vlăsceanu GM, Baciu DD, Gabor AR, Nicolae CA, Radiţoiu V, Alexandrescu E, Căşărică A, Damian C, Stanescu P. Nanofibrous scaffolds based on bacterial cellulose crosslinked with oxidized sucrose. Int J Biol Macromol 2022; 221:381-397. [PMID: 36058396 DOI: 10.1016/j.ijbiomac.2022.08.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
In this work, oxidized sucrose (OS), which is a safe bio-based and non-toxic polyaldehyde, was used as a crosslinker in defibrillated bacterial cellulose (BC) sponges obtained by freeze-drying. For mimicking the proteins' crosslinking, BC was first modified with an aminosilane to partially replace the OH groups on the BC surface with more reactive amino groups. Further, the aminosilane-grafted bacterial cellulose (BCA) was crosslinked with OS in different concentrations and thermally cured. Functionalized bacterial celluloses showed a good thermal stability, comparable to that of unmodified cellulose and much improved mechanical properties. A threefold increase in the compression strength was obtained for the BCA scaffold after crosslinking and curing. This was correlated with the uniform pore structure emphasized by the micro-CT and SEM analyses. The OS-crosslinked BCA scaffolds were not cytotoxic and showed a porosity of around 80 %, which was almost 100 % open porosity. This study shows that the crosslinking of aminated BC scaffolds with OS allows the obtaining of 3D cellulose structures with good mechanical properties and high porosity, suitable for soft tissue engineering. The results recommend this new method as an innovative approach to obtaining biomaterial scaffolds that mimic the natural extracellular matrix.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania.
| | - Sergiu Stoian
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | | | - Dora Domnica Baciu
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Augusta Raluca Gabor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Valentin Radiţoiu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Angela Căşărică
- National Institute for Chemical - Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Celina Damian
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Stanescu
- University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
22
|
Duceac IA, Tanasa F, Coseri S. Selective Oxidation of Cellulose-A Multitask Platform with Significant Environmental Impact. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5076. [PMID: 35888547 PMCID: PMC9324530 DOI: 10.3390/ma15145076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Raw cellulose, or even agro-industrial waste, have been extensively used for environmental applications, namely industrial water decontamination, due to their effectiveness, availability, and low production cost. This was a response to the increasing societal demand for fresh water, which made the purification of wastewater one of the major research issue for both academic and industrial R&D communities. Cellulose has undergone various derivatization reactions in order to change the cellulose surface charge density, a prerequisite condition to delaminate fibers down to nanometric fibrils through a low-energy process, and to obtain products with various structures and properties able to undergo further processing. Selective oxidation of cellulose, one of the most important methods of chemical modification, turned out to be a multitask platform to obtain new high-performance, versatile, cellulose-based materials, with many other applications aside from the environmental ones: in biomedical engineering and healthcare, energy storage, barrier and sensing applications, food packaging, etc. Various methods of selective oxidation have been studied, but among these, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (TEMPO)-mediated and periodate oxidation reactions have attracted more interest due to their enhanced regioselectivity, high yield and degree of substitution, mild conditions, and the possibility to further process the selectively oxidized cellulose into new materials with more complex formulations. This study systematically presents the main methods commonly used for the selective oxidation of cellulose and provides a survey of the most recent reports on the environmental applications of oxidized cellulose, such as the removal of heavy metals, dyes, and other organic pollutants from the wastewater.
Collapse
Affiliation(s)
| | - Fulga Tanasa
- Department of Polyaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (I.A.D.); (S.C.)
| | | |
Collapse
|
23
|
Simon J, Tsetsgee O, Iqbal NA, Sapkota J, Ristolainen M, Rosenau T, Potthast A. Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis. Data Brief 2022; 40:107757. [PMID: 35005146 PMCID: PMC8718732 DOI: 10.1016/j.dib.2021.107757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
This dataset is related to the research article entitled ``A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy''. In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepared by periodate oxidation and analysed by Fourier-transform infrared (FTIR) and near-infrared spectroscopy (NIR). The corresponding degrees of oxidation were determined indirectly by periodate consumption using UV spectroscopy at 222 nm and by the quantitative reaction with hydroxylamine hydrochloride followed by potentiometric titration. Partial least squares regression (PLSR) was used to correlate the infrared data with the corresponding degree of oxidation (DO). The developed NIR/PLSR and FTIR/PLSR models can easily be implemented in other laboratories to quickly and reliably predict the degree of oxidation of dialdehyde celluloses.
Collapse
Affiliation(s)
- Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln 3430, Austria
| | - Otgontuul Tsetsgee
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln 3430, Austria
| | - Nohman Arshad Iqbal
- Department of Chemistry, Faculty of Sciences and Engineering, Sorbonne University, Campus Pierre et Marie Curie, 4 place Jussieu, Paris 75005, France
| | - Janak Sapkota
- NE Research Center, UPM Pulp Research and Innovations, Lappeenranta 53200, Finland
| | - Matti Ristolainen
- NE Research Center, UPM Pulp Research and Innovations, Lappeenranta 53200, Finland
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln 3430, Austria
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln 3430, Austria
| |
Collapse
|
24
|
Qiu X, Wang X, Chen S. A stable and easily regenerable solid amine adsorbent derived from a polyethylenimine-impregnated dialdehyde-cellulose/graphene-oxide composite. NEW J CHEM 2022. [DOI: 10.1039/d2nj00530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DAC-GO composite adsorbent with high CO2 adsorption capacity and low regeneration energy consumption was prepared through oxidation-gelation and crosslinking-amination.
Collapse
Affiliation(s)
- Xianyu Qiu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|