1
|
Yu W, Wang G, Chen H, Mu H, Niu B, Han Y, Wang L, Chen H, Gao H. Sustained antimicrobial polymer film from γ-CD-MOF humidity switch for fruit and vegetable preservation. Food Chem 2025; 479:143856. [PMID: 40086383 DOI: 10.1016/j.foodchem.2025.143856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
To address the poor hydrolytic stability of CD-MOF in food applications, CD-MOF loaded with thymol (TCDM) was prepared and filled into a pectin (PEC)/sodium alginate (SA) substrate with the aid of zein to obtain a thymol-CD-MOF/zein-PEC-SA (TCDM/ZPS) polymer film. Characterization revealed that zein-PEC/SA (ZPS) protected TCDM by forming amphiphilic microspheres. TCDM was able to exist stably in the hydrophilic polysaccharide substrate and achieve a long-term slow release over 336 h. Besides, environmental humidity could also be used as a switch for regulating the thymol release rate, which was consistent with the first-order release model (R2 > 0.99). TCDM and TCDM/ZPS showed excellent antimicrobial effects against E. coli, S. aureus, and B. cinerea, the most common fungi in plant-based foods. The preservation experiment maintained the quality of strawberry and Agaricus bisporus mushroom. This strategy holds the potential to broaden the application scope and enhance the utility of CD-MOF in food preservation.
Collapse
Affiliation(s)
- Wangfei Yu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Guannan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Honglei Mu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Yanchao Han
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China
| | - Lishu Wang
- Department of Medicine,Medical College of Wisconsin, Milwaukee, Milwaukee, USA; Department of Hematology and Hematopoietic CellTransplantation, Comprehensive Cancer Center, City oHope National Medical Center, Duarte, California, USA
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, China.
| |
Collapse
|
2
|
Mousavi-Ebadi M, Safaei-Ghomi J. Modified magnetic chitosan with mono(6-amino-6-deoxy)-β-cyclodextrin as a novel catalyst toward the synthesis of pyrazolopyranopyrimidines and pyrano[2,3-c]pyrazole-3-carboxylates. Sci Rep 2025; 15:7863. [PMID: 40050394 PMCID: PMC11885426 DOI: 10.1038/s41598-025-92249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
In this study, we successfully fabricated a novel biocomposite composed of 6-amino β-cyclodextrin (CDNH2) grafted onto magnetic chitosan (Fe3O4@Cs). This biocomposite was thoroughly characterized using FT-IR, NMR, PXRD, EDX mapping, SEM, TEM, TGA, and VSM techniques. Subsequently, the innovative biocomposite was harnessed to serve as a heterogeneous catalyst to facilitate two series of multicomponent reactions (MCRs) aimed at synthesizing pyrazole-fused heterocycle derivatives. The first reaction involved the combination of hydrazine hydrate, ethyl 3-oxobutanoate, barbituric acid, and various benzaldehyde derivatives. In a separate reaction, dimethyl acetylenedicarboxylate (DMAD), hydrazine hydrate, benzaldehyde derivatives, and malonitrile were used as starting materials. By optimizing the reaction conditions and employing the Fe3O4@Cs@CDNH2 catalyst, we successfully synthesized valuable pyrazole structures with high yields in both reactions. The ability to optimize conditions and produce new pyrazole structures with impressive yields highlights the effectiveness of using Fe3O4@Cs@CDNH2 to direct these reactions.
Collapse
Affiliation(s)
- Maryam Mousavi-Ebadi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Virender V, Pandey V, Kumar A, Raghav N, Bhatia P, Pombeiro AJL, Singh G, Mohan B. Tactical metal-organic frameworks (MOFs) adsorbent advantages in removal applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6380-6404. [PMID: 40029467 DOI: 10.1007/s11356-025-36153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Water pollution caused by the increasing concentration of toxic chemicals, such as heavy metal ions, pesticides, pharmaceutical waste, and plastic contaminants, has become a global issue. The rising levels of these pollutants pose significant health risks to humans and various species. Recently, adsorption has emerged as a promising method for removing these contaminants. This review focuses on metal-organic frameworks (MOFs) as adsorbents, highlighting their large surface areas and adjustable porosity, which optimize the adsorption process. The review analyzes the active sites within MOFs, their roles in adsorption mechanisms, and the underlying chemistry involved. It also discusses the structural chemistry of MOFs and its impact on pollutant removal efficiency. Furthermore, the review addresses stability, scalability, and economic feasibility challenges. Finally, it suggests future research directions for next-generation MOF materials to enhance their effectiveness in sustainable environmental remediation, ultimately improving our ability to combat contamination issues and protect healthy ecosystems.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
4
|
Li J, Xu X, Cui X, Sun Y, Song C, Hu Y, Zhao W, He L. A recent overview of the application of emerging extraction medium-based sample preparation for the determination of aflatoxins and their precursors in food samples. J Chromatogr A 2025; 1743:465678. [PMID: 39813912 DOI: 10.1016/j.chroma.2025.465678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These extraction media can be combined with different sample preparation techniques, such as dispersive liquid-liquid microextraction, solid-phase extraction, and magnetic/dispersive solid-phase extraction, mainly depending on their physicochemical properties. They exhibit efficient extraction and enrichment performance towards AFs and their precursors, which is attributed to their multiple-interaction mechanism and/or porous structure. This review also presents the current challenges and future prospects of these emerging extraction media for sample preparation of AFs and their precursors from food.
Collapse
Affiliation(s)
- Jingna Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xuemeng Xu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiaoshuang Cui
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China
| | - Chenchen Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Ao Q, Jiang L, Song Y, Tong X, Jiang T, Lv X, Tang J. Base on photothermal interfacial molecular transfer for efficient biodiesel catalysis via enzyme@cyclodextrin metal-organic frameworks loaded MXene. Carbohydr Polym 2024; 343:122454. [PMID: 39174132 DOI: 10.1016/j.carbpol.2024.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 08/24/2024]
Abstract
Efficient, green and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Therefore, we construct a new strategy with photothermal interfacial molecular transfer for green and efficient biodiesel catalysis. We encapsulate Candida albicans lipase B (CalB) in a γ-cyclodextrin metal-organic framework (γ-CD-MOF) loading with Ti3C2TX by in situ growth and electrostatic assembly. The γ-CD-MOF not only protects the fragile enzyme, but also enhances the catalytic performance through the synergistic effects of porous adsorption (MOF pore structure) and interfacial enrichment (cyclodextrins host-guest assembly structure) for accelerating substrate transfer (642.6 %). The CalB@γ-CD-MOF/MXene-i activity can be regulated up to 274.6 % by exposure to near-infrared (NIR). Importantly, CalB@γ-CD-MOF/MXene-i achieves 93.3 % biodiesel conversion under NIR and maintained 86.9 % activity after 6 cycles. Meanwhile, the MXene after the CalB@γ-CD-MOF/MXene catalytic cycle can be almost completely recovered. We verify the mechanism of high catalytic activity of γ-CD-MOF and rationalize the mechanism of CD molecular channel by DFT. Therefore, this highly selective enzyme catalytic platform offers new possibilities for green and efficient preparation of bioenergy.
Collapse
Affiliation(s)
- Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tuohao Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Singh P, Mahar R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. Int J Pharm 2024; 662:124485. [PMID: 39029633 DOI: 10.1016/j.ijpharm.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Connecticut, United States.
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.
| |
Collapse
|
7
|
Zhao R, Chen T, Li Y, Chen L, Xu Y, Chi X, Yu S, Wang W, Liu D, Zhu B, Hu J. Biocompatible hydrophobic cross-linked cyclodextrin-based metal-organic framework as quercetin nanocarrier for enhancing stability and controlled release. Food Chem 2024; 448:139167. [PMID: 38574718 DOI: 10.1016/j.foodchem.2024.139167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cyclodextrin-based metal-organic framework (CD-MOF) has been widely used in various delivery systems due to its excellent edibility and high drug loading capacity. However, its typically bulky size and high brittleness in aqueous solutions pose significant challenges for practical applications. Here, we proposed an ultrasonic-assisted method for rapid synthesis of uniformly-sized nanoscale CD-MOF, followed by its hydrophobic modification through ester bond cross-linking (Nano-CMOF). Proper ultrasound treatment effectively reduced particle size to nanoscale (393.14 nm). Notably, carbonate ester cross-linking method significantly improved water stability without altering its cubic shape and high porosity (1.3 cm3/g), resulting in a retention rate exceeding 90% in various media. Furthermore, the loading of quercetin did not disrupt cubic structure and showcased remarkable storage stability. Nano-CMOF achieved controlled release of quercetin in both aqueous environments and digestion. Additionally, Nano-CMOF demonstrated exceptional antioxidant (free radical scavenging 82.27%) and biocompatibility, indicating its significant potential as novel nutritional delivery systems in food and biomedical fields.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| | - Beiwei Zhu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Zhao X, Li T, Guo T, He X, Ren X, Wang M, Wang C, Peng C, Zhang J, Wu L. Supramolecular Structure of the β-Cyclodextrin Metal-Organic Framework Optimizes Iodine Stability and Its Co-delivery with l-Menthol for Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688002 DOI: 10.1021/acsami.4c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The spread of upper respiratory tract (URT) infections harms people's health and causes social burdens. Developing targeted treatment strategies for URT infections that exhibit good biocompatibility, stability, and strong antimicrobial effects remains challenging. The dual antimicrobial and antiviral effects of iodine (I2) in combination with the cooling sensation of l-menthol in the respiratory tract can simultaneously alleviate URT inflammation symptoms. However, as both I2 and l-menthol are volatile, addressing stability issues is crucial. In this study, a potassium iodide β-cyclodextrin metal-organic framework [β-CD-POF(I)] with appropriate particle size was used to coload and deliver I2 and l-menthol. Primarily, β-CD-POF(I) was employed as the most efficient carrier to significantly enhance the stability of I2, surpassing any other known protection strategies in the pharmaceutical field (CD complexations, PVP conjugations, and cadexomer iodine). The mechanism underlying the improvement in stability of I2 by β-CD-POF(I) was investigated through scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and molecular docking. The results revealed that the key processes involved in improving stability were the inclusion of I2 by β-CD cavities in β-CD-POF(I) and the formation of polyiodide anion between iodine ions and I2. Furthermore, the potential of β-CD-POF(I) to load and deliver drugs was validated, and coloading of l-menthol and I2 demonstrated reliable stability. β-CD-POF(I) achieved a rate of URT deposition ≥95% in vitro, and the combined antibacterial effects of coloaded I2 and l-menthol was better than I2 or PVP-I alone, with no irritation noted following URT administration in rabbits. Therefore, the stable coloading of drugs by β-CD-POF(I), leading to enhanced antimicrobial effects, provides a new strategy for treating URT infections.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Anhui University of Chinese Medicine, Hefei 230012, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Tianfu Li
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaojian He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Manli Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Hefei 230012, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Li Wu
- Anhui University of Chinese Medicine, Hefei 230012, China
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
9
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
10
|
Zhang J, Deng Z, Bai S, Liu C, Zhang M, Peng C, Xu X, Jia J, Luan T. Fe, N, S co-doped carbon network derived from acetate-modified Fe-ZIF-8 for oxygen reduction reaction. J Colloid Interface Sci 2024; 658:373-382. [PMID: 38113546 DOI: 10.1016/j.jcis.2023.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
In this work, potassium acetate (KAc) was added during the synthesis of a Zn-Fe based metal-organic framework (Fe-ZIF-8) to increase the fixed amount of Fe while simultaneously enhancing the number of pores. Electrospinning was utilized to embed KAc-modified Fe-ZIF-8 (Fe-ZIF-8-Ac) into the polyacrylonitrile nanofiber mesh, to obtain a network composite (Fe@NC-Ac) with hierarchical porous structure. Fe@NC-Ac was co-pyrolyzed with thiourea, resulting in Fe, N, S co-doped carbon electrocatalyst. The electrochemical tests indicated that the prepared catalyst displayed relatively remarkable oxygen reduction reaction (ORR) catalytic activity, with an onset potential (Eonset) of 1.08 V (vs. reversible hydrogen electrode, RHE) and a half-wave potential (E1/2) of 0.94 V, both higher than those of the commercial Pt/C (Eonset = 0.95 V and E1/2 = 0.84 V), respectively. Assembled into Zn-air batteries, the optimized catalyst exhibited higher open circuit voltage (1.698 V) and peak power density (90 mW cm-2) than those of the commercial 20 wt% Pt/C (1.402 V and 80 mW cm-2), respectively. This work provided a straightforward manufacturing strategy for the design of hierarchical porous carbon-based ORR catalysts with desirable performance.
Collapse
Affiliation(s)
- Junyuan Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Ziwei Deng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Shuli Bai
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Changyu Liu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Mengchen Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Chao Peng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Xiaolong Xu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China.
| | - Jianbo Jia
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China.
| | - Tiangang Luan
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
11
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
12
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
13
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Araj SK, Szeleszczuk Ł. A Review on Cyclodextrins/Estrogens Inclusion Complexes. Int J Mol Sci 2023; 24:ijms24108780. [PMID: 37240133 DOI: 10.3390/ijms24108780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
This review focuses on the methods of preparation and biological, physiochemical, and theoretical analysis of the inclusion complexes formed between estrogens and cyclodextrins (CDs). Because estrogens have a low polarity, they can interact with some cyclodextrins' hydrophobic cavities to create inclusion complexes, if their geometric properties are compatible. For the last forty years, estrogen-CD complexes have been widely applied in several fields for various objectives. For example, CDs have been used as estrogen solubilizers and absorption boosters in pharmaceutical formulations, as well as in chromatographic and electrophoretic procedures for their separation and quantification. Other applications include the removal of the endocrine disruptors from environmental materials, the preparation of the samples for mass spectrometric analysis, or solid-phase extractions based on complex formation with CDs. The aim of this review is to gather the most important outcomes from the works related to this topic, presenting the results of synthesis, in silico, in vitro, and in vivo analysis.
Collapse
Affiliation(s)
- Szymon Kamil Araj
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
15
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|