1
|
Wang T, Chen J, Shu C, Shen X, Fu Y, Li M, Luo Z. Orally-administrable supramolecular probiotic capsules enable cooperative colon-targeted inflammation inhibition for ameliorating ulcerative colitis. Acta Biomater 2025; 194:396-410. [PMID: 39884521 DOI: 10.1016/j.actbio.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ulcerative colitis (UC) is a prevalent gastrointestinal disease characterized by the chronical and refractory inflammation of colorectal mucosa and walls, which severely impairs overall well-being of individuals. Probiotics has shown tremendous promise for UC therapy due to its multifaceted mucosal barrier restoration and immunomodulation capabilities. Nevertheless, the successful administration of probiotics remains a clinical obstacle. Herein, we report a multifunctional supramolecular probiotic capsule based on clinically-tested biopolymers for UC therapy, which not only allow colon-targeted probiotic delivery via oral route but also enable concurrent delivery of hemostatic and anti-inflammatory drugs. Specifically, Clostridium butyricum (CB) was first engineered with protective norepinephrine (NE) coating and then encapsulated by self-assembled gelatin-based nanocomplexes modified with balsalazide and matrix metalloproteinase 2/9 (MMP2-/9)-responsive fibronectin peptides. The released balsalazide and fibronectin could induce rapid hemostasis and anti-inflammation actions to alleviate inflammation damage of the UC-affected colons in the short term, while CB could restore gut microbiota homeostasis to remodel intestinal immunocomposition and repair mucosal barrier for reducing UC risk in the long term. Overall, this study provides a promising option for UC treatment with good efficacy and minimal invasiveness. STATEMENT OF SIGNIFICANCE: This study reports a supramolecular probiotic capsule with nanointegrative hemostatic and anti-inflammatory capacities for ulcerative colitis (UC) therapy, which could be orally administrated and activated in the inflamed colorectal sites. The probiotic capsules enable immediate UC symptom relief while also accelerating mucosal repair and preventing UC relapse in the long-term, offering an approach for UC treatment in the clinic.
Collapse
Affiliation(s)
- Ting Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jie Chen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Chuandong Shu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xinkun Shen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Yuanyuan Fu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Su J, Wu Y, Wang Z, Zhang D, Yang X, Zhao Y, Yu A. Probiotic biofilm modified scaffolds for facilitating osteomyelitis treatment through sustained release of bacteriophage and regulated macrophage polarization. Mater Today Bio 2025; 30:101444. [PMID: 39866782 PMCID: PMC11764121 DOI: 10.1016/j.mtbio.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with Lactobacillus reuteri (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects. Leveraging the tendency of bacteria to adhere to the surface of implants, bioceramics have been modified with LR biofilm to promote bone repair. The LR biofilm, sterilized by pasteurization, prevents sepsis caused by live bacteria and is biocompatible with phages. Phages, being natural enemies of bacteria, not only effectively kill bacteria and inhibit biofilm formation but also readily adsorb onto the surface of bioceramics. Hence, this scaffold, loaded with a phage cocktail, lysates specific bacterial populations, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). More importantly, the inactivated LR biofilm stimulates macrophages RAW264.7 to polarize towards an anti-inflammatory M2 phenotype, creating an immune microenvironment favorable for inducing osteogenic differentiation of rat mesenchymal stem cells in vitro. In a rat model of infectious cranial defects, the scaffold not only effectively eliminated S. aureus and alleviated associated inflammation but also mediated macrophage-mediated immunoregulation, thus resulting in effective osteogenesis. Collectively, these multifunctional modified scaffolds offer an integrated approach to both bacterium elimination and bone repair, presenting a new strategy for bioactive implants in the clinical management of osteomyelitis.
Collapse
Affiliation(s)
- Junwei Su
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dong Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xianquan Yang
- Department of Orthopaedics, Gucheng County People's Hospital, Xiangyang, 441799, Hubei, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
3
|
Wang S, Hübner R, Karring H, Batista VF, Wu C. A Supramolecular Approach to Engineering Living Cells with Enzymes for Adaptive and Recyclable Cascade Synthesis. Angew Chem Int Ed Engl 2025; 64:e202416556. [PMID: 39621003 DOI: 10.1002/anie.202416556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Biocatalytic transformation in nature is inherently dynamic, spontaneous, and adaptive, enabling complex chemical synthesis and metabolism. These processes often involve supramolecular recognition among cells, enzymes, and biomacromolecules, far surpassing the capabilities of isolated cells and enzymes used in industrial synthesis. Inspired by nature, here we design a supramolecular approach to equip living cells with these capacities, enabling recyclable, efficient cascade reactions. Our two-step "plug-and-play" methodology begins by coating Escherichia coli cells with guest-containing polymers (SupraBAC) via supramolecular charge interactions, followed by the introduction of β-cyclodextrin-functionalized host enzymes through host-guest chemistry, creating a robust cell-enzyme complex. This supramolecular coating not only protects cells from various stresses, such as UV radiation, heat, and organic solvents, but also facilitates the overexpression of intracellular enzymes and the attachment of extracellular enzymes within and on SupraBAC. This combination results in efficient multienzyme cascade synthesis, enabling two- and three-step reactions in one pot. Importantly, the multienzyme system can be recycled up to five times without significant loss of activity. Our findings introduce a versatile, adaptive supramolecular coating for whole-cell catalysts, offering a sustainable and efficient solution for complex synthesis in both chemistry and industrial biotechnology.
Collapse
Affiliation(s)
- Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Vasco F Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
4
|
Meng Z, He Q, Mu L, Feng J, Zhang F, Wu J, Zhou L, Hu Q, Tang X, Li Y. Pullulan-spermine enhance the tolerance of probiotics and immune stimulation of macrophages. Int J Biol Macromol 2025; 287:138417. [PMID: 39662548 DOI: 10.1016/j.ijbiomac.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The application of probiotics as adjunctive therapy in colorectal cancer treatment is hindered by the paucity of strains with specialized functions and the instability of their in vivo efficacy. The design of innovative and simple encapsulation strategies to enhance their stability and efficacy of probiotics has garnered substantial interest. This study investigated four Bifidobacterium longum strains from human feces for tolerance and cytotoxicity, and then synthesized a cationic polysaccharide, pullulan-spermine (PS), for probiotic encapsulation. The results indicated that the encapsulation by PS hold superior protective capacity and elevated the level of TNF-α and IL-12. In vivo studies further confirmed the retention capacity and safety of this probiotic-PS complex. Generally, this research presents an effective probiotic encapsulation strategy that could enhance macrophage immune responses, offering novel insights for probiotic-based therapies in major diseases like colon cancer treatment.
Collapse
Affiliation(s)
- Zihui Meng
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qinghui He
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Litong Mu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiaying Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fei Zhang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiayi Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qingang Hu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Xuna Tang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Yanan Li
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Sun W, Yun F, Guo Q, Guo HL, Li B, Feng G, Cao J, Bai Y, Zheng B, Ruan X. Near-infrared remote triggering of bio-enzyme activation to control intestinal colonization by orally administered microorganisms. Acta Biomater 2024; 189:574-588. [PMID: 39368722 DOI: 10.1016/j.actbio.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Oral biotherapeutics hold significant promise, but their lack of controllability and targeting poses a major challenge, particularly for intestinal bacterial biotherapeutics. In response, we have developed a nanoencapsulation approach that responds to the release of enzyme activity in the organism and activates the enzyme in situ, allowing for controlled colonization of microbes in the gut. The nano-coating comprises a two-layer structure: an inner layer of polydopamine with photothermal and adhesive properties, and an outer layer of gelatin-sodium carboxymethylcellulose, which is hydrolyzed by cellulases in the gut following photothermal interaction with dopamine. We have successfully achieved controlled colonization of a wide range of microorganisms. Furthermore, in a diabetes model, this approach has had a profound impact on regulating glucagon-like peptide-1 (GLP-1) production, β-cell physiology, and promoting insulin secretion. This nanocoating is achieved by in situ activation of cellulase without the need for genetic or targeted molecular modification, representing a new paradigm and alternative strategy for microbial therapy. It not only enables precise and controlled colonization of probiotics but also demonstrates great potential for broader application in the field of oral biotherapy. STATEMENT OF SIGNIFICANCE: We have developed a nano-encapsulation method that triggers enzyme activity in response to enzymatic activity, resulting in the controlled release and adhesion of a wide range of microorganisms in the gut. The nano coating comprises two layers: an inner layer of polydopamine with photothermal and adhesion properties, and an outer layer of a gelatin-sodium carboxymethylcellulose polymer, which can be hydrolyzed by cellulases in the intestine. Additionally, this method allows for the preparation of various microbial coatings. This approach holds significant promise for regulating GLP-1 production, the physiological function of pancreatic β-cells, and promoting insulin secretion in diabetes models.
Collapse
Affiliation(s)
- Wei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fu Yun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350005, China
| | - Qinglu Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao-Lin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Guoqing Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jimin Cao
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350005, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Department of Stomatology, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University. Heping District, Tianjin 300070, China.
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
6
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
7
|
Hu F, Gao Q, Zheng C, Zhang W, Yang Z, Wang S, Zhang Y, Lu T. Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J Nanobiotechnology 2024; 22:582. [PMID: 39304919 PMCID: PMC11414319 DOI: 10.1186/s12951-024-02862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aβ deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.
Collapse
Affiliation(s)
- Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenhui Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziyi Yang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shihao Wang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
8
|
Zhu LY, Zhang MY, Juan-Cheng, Zhang YX. Shield-armed probiotic delivery system based on co-deposition of poly-dopamine and poly-lysine helps Lactiplantibacillus plantarum relieve hyperuricemia. Int J Biol Macromol 2024; 280:135666. [PMID: 39299415 DOI: 10.1016/j.ijbiomac.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperuricemia (HUA) is a disease characterized by an abnormal metabolism of purine. Lactic acid bacteria (LAB) have attracted much attention for their safe and effective treatment of HUA by inhibiting xanthine oxidase (XOD) and regulating gut microbiota. However, the effectiveness of probiotics can be compromised by the harsh environment of the gastrointestinal tract. In preliminary experiments, Lactiplantibacillus plantarum DY1, which is generally regarded as safe (GRAS), can lower uric acid. We have devised a straightforward and efficient technique for encapsulating DY1 using a coating comprising polydopamine (PDA) co-deposited with poly-l-lysine (PLL) to obtain DY1@PDLL. TEM, SEM, FT-IR and DLS tests showed that DY1 was successfully coated. Incubate at SGF or SIF for 3 h, the number of viable bacteria of free probiotics and DY1@PDLL decreased by 0.92 and 0.46 log cfu/mL, 1.66 and 0.66 log cfu/mL, respectively. The fluorescence intensity of the intestines of the DY1@PDLL treated mice was 3.96 times that of free probiotic. Notably, DY1@PDLL can reduce the uric acid levels of HUA mice by 31.63 % and free probiotics by 18.72 % (≈1.69 times). DY1@PDLL could also regulate gut microbiota and serum metabolic profile. These findings unequivocally highlight the remarkable potential of DY1@PDLL as an exceptional oral probiotic delivery system.
Collapse
Affiliation(s)
- Lin-Yan Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Juan-Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
9
|
Han M, Shen N, Tan W, Wang X, Liu Y, Liang J, Li H, Gao Z. Layer-by-layer coated probiotics with chitosan and liposomes exhibit enhanced therapeutic effects for DSS-induced colitis in mice. Int J Biol Macromol 2024; 269:132063. [PMID: 38705329 DOI: 10.1016/j.ijbiomac.2024.132063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Probiotic therapy has emerged as a promising approach for the treatment of gastrointestinal diseases, offering advantages in terms of safety and convenience. However, oral probiotics encounter significant challenges, including exposure to a hostile gastric environment with low pH, bile salts, elevated levels of reactive oxygen species (ROS), and damage to the protective mucus layer. These factors reduce probiotic survival rates and limit their physiological activity. To address these challenges, we developed a layer-by-layer coated probiotics with curcumin-loaded liposome and polymer. Through DSS-induced colitis mice experiments, we demonstrated that the coated probiotics exhibited an improved survival rate in the gastrointestinal tract and enhanced adhesion to the intestinal mucosa. Furthermore, multi-layered coated probiotics exhibited remarkable efficacy in alleviating colitis by efficiently repairing the gut barrier, modulating gut microbial homeostasis, and reducing bacterial motility at sites of colonic inflammation. Our innovative approach holds promise for effectively treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Ning Shen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Weiteng Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Xiaoyang Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yuanye Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
11
|
Ma Y, Yang D, Huang J, Liu K, Liu H, Wu H, Bao C. Probiotics for inflammatory bowel disease: Is there sufficient evidence? Open Life Sci 2024; 19:20220821. [PMID: 38585636 PMCID: PMC10998680 DOI: 10.1515/biol-2022-0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic inflammatory disorders of the gut. Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of IBD. Evidence suggests that the intestinal microbiota plays a role in the pathogenesis of IBD, so probiotics have garnered a lot of interest as a potential treatment or prevention for IBD. However, clinical evidence of the efficacy of probiotics is still debatable. We performed a literature review. An advanced search considered clinical studies on probiotic for IBD from inception to 2023 in PubMed, Embase, Cochrane Library, and Web of Science. In the treatment of UC with probiotics, only Escherichia coli Nissle 1917 for maintenance treatment of UC in remission, and Bifidobacterium and VSL#3 for induction of remission in patients with mild to moderately active UC have shown strong evidence. Currently, there are no definitive conclusions regarding the effectiveness of probiotics in CD. The mechanism of probiotic treatment for IBD may be related to reducing oxidative stress, repairing the intestinal barrier, regulating intestinal flora balance, and modulating intestinal immune response. Differences in the benefits of probiotics between CD and UC may be attributable to the different lesion extent and immune-mediated pathophysiology. More robust randomized clinical trials are required to validate the efficacy and safety of diverse probiotic strains in IBD.
Collapse
Affiliation(s)
- Yueying Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Dandan Yang
- Hong Kong Baptist University, Hong Kong999077, China
| | - Jin Huang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Kunli Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| | - Chunhui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai200030, China
| |
Collapse
|
12
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
13
|
Ke Q, Wang H, Xiao Y, Kou X, Chen F, Meng Q, Gao W. A Novel Water-Soluble Polysaccharide from Daylily ( Hemerocallis citrina Baroni): Isolation, Structure Analysis, and Probiotics Adhesion Promotion Effect. Foods 2024; 13:721. [PMID: 38472834 DOI: 10.3390/foods13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The daylily (Hemerocallis citrina Baroni) flower is a traditional raw food material that is rich in a variety of nutrients. In particular, the content of polysaccharides in daylily is abundant and has been widely used as a functional component in food, cosmetics, medicine, and other industries. However, studies on the structure-effective relationship of daylily flower polysaccharides are still lacking. In view of this, daylily flower polysaccharides were isolated and purified, and their physical and chemical properties, structure, antioxidant activity, and adhesion-promoting effect on probiotics were evaluated. The results showed that a novel water-soluble polysaccharide (DPW) with an average molecular weight (Mw) of 2.224 kDa could be successfully isolated using column chromatography. Monosaccharide composition analysis showed that DPW only comprised glucose and fructose, with a molar ratio of 0.242:0.758. Through methylation and nuclear magnetic resonance (NMR) analysis, it was inferred that DPW belonged to the fructans group with a structure of α-D-Glcp-1→2-β-D-Fruf-1→(2-β-D-Fruf-1)n→. Antioxidant analysis showed that DPW showed strong 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-Oxide (PTIO-scavenging activity with IC50 of 1.54 mg/mL. DPW of 1.25 to 5 mg/mL could significantly increase the adhesion rate of Lactobacillus acidophilu, Lactobacillus casei, Bifidobacterium adolescentis, and Lactobacillus plantarum on Caco-2 cells. Considering the above results, the present study provides a theoretical basis and practical support for the development and application of daylily polysaccharides as a functional active ingredient.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hui Wang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenjie Gao
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
14
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Yue M, Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms 2024; 12:323. [PMID: 38399733 PMCID: PMC10892899 DOI: 10.3390/microorganisms12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota has been implicated in the context of sexual maturation during puberty, with discernible differences in its composition before and after this critical developmental stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years, particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly identifiable cause. While a link between precocious puberty and the gut microbiota has been observed, the precise causality and underlying mechanisms remain elusive. This narrative review aims to systematically elucidate the potential mechanisms that underlie the intricate relationship between the gut microbiota and precocious puberty. Potential avenues of exploration include investigating the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones, such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut microbiome, metabolism, and obesity, considering the known association between obesity and precocious puberty. This review will also explore how the microbiome's involvement in nutrient metabolism could impact precocious puberty. Finally, attention is given to the microbiota's ability to produce neurotransmitters and neuroactive compounds, potentially influencing the central nervous system components involved in regulating puberty. By exploring these mechanisms, this narrative review seeks to identify unexplored targets and emerging directions in understanding the role of the gut microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights for the development of non-invasive diagnostic methods and innovative therapeutic strategies for precocious puberty in the future, such as specific probiotic therapy.
Collapse
Affiliation(s)
- Min Yue
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|