1
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
2
|
Wan F, Letavernier E, Le Saux CJ, Houssaini A, Abid S, Czibik G, Sawaki D, Marcos E, Dubois-Rande JL, Baud L, Adnot S, Derumeaux G, Gellen B. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation. Am J Physiol Heart Circ Physiol 2015; 309:H1883-93. [PMID: 26453333 DOI: 10.1152/ajpheart.00594.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/03/2015] [Indexed: 12/15/2022]
Abstract
The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment.
Collapse
Affiliation(s)
- Feng Wan
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Emmanuel Letavernier
- Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Tenon Hospital, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75020, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unités Mixtes de Recherche Scientifique 1155, Paris, France; and
| | - Claude Jourdan Le Saux
- Department of Medicine/Cardiology Division, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Amal Houssaini
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Shariq Abid
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Gabor Czibik
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Daigo Sawaki
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Elisabeth Marcos
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France
| | - Jean-Luc Dubois-Rande
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France; DHU A-TVB, Department of Cardiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Laurent Baud
- Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Tenon Hospital, Paris, France; Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75020, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unités Mixtes de Recherche Scientifique 1155, Paris, France; and
| | - Serge Adnot
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Geneviève Derumeaux
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; Département Hospitalo-Universitairé Ageing Thorax-Vessels Blood (DHU A-TVB), Department of Physiology, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Barnabas Gellen
- Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est Creteil, Créteil, France; DHU A-TVB, Department of Cardiology, AP-HP, Henri Mondor Hospital, Créteil, France; Department of Cardiology, Poitiers University Hospital, F-86000, Poitiers, France
| |
Collapse
|
3
|
Xiao J, Deng SB, She Q, Li J, Kao GY, Wang JS, Ma YU. Traditional Chinese medicine Qili qiangxin inhibits cardiomyocyte apoptosis in rats following myocardial infarction. Exp Ther Med 2015; 10:1817-1823. [PMID: 26640555 PMCID: PMC4665999 DOI: 10.3892/etm.2015.2759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to examine the effect of the traditional Chinese medicine Qili qiangxin on cardiomyocyte apoptosis following myocardial infarction (MI) in a rat model. MI was induced in rats by ligation of the anterior descending coronary artery. Survivors were randomly divided into the sham operation, MI, and Qili qiangxin groups (4 g/kg per day). After 28 days, infarction size was measured. In the non-infarcted zones (NIZ), the apoptotic index (AI) was measured by terminal deoxynucleotidyl transferase (TdT)-mediated digoxigenin-conjugated dUTP nick-end labeling (TUNEL). Expression of Fas was detected by immunohistochemistry, and the expression of xanthine oxidase (XO) and caspase-3 by western blot analysis. In addition, the XO and ·O2−, ·OH-scavenging activity of myocardial tissue in NIZ was measured by colorimetry. Compared to the MI group, AI and the expression of Fas and caspase-3 were significantly decreased in NIZ. The activity of XO was also considerably reduced while ·O2− and ·OH-scavenging activity was significantly increased in the Qili qiangxin group. Ventricular remodeling was attenuated but there were no significant differences in infarct size (IS) or XO expression levels between the Qili qiangxin and MI groups. In conclusion, the results suggest that Qili qiangxin may inhibit cardiomyocyte apoptosis in NIZ in rats. The potential mechanism involved may be associated with its ability to reduce reactive oxygen species (ROS) and to depress the expression of Fas and caspase-3.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, P.R. China
| | - Song-Bai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010, P.R. China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010, P.R. China
| | - Jun Li
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, P.R. China
| | - Guo-Ying Kao
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, P.R. China
| | - Jun-Sheng Wang
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, P.R. China
| | - Y U Ma
- Department of Cardiology, Chongqing Medical Emergency Center, Chongqing 400014, P.R. China
| |
Collapse
|
4
|
Protective effect of calpain inhibitor N-acetyl-l-leucyl-l-leucyl-l-norleucinal on acute alcohol consumption related cardiomyopathy. Mol Biol Rep 2014; 41:6743-53. [DOI: 10.1007/s11033-014-3560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
5
|
Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Sakata Y, Suzuki JI, Saido TC, Komuro I. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem 2014; 289:19408-19. [PMID: 24891510 DOI: 10.1074/jbc.m114.567206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Enzymatic proteolysis by calpains, Ca(2+)-dependent intracellular cysteine proteases, has been implicated in pathological processes such as cellular degeneration or death. Here, we investigated the role of calpain activation in the hearts subjected to myocardial infarction. We produced myocardial infarction in Cast(-/-) mice deficient for calpastatin, the specific endogenous inhibitory protein for calpains, and Cast(+/+) mice. The activity of cardiac calpains in Cast(+/+) mice was not elevated within 1 day but showed a gradual elevation after 7 days following myocardial infarction, which was further pronounced in Cast(-/-) mice. Although the prevalence of cardiomyocyte death was indistinguishable between Cast(-/-) and Cast(+/+) mice, Cast(-/-) mice exhibited profound contractile dysfunction and chamber dilatation and showed a significant reduction in survival rate after myocardial infarction as compared with Cast(+/+) mice. Notably, immunofluorescence revealed that at 28 days after myocardial infarction, calpains were activated in cardiomyocytes exclusively at the border zone and that Cast(-/-) mice showed higher intensity and a broader extent of calpain activation at the border zone than Cast(+/+) mice. In the border zone of Cast(-/-) mice, pronounced activation of calpains was associated with a decrease in N-cadherin expression and up-regulation of molecular markers for cardiac hypertrophy and fibrosis. In cultured rat neonatal cardiomyocytes, calpain activation by treatment with ionomycin induced cleavage of N-cadherin and decreased expression levels of β-catenin and connexin 43, which was attenuated by calpain inhibitor. These results thus demonstrate that activation of calpains disassembles cell-cell adhesion at intercalated discs by degrading N-cadherin and thereby promotes left ventricular remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Yoko Kudo-Sakamoto
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kaoru Ito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Masamichi Yano
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Chizuru Yabumoto
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Atsuhiko T Naito
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toru Oka
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan, and
| | - Yasushi Sakata
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Issei Komuro
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan,
| |
Collapse
|
6
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
7
|
Suryakumar G, Kasiganesan H, Balasubramanian S, Kuppuswamy D. Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. J Cardiovasc Pharmacol 2010; 55:567-73. [PMID: 20224428 PMCID: PMC3319054 DOI: 10.1097/fjc.0b013e3181d9f5d4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although cardiac hypertrophy initially ensues as a compensatory mechanism, it often culminates in congestive heart failure. Based on our earlier studies that calpain and beta3 integrin play cell death and survival roles, respectively, during pressure-overload (PO) hypertrophy, we investigated if the loss of beta3 integrin signaling is a potential mechanism for calpain-mediated cardiomyocyte death during PO. beta3 Integrin knockout (beta3) and wild-type mice were used to induce either moderate or severe PO in vivo for short-term (72-hour) and long-term (4-week) transverse aortic constriction. Whereas wild-type mice showed no changes during moderate PO at both time points, beta3 mice exhibited both enrichment of the mu-calpain isoform and programmed cell death of cardiomyocytes after 4-week PO. However, with severe PO that caused increased mortality in both mice groups, cell death was observed in wild-type mice also. To study calpain's role, calpeptin, a specific inhibitor of calpain, was administered through an osmotic mini-pump at 2.5 mg/kg per day beginning 3 days before moderate transverse aortic constriction or sham surgery. Calpeptin administration blocked both calpain enrichment and myocardial cell death in the 4-week PO beta3 mice. Because beta3 integrin contributes to cardioprotective signaling, these studies indicate that the loss of specific integrin function could be a key mechanism for calpain-mediated programmed cell death of cardiomyocytes in PO myocardium.
Collapse
Affiliation(s)
- Geetha Suryakumar
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Harinath Kasiganesan
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Sundaravadivel Balasubramanian
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Dhandapani Kuppuswamy
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29425
| |
Collapse
|
8
|
Mani SK, Balasubramanian S, Zavadzkas JA, Jeffords LB, Rivers WT, Zile MR, Mukherjee R, Spinale FG, Kuppuswamy D. Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 297:H1744-51. [PMID: 19734364 PMCID: PMC2781387 DOI: 10.1152/ajpheart.00338.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/01/2009] [Indexed: 12/13/2022]
Abstract
Cardiac pathology, such as myocardial infarction (MI), activates intracellular proteases that often trigger programmed cell death and contribute to maladaptive changes in myocardial structure and function. To test whether inhibition of calpain, a Ca(2+)-dependent cysteine protease, would prevent these changes, we used a mouse MI model. Calpeptin, an aldehydic inhibitor of calpain, was intravenously administered at 0.5 mg/kg body wt before MI induction and then at the same dose subcutaneously once per day. Both calpeptin-treated (n = 6) and untreated (n = 6) MI mice were used to study changes in myocardial structure and function after 4 days of MI, where end-diastolic volume (EDV) and left ventricular ejection fraction (EF) were measured by echocardiography. Calpain activation and programmed cell death were measured by immunohistochemistry, Western blotting, and TdT-mediated dUTP nick-end labeling (TUNEL). In MI mice, calpeptin treatment resulted in a significant improvement in EF [EF decreased from 67 + or - 2% pre-MI to 30 + or - 4% with MI only vs. 41 + or - 2% with MI + calpeptin] and attenuated the increase in EDV [EDV increased from 42 + or - 2 microl pre-MI to 73 + or - 4 microl with MI only vs. 55 + or - 4 microl with MI + calpeptin]. Furthermore, calpeptin treatment resulted in marked reduction in calpain- and caspase-3-associated changes and TUNEL staining. These studies indicate that calpain contributes to MI-induced alterations in myocardial structure and function and that it could be a potential therapeutic target in treating MI patients.
Collapse
Affiliation(s)
- Santhosh K Mani
- Division of Cardiology, Department of Medicine, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xiao J, She Q, Wang Y, Luo K, Yin Y, Hu R, Huang K. Effect of allopurinol on cardiomyocyte apoptosis in rats after myocardial infarction. Eur J Heart Fail 2009; 11:20-7. [PMID: 19147453 DOI: 10.1093/eurjhf/hfn003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Xiao
- Department of Cardiology; The Second Affiliated Hospital of Chongqing University of Medical Sciences; Chongqing 400010 China
| | - Qiang She
- Department of Cardiology; The Second Affiliated Hospital of Chongqing University of Medical Sciences; Chongqing 400010 China
| | - Yang Wang
- Teaching and Research Unit of Hygienic Toxicology of Chongqing University of Medical Sciences; Chongqing 400016 China
| | - Kailiang Luo
- Department of Cardiology; The Second Affiliated Hospital of Chongqing University of Medical Sciences; Chongqing 400010 China
| | - Yuehui Yin
- Department of Cardiology; The Second Affiliated Hospital of Chongqing University of Medical Sciences; Chongqing 400010 China
| | - Rong Hu
- Department of Cardiology; The Second Affiliated Hospital of Chongqing University of Medical Sciences; Chongqing 400010 China
| | - Kaishun Huang
- Department of Basic Institute of Chongqing University of Medical Sciences; Chongqing 400016 China
| |
Collapse
|
10
|
Abstract
The discovery of apoptosis sheds a new light on the role of cell death in myocardial infarction and other cardiovascular diseases. There is mounting evidence that apoptosis plays an important role at multiple points in the evolution of myocardial infarction, and comprises not only cardiomyocytes but also inflammatory cells, as well as cells of granulation tissue and fibrous tissue. It appears that apoptosis contributes to cardiomyocyte loss in the border zone and in remote myocardium in the early phase, as well as months after myocardial infarction, thus playing a role in remodeling and development of heart failure after myocardial infarction. Apoptosis, being a highly regulated process, is a potential target for therapeutic intervention. Caspases are the key effector molecules in apoptosis, and are therefore a particularly attractive target for pharmacological modulation of apoptosis. Although several potential therapeutic agents have been tested in animal models of ischemia/reperfusion heart injury with some success, nearly none of the specific antiapoptotic agents have reached the stage of clinical research.
Collapse
Affiliation(s)
- Nina Zidar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
11
|
Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A, Cuvillier O. Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 2006; 100:41-9. [PMID: 17158340 DOI: 10.1161/01.res.0000253900.66640.34] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitochondrial enzyme monoamine oxidase (MAO), its isoform MAO-A, plays a major role in reactive oxygen species-dependent cardiomyocyte apoptosis and postischemic cardiac damage. In the current study, we investigated whether sphingolipid metabolism can account for mediating MAO-A- and reactive oxygen species-dependent cardiomyocyte apoptosis. In H9c2 cardiomyoblasts, MAO-A-dependent reactive oxygen species generation led to mitochondria-mediated apoptosis, along with sphingosine kinase-1 (SphK1) inhibition. These phenomena were associated with generation of proapoptotic ceramide and decrease in prosurvival sphingosine 1-phosphate. These events were mimicked by inhibition of SphK1 with either pharmacological inhibitor or small interfering RNA, as well as by extracellular addition of C(2)-ceramide or H(2)O(2). In contrast, enforced expression of SphK1 protected H9c2 cells from serotonin- or H(2)O(2)-induced apoptosis. Analysis of cardiac tissues from wild-type mice subjected to ischemia/reperfusion revealed significant upregulation of ceramide and inhibition of SphK1. It is noteworthy that SphK1 inhibition, ceramide accumulation, and concomitantly infarct size and cardiomyocyte apoptosis were significantly decreased in MAO-A-deficient animals. In conclusion, we show for the first time that the upregulation of ceramide/sphingosine 1-phosphate ratio is a critical event in MAO-A-mediated cardiac cell apoptosis. In addition, we provide the first evidence linking generation of reactive oxygen species with SphK1 inhibition. Finally, we propose sphingolipid metabolites as key mediators of postischemic/reperfusion cardiac injury.
Collapse
|