1
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
2
|
Keridou I, Franco L, del Valle LJ, Martínez JC, Funk L, Turon P, Puiggalí J. Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of spherulites. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
4
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Buscemi S, Palumbo V, Maffongelli A, Fazzotta S, Palumbo F, Licciardi M, Fiorica C, Puleio R, Cassata G, Fiorello L, Buscemi G, lo Monte A. Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation. Transplant Proc 2017; 49:716-721. [DOI: 10.1016/j.transproceed.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Pashneh-Tala S, MacNeil S, Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:68-100. [PMID: 26447530 PMCID: PMC4753638 DOI: 10.1089/ten.teb.2015.0100] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented.
Collapse
Affiliation(s)
- Samand Pashneh-Tala
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| |
Collapse
|
7
|
Lan H, Wang Y, Yin T, Wang Y, Liu W, Zhang X, Yu Q, Wang Z, Wang G. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater 2015; 104:1237-47. [PMID: 26059710 DOI: 10.1002/jbm.b.33398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023]
Abstract
Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016.
Collapse
Affiliation(s)
- Hualin Lan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Tieyin Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Xiaojuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| | - Qinsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri
| | - Zhaoxu Wang
- Laboratory of Biomaterials and Tissue Engineering, National Institutes for Food and Drug Control, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering of Chongqing University, Chongqing, China
| |
Collapse
|
8
|
The effect of molecular weight on the material properties of biosynthesized poly(4-hydroxybutyrate). Int J Biol Macromol 2014; 71:124-30. [DOI: 10.1016/j.ijbiomac.2014.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/20/2014] [Accepted: 04/05/2014] [Indexed: 11/17/2022]
|
9
|
Bioengineered vascular scaffolds: the state of the art. Int J Artif Organs 2014; 37:503-12. [PMID: 25044387 DOI: 10.5301/ijao.5000343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 11/20/2022]
Abstract
To date, there is increasing clinical need for vascular substitutes due to accidents, malformations, and ischemic diseases. Over the years, many approaches have been developed to solve this problem, starting from autologous native vessels to artificial vascular grafts; unfortunately, none of these have provided the perfect vascular substitute. All have been burdened by various complications, including infection, thrombogenicity, calcification, foreign body reaction, lack of growth potential, late stenosis and occlusion from intimal hyperplasia, and pseudoaneurysm formation. In the last few years, vascular tissue engineering has emerged as one of the most promising approaches for producing mechanically competent vascular substitutes. Nanotechnologies have contributed their part, allowing extraordinarily biostable and biocompatible materials to be developed. Specifically, the use of electrospinning to manufacture conduits able to guarantee a stable flow of biological fluids and guide the formation of a new vessel has revolutionized the concept of the vascular substitute. The electrospinning technique allows extracellular matrix (ECM) to be mimicked with high fidelity, reproducing its porosity and complexity, and providing an environment suitable for cell growth. In the future, a better knowledge of ECM and the manufacture of new materials will allow us to "create" functional biological vessels - the base required to develop organ substitutes and eventually solve the problem of organ failure.
Collapse
|
10
|
Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E. Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. J Clin Med 2014; 3:39-87. [PMID: 26237251 PMCID: PMC4449663 DOI: 10.3390/jcm3010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/28/2013] [Accepted: 11/16/2013] [Indexed: 12/25/2022] Open
Abstract
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade.
Collapse
Affiliation(s)
- Patrick Babczyk
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Clelia Conzendorf
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Jens Klose
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Margit Schulze
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| | - Kathrin Harre
- Faculty of Mechanical Engineering/Process Engineering, University of Applied Science Dresden, Friedrich-List-Platz 1, Dresden 01069, Germany.
| | - Edda Tobiasch
- Department of Natural Science, Bonn-Rhein-Sieg University of Applied Science, Von-Liebig-Street 20, Rheinbach 53359, Germany.
| |
Collapse
|
11
|
Abstract
The surgical repair of complex congenital heart defects frequently requires additional tissue in various forms, such as patches, conduits, and valves. These devices often require replacement over a patient's lifetime because of degeneration, calcification, or lack of growth. The main new technologies in congenital cardiac surgery aim at, on the one hand, avoiding such reoperations and, on the other hand, improving long-term outcomes of devices used to repair or replace diseased structural malformations. These technologies are: 1) new patches: CorMatrix® patches made of decellularized porcine small intestinal submucosa extracellular matrix; 2) new devices: the Melody® valve (for percutaneous pulmonary valve implantation) and tissue-engineered valved conduits (either decellularized scaffolds or polymeric scaffolds); and 3) new emerging fields, such as antenatal corrective cardiac surgery or robotically assisted congenital cardiac surgical procedures. These new technologies for structural malformation surgery are still in their infancy but certainly present great promise for the future. But the translation of these emerging technologies to routine health care and public health policy will also largely depend on economic considerations, value judgments, and political factors.
Collapse
Affiliation(s)
- David Kalfa
- Pediatric Cardiac Surgery, Columbia University, Morgan Stanley Children's Hospital of New York-Presbyterian, New York, USA
| | | |
Collapse
|
12
|
Medical applications of biopolyesters polyhydroxyalkanoates. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1280-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Imamura T, Ishizuka O, Lei Z, Hida S, Sudha GS, Kato H, Nishizawa O. Bone Marrow-Derived Cells Implanted into Radiation-Injured Urinary Bladders Reconstruct Functional Bladder Tissues in Rats. Tissue Eng Part A 2012; 18:1698-709. [DOI: 10.1089/ten.tea.2012.0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tetsuya Imamura
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Ishizuka
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Zhang Lei
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Shigeaki Hida
- Department of Molecular Oncology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Nagano, Japan
| | | | - Haruaki Kato
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Osamu Nishizawa
- Department of Lower Urinary Tract Medicine, Shinshu University School of Medicine, Nagano, Japan
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
14
|
Williams C, Xie AW, Emani S, Yamato M, Okano T, Emani SM, Wong JY. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng Part A 2012; 18:986-98. [DOI: 10.1089/ten.tea.2011.0172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Angela W. Xie
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Sitaram M. Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
15
|
Ramaswamy S, Schornack PA, Smelko AG, Boronyak SM, Ivanova J, Mayer JE, Sacks MS. Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies. NMR IN BIOMEDICINE 2012; 25:410-417. [PMID: 22351640 DOI: 10.1002/nbm.1642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 05/31/2023]
Abstract
The intimal and medial linings of the pulmonary artery consist largely of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs), respectively. The migration of these cell types to a potential tissue-engineered pulmonary valve (TEPV) implant process is therefore of interest in understanding the valve remodeling process. Visualization and cell tracking by MRI, which employs hypointense contrast achievable through the use of superparamagnetic iron oxide (SPIO) microparticles to label cells, provides a method in which this can be studied. We investigated the SPIO labeling efficiency of human VECs and VSMCs, and used two- and three-dimensional gradient echo sequences to track the migration of these cells in agar gel constructs. Protamine sulfate (4.5 µg/mL) was used to enhance SPIO uptake and was found to have no influence on cell viability or proliferation. MRI experiments were initially performed using a 9.4-T scanner. The results demonstrated that the spatial positions of hypointense spots were relatively unchanged over 12 days. Subsequent MR experiments performed at 7 T demonstrated that three-dimensional imaging provided the best spatial resolution to assess cell fate. R(2)* maps were bright in SPIO cell-encapsulated gels in comparison with unlabeled counterparts. Signal voids were ruled out as hypointense regions owing to the smooth exponential decay of T(2)* in these voxels. As a next step, we intend to use the SPIO cell labeling and MR protocols established in this study to assess whether hemodynamic stresses will alter the vascular cell migratory patterns. These studies will shed light on the mechanisms of vascular remodeling after TEPV implantation.
Collapse
Affiliation(s)
- Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, College of Engineering and Computing, Miami, FL 33174, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Williams C, Xie AW, Yamato M, Okano T, Wong JY. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials 2011; 32:5625-32. [PMID: 21601276 DOI: 10.1016/j.biomaterials.2011.04.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022]
Abstract
Children suffering from congenital heart defects (CHD) often require vascular reconstruction. Pediatric patients would greatly benefit from a cell-based tissue engineered vascular patch (TEVP) that has potential for growth. As artery structure and function are intimately linked, mimicking native tissue organization is an important design consideration. In this study, we cultured human mesenchymal stem cell on patterned thermo-responsive substrates. Cell alignment improved over time up to 2 wk in culture when sheets were ready for harvest. We then used cell sheets as "functional units" to build complex tissue structures that mimic native vascular smooth muscle cell organization in the medial layer of the artery. Cell sheets could be stacked using a gelatin stamp such that individual sheets in the construct were well aligned with each other (mimic of circumferential orientation) or at angles with respect to each other (mimic of herringbone structure). Controlling tissue organization layer-by-layer will be a powerful approach to building tissues with well defined and complex structure.
Collapse
Affiliation(s)
- Corin Williams
- Boston University, Department of Biomedical Engineering, 44 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
17
|
Baguneid M, de Mel A, Yildirimer L, Fuller BJ, Hamilton G, Seifalian AM. In vivo study of a model tissue-engineered small-diameter vascular bypass graft. Biotechnol Appl Biochem 2011; 58:14-24. [DOI: 10.1002/bab.8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 2011; 33:307-15. [PMID: 21279358 DOI: 10.1007/s00281-011-0258-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/19/2011] [Indexed: 01/03/2023]
Abstract
Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this "conditioning" can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in vivo.
Collapse
|
19
|
Pandis L, Zavan B, Bassetto F, Ferroni L, Iacobellis L, Abatangelo G, Lepidi S, Cortivo R, Vindigni V. Hyaluronic acid biodegradable material for reconstruction of vascular wall: a preliminary study in rats. Microsurgery 2011; 31:138-45. [PMID: 21268111 DOI: 10.1002/micr.20856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 10/14/2010] [Indexed: 11/09/2022]
Abstract
The objective of this preliminary study was to develop a reabsorbable vascular patch that did not require in vitro cell or biochemical preconditioning for vascular wall repair. Patches were composed only of hyaluronic acid (HA). Twenty male Wistar rats weighing 250-350 g were used. The abdominal aorta was exposed and isolated. A rectangular breach (1 mm × 5 mm) was made on vessel wall and arterial defect was repaired with HA made patch. Performance was assessed at 1, 2, 4, 8, and 16 weeks after surgery by histology and immunohistochemistry. Extracellular matrix components were evaluated by molecular biological methods. After 16 weeks, the biomaterial was almost completely degraded and replaced by a neoartery wall composed of endothelial cells, smooth muscle cells, collagen, and elastin fibers organized in layers. In conclusion, HA patches provide a provisional three-dimensional support to interact with cells for the control of their function, guiding the spatially and temporally multicellular processes of artery regeneration.
Collapse
Affiliation(s)
- Laura Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sierad LN, Simionescu A, Albers C, Chen J, Maivelett J, Tedder ME, Liao J, Simionescu DT. Design and Testing of a Pulsatile Conditioning System for Dynamic Endothelialization of Polyphenol-Stabilized Tissue Engineered Heart Valves. Cardiovasc Eng Technol 2010; 1:138-153. [PMID: 21340043 PMCID: PMC3039844 DOI: 10.1007/s13239-010-0014-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
Heart valve tissue engineering requires biocompatible and hemocompatible scaffolds that undergo remodeling and repopulation, but that also withstand harsh mechanical forces immediately following implantation. We hypothesized that reversibly stabilized acellular porcine valves, seeded with endothelial cells and conditioned in pulsatile bioreactors would pave the way for next generations of tissue engineered heart valves (TEHVs). A novel valve conditioning system was first designed, manufactured and tested to adequately assess TEHVs. The bioreactor created proper closing and opening of valves and allowed for multiple mounting methods in sterile conditions. Porcine aortic heart valve roots were decellularized by chemical extractions and treated with penta-galloyl glucose (PGG) for stabilization. Properties of the novel scaffolds were evaluated by testing resistance to collagenase and elastase, biaxial mechanical analysis, and thermal denaturation profiles. Porcine aortic endothelial cells were seeded onto the leaflets and whole aortic roots were mounted within the dynamic pulsatile heart valve bioreactor system under physiologic pulmonary valve pressures and analyzed after 17 days for cell viability, morphology, and metabolic activity. Our tissue preparation methods effectively removed cells, including the potent α-Gal antigen, while leaving a well preserved extra-cellular matrix scaffold with adequate mechanical properties. PGG enhanced stabilization of extracellular matrix components but also showed the ability to be reversible. Engineered valve scaffolds encouraged attachment and survival of endothelial cells for extended periods and showed signs of widespread cell coverage after conditioning. Our novel approach shows promise toward development of sturdy and durable TEHVs capable of remodeling and cellular repopulation.
Collapse
Affiliation(s)
- Leslie Neil Sierad
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| | - Agneta Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| | - Christopher Albers
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| | - Joseph Chen
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Jordan Maivelett
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| | - Mary Elizabeth Tedder
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| | - Jun Liao
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Dan T. Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, 304 Rhodes Engineering Research Center, Annex, Clemson, SC 29634-0905, USA
| |
Collapse
|
21
|
A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model. Biomaterials 2010; 31:4056-63. [DOI: 10.1016/j.biomaterials.2010.01.135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
|
22
|
Bonelli P, Nicolussi P, Manetti R, Antuofermo E, Dattena M. Monoclonal antibodies against human CD34 antigens do not cross-react with ovine umbilical cord blood cells. ITALIAN JOURNAL OF ANIMAL SCIENCE 2010. [DOI: 10.4081/ijas.2010.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Piero Bonelli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Paola Nicolussi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Roberto Manetti
- Istituto di Clinica Medica generale e Terapia medica, Università di Sassari, Italy
| | | | - Maria Dattena
- Dipartimento Ricerca nelle Produzioni Animali, AGRIS Sardegna, Olmedo (SS), Italy
| |
Collapse
|
23
|
|
24
|
Stem Cell–Derived, Tissue-Engineered Pulmonary Artery Augmentation Patches In Vivo. Ann Thorac Surg 2008; 86:132-40; discussion 140-1. [DOI: 10.1016/j.athoracsur.2008.02.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
|
25
|
Aper T, Haverich A, Teebken O. Der Traum vom idealen Bypassmaterial in der Gefäßchirurgie. GEFÄSSCHIRURGIE 2008. [DOI: 10.1007/s00772-008-0587-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|