1
|
Venardos N, Gergen AK, Jarrett M, Weyant MJ, Reece TB, Meng X, Fullerton DA. Warfarin Induces Calcification of the Aortic Valve via ERK1/2 and β-Catenin Signaling. Ann Thorac Surg 2021; 113:824-835. [PMID: 33901456 PMCID: PMC10109508 DOI: 10.1016/j.athoracsur.2021.03.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent clinical evidence suggests an association between warfarin use and calcification of the aortic valve. We sought to determine the effect of warfarin on aortic valve interstitial cell (AVIC) osteogenic protein expression and the signaling pathways by which this effect is mediated. METHODS Human AVICs were isolated from normal aortic valves of patients undergoing cardiac transplantation while diseased AVICs were isolated from patients undergoing aortic valve replacement for aortic stenosis. AVICs were treated with various anticoagulants and osteogenic protein expression was evaluated using immunoblotting. Phosphorylation of LRP6 and ERK1/2 was evaluated following treatment with warfarin. AVICs were pretreated with LRP6 inhibitor dkk1 and ERK1/2 inhibitor PD98059 followed by treatment with warfarin and osteogenic protein expression was evaluated. RESULTS Warfarin, but not heparin or dabigatran, significantly increased Runx-2 and Osx expression in both normal and diseased human AVICs. Upregulation of β-catenin protein expression and nuclear translocation occurred in diseased AVICs, but not normal AVICs after warfarin treatment. Warfarin induced phosphorylation of LRP6 in diseased AVICs only, and phosphorylation of ERK1/2 in both normal and diseased AVICs. LRP6 inhibition attenuated warfarin-induced Runx-2 expression in diseased AVICs. ERK1/2 inhibition attenuated warfarin-induced Runx-2 expression in both normal and diseased AVICs. CONCLUSIONS Warfarin induces osteogenic activity in normal and diseased isolated human AVICs. This effect is mediated by ERK1/2 in both diseased and normal AVICs, but in diseased AVICs, β-catenin signaling also plays a role. These results implicate the role of warfarin in aortic valve calcification and highlight potential mechanisms for warfarin-induced aortic stenosis.
Collapse
Affiliation(s)
- Neil Venardos
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| | - Anna K Gergen
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA.
| | - Michael Jarrett
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| | - Michael J Weyant
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| | - T Brett Reece
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| | - Xianzhong Meng
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| | - David A Fullerton
- University of Colorado School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Aurora, CO, USA
| |
Collapse
|
2
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
3
|
Effects of Quercetin on Cardiac Function in Pressure Overload and Postischemic Cardiac Injury in Rodents: a Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther 2020; 36:15-29. [PMID: 33064235 DOI: 10.1007/s10557-020-07100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Cardiac dysfunction can occur as a sequela of a state of prolonged pressure overload and postischemic injury. Flavonoids such as quercetin may be protective against cardiovascular disease. This study aimed to systematically assess the effects of quercetin on cardiac function in pressure overload and postischemia-reperfusion injury in rodents. METHODS A systematic search of the literature up to May 2020 was conducted in PubMed, Ovid Medline, EBSCOhost, Scopus, and the Cochrane Library to identify relevant published studies on quercetin and cardiac function using standardized criteria. Meta-analyses were performed on animal studies of pressure overload and ischemia-reperfusion (I/R) injury. RESULTS The effects of quercetin on cardiac function in both models were qualitatively reported in 14 studies. The effects of quercetin in four pressure-overload model studies involving 73 rodents and eight I/R-injury model studies involving 120 rodents were quantitatively assessed by meta-analysis. Quercetin improved the overall cardiac function in both pressure overload (n = 4 studies, n = 73 rodents; SMD = - 1.50; 95% CI: - 2.66 to - 0.33; P < 0.05; I2 = 74.05%) and I/R injury (n = 8 studies, n = 120 rodents; SMD = - 1.81; 95% CI: - 3.05 to - 0.56; P < 0.01; I2 = 84.93%) models. The improvement was associated with amelioration in cardiac structure in the pressure-overload model and both systolic and diastolic functioning in the I/R-injury model. CONCLUSION The present meta-analysis suggested that quercetin has beneficial effects for improving cardiac left ventricular dysfunction in both pressure-overload and I/R-injury models.
Collapse
|
4
|
The impact of altered mechanobiology on aortic valve pathophysiology. Arch Biochem Biophys 2020; 691:108463. [PMID: 32590066 DOI: 10.1016/j.abb.2020.108463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/28/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Until recently, CAVD was viewed as a passive, degenerative process and an inevitable consequence of aging. Recent improvements in disease modeling, imaging, and analysis have greatly enhanced our understanding of CAVD. The aortic valve and its constituent cells are subjected to extreme changes in mechanical forces, so it follows that any changes in the underlying mechanobiology of the valve and its cells would have dire effects on function. Further, the mechanobiology of the aortic valve is intimately intertwined with numerous molecular pathways, with signal transduction between these aspects afforded by the dynamic plasma membrane. Changes to the plasma membrane itself, its regulation of the extracellular matrix, or the relay of signals into or out of the cell would negatively impact cell and tissue function. PURPOSE OF REVIEW This review seeks to detail past and current published reports related to the mechanobiology of the aortic valve with a special emphasis on the implications of altered mechanobiology in the context of calcific aortic valve disease. RECENT FINDINGS Investigations characterizing membrane composition and dynamics have provided new insights into the earliest stages of calcific aortic valve disease. Recent studies have suggested that the activation or suppression of key pathways contribute to disease progression but may also offer therapeutic targets. SUMMARY This review highlights the critical involvement of mechanobiology and membrane dynamics in normal aortic valve physiology as well as valve pathology.
Collapse
|
5
|
Pagnozzi LA, Butcher JT. Mechanotransduction Mechanisms in Mitral Valve Physiology and Disease Pathogenesis. Front Cardiovasc Med 2017; 4:83. [PMID: 29312958 PMCID: PMC5744129 DOI: 10.3389/fcvm.2017.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The mitral valve exists in a mechanically demanding environment, with the stress of each cardiac cycle deforming and shearing the native fibroblasts and endothelial cells. Cells and their extracellular matrix exhibit a dynamic reciprocity in the growth and formation of tissue through mechanotransduction and continuously adapt to physical cues in their environment through gene, protein, and cytokine expression. Valve disease is the most common congenital heart defect with watchful waiting and valve replacement surgery the only treatment option. Mitral valve disease (MVD) has been linked to a variety of mechano-active genes ranging from extracellular components, mechanotransductive elements, and cytoplasmic and nuclear transcription factors. Specialized cell receptors, such as adherens junctions, cadherins, integrins, primary cilia, ion channels, caveolae, and the glycocalyx, convert mechanical cues into biochemical responses via a complex of mechanoresponsive elements, shared signaling modalities, and integrated frameworks. Understanding mechanosensing and transduction in mitral valve-specific cells may allow us to discover unique signal transduction pathways between cells and their environment, leading to cell or tissue specific mechanically targeted therapeutics for MVD.
Collapse
Affiliation(s)
- Leah A. Pagnozzi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017; 49:1981-1997. [DOI: 10.1007/s00726-017-2432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
7
|
Roosens A, Puype I, Cornelissen R. Scaffold-free high throughput generation of quiescent valvular microtissues. J Mol Cell Cardiol 2017; 106:45-54. [PMID: 28322869 DOI: 10.1016/j.yjmcc.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
AIMS The major challenge of working with valvular interstitial cells in vitro is the preservation or recovery of their native quiescent state. In this study, a biomimetic approach is used which aims to engineer small volume, high quality valve microtissues, having a potential in regenerative medicine and as a relevant 3D in vitro model to provide insights into valve (patho)biology. METHODS AND RESULTS To form micro-aggregates, porcine valvular interstitial cells were seeded in agarose micro-wells and cultured in medium supplemented with 250μM Ascorbic Acid 2-phosphate for 22days. Histology showed viable aggregates with normal nuclei and without any signs of calcification. Aggregates stained strongly for GAG and collagen I and reticular fibers were present. ECM formation was quantified and showed a significant increase of GAG, elastin and Col I during aggregate culture. Cultivation of VIC in aggregates also promoted mRNA expression of Col I/III/V, elastin, hyaluronan, biglycan, decorin, versican MMP-1/2/3/9 and TIMP-2 compared to monolayer cultured VIC. Phenotype analysis of aggregates showed a significant decrease in α-SMA expression, and an increase in FSP-1 expression at any time point. Furthermore, VIC aggregates did not show a significant difference in OCN, Egr-1, Sox-9 or Runx2 expression. CONCLUSION In this study high quality valvular interstitial cell aggregates were generated that are able to produce their own ECM, resembling the native valve composition. The applied and completely cell driven 3D approach overcomes the problems of VIC activation in 2D, by downregulating α-SMA expression and stimulating a homeostatic quiescent VIC state.
Collapse
Affiliation(s)
- Annelies Roosens
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Inès Puype
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| | - Ria Cornelissen
- Department of Basic Medical Sciences, Tissue Engineering Group, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Ali MS, Wang X, Lacerda CMR. A survey of membrane receptor regulation in valvular interstitial cells cultured under mechanical stresses. Exp Cell Res 2017; 351:150-156. [PMID: 28109865 DOI: 10.1016/j.yexcr.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/01/2022]
Abstract
Degenerative valvular diseases have been linked to the action of abnormal forces on valve tissues during each cardiac cycle. It is now accepted that the degenerative behavior of valvular cells can be induced mechanically in vitro. This approach of in vitro modeling of valvular cells in culture constitutes a powerful tool to study, characterize, and develop predictors of heart valve degeneration in vivo. Using such in vitro systems, we expect to determine the exact signaling mechanisms that trigger and mediate propagation of degenerative signals. In this study, we aim to uncover the role of mechanosensing proteins on valvular cell membranes. These can be cell receptors and triggers of downstream pathways that are activated upon the action of cyclical tensile strains in pathophysiological conditions. In order to identify mechanosensors of tensile stresses on valvular interstitial cells, we employed biaxial cyclic strain of valvular cells in culture and quantitatively evaluated the expression of cell membrane proteins using a targeted protein array and interactome analyses. This approach yielded a high-throughput screening of all cell surface proteins involved in sensing mechanical stimuli. In this study, we were able to identify the cell membrane proteins which are activated during physiological cyclic tensile stresses of valvular cells. The proteins identified in this study were clustered into four interactomes, which included CC chemokine ligands, thrombospondin (adhesive glycoproteins), growth factors, and interleukins. The expression levels of these proteins generally indicated that cells tend to increase adhesive efforts to counteract the action of mechanical forces. This is the first study of this kind used to comprehensively identify the mechanosensitive proteins in valvular cells.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, 6th St and Canton Avenue, Lubbock, TX, 79409-3121 USA.
| |
Collapse
|
9
|
Sapp MC, Krishnamurthy VK, Puperi DS, Bhatnagar S, Fatora G, Mutyala N, Grande-Allen KJ. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves. J R Soc Interface 2016; 13:20160449. [PMID: 28003526 PMCID: PMC5221519 DOI: 10.1098/rsif.2016.0449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Tissue oxygenation often plays a significant role in disease and is an essential design consideration for tissue engineering. Here, oxygen diffusion profiles of porcine aortic and mitral valve leaflets were determined using an oxygen diffusion chamber in conjunction with computational models. Results from these studies revealed the differences between aortic and mitral valve leaflet diffusion profiles and suggested that diffusion alone was insufficient for normal oxygen delivery in mitral valves. During fibrotic valve disease, leaflet thickening due to abnormal extracellular matrix is likely to reduce regional oxygen availability. To assess the impact of low oxygen levels on valve behaviour, whole leaflet organ cultures were created to induce leaflet hypoxia. These studies revealed a loss of layer stratification and elevated levels of hypoxia inducible factor 1-alpha in both aortic and mitral valve hypoxic groups. Mitral valves also exhibited altered expression of angiogenic factors in response to low oxygen environments when compared with normoxic groups. Hypoxia affected aortic and mitral valves differently, and mitral valves appeared to show a stenotic, rheumatic phenotype accompanied by significant cell death. These results indicate that hypoxia could be a factor in mid to late valve disease progression, especially with the reduction in chondromodulin-1 expression shown by hypoxic mitral valves.
Collapse
Affiliation(s)
- Matthew C Sapp
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Saheba Bhatnagar
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Gabrielle Fatora
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Neelesh Mutyala
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
10
|
Liu X, Xu Z. Osteogenesis in calcified aortic valve disease: From histopathological observation towards molecular understanding. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:156-161. [DOI: 10.1016/j.pbiomolbio.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
|
11
|
Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro. Cardiovasc Pathol 2016; 25:316-324. [PMID: 27174867 DOI: 10.1016/j.carpath.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD.
Collapse
|
12
|
Horne TE, VandeKopple M, Sauls K, Koenig SN, Anstine LJ, Garg V, Norris RA, Lincoln J. Dynamic Heterogeneity of the Heart Valve Interstitial Cell Population in Mitral Valve Health and Disease. J Cardiovasc Dev Dis 2015; 2:214-232. [PMID: 26527432 PMCID: PMC4625550 DOI: 10.3390/jcdd2030214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The heart valve interstitial cell (VIC) population is dynamic and thought to mediate lay down and maintenance of the tri-laminar extracellular matrix (ECM) structure within the developing and mature valve throughout life. Disturbances in the contribution and distribution of valve ECM components are detrimental to biomechanical function and associated with disease. This pathological process is associated with activation of resident VICs that in the absence of disease reside as quiescent cells. While these paradigms have been long standing, characterization of this abundant and ever-changing valve cell population is incomplete. Here we examine the expression pattern of Smooth muscle α-actin, Periostin, Twist1 and Vimentin in cultured VICs, heart valves from healthy embryonic, postnatal and adult mice, as well as mature valves from human patients and established mouse models of disease. We show that the VIC population is highly heterogeneous and phenotypes are dependent on age, species, location, and disease state. Furthermore, we identify phenotypic diversity across common models of mitral valve disease. These studies significantly contribute to characterizing the VIC population in health and disease and provide insights into the cellular dynamics that maintain valve structure in healthy adults and mediate pathologic remodeling in disease states.
Collapse
Affiliation(s)
- Tori E Horne
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
| | - Matthew VandeKopple
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
| | - Kimberly Sauls
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.); (R.A.N.)
| | - Sara N Koenig
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
| | - Lindsey J Anstine
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.); (R.A.N.)
| | - Joy Lincoln
- Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital Research Institute, 575 Children's Drive, Research Building III, WB4239, Columbus, OH 43215, USA; (T.E.H.); (M.V.); (S.N.K.); (L.J.A.); (V.G.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA
| |
Collapse
|
13
|
Abstract
Fibrotic cardiac disease, a leading cause of death worldwide, manifests as substantial loss of function following maladaptive tissue remodeling. Fibrosis can affect both the heart valves and the myocardium and is characterized by the activation of fibroblasts and accumulation of extracellular matrix. Valvular interstitial cells and cardiac fibroblasts, the cell types responsible for maintenance of cardiac extracellular matrix, are sensitive to changing mechanical environments, and their ability to sense and respond to mechanical forces determines both normal development and the progression of disease. Recent studies have uncovered specific adhesion proteins and mechano-sensitive signaling pathways that contribute to the progression of fibrosis. Integrins form adhesions with the extracellular matrix, and respond to changes in substrate stiffness and extracellular matrix composition. Cadherins mechanically link neighboring cells and are likely to contribute to fibrotic disease propagation. Finally, transition to the active myofibroblast phenotype leads to maladaptive tissue remodeling and enhanced mechanotransductive signaling, forming a positive feedback loop that contributes to heart failure. This Commentary summarizes recent findings on the role of mechanotransduction through integrins and cadherins to perpetuate mechanically induced differentiation and fibrosis in the context of cardiac disease.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
14
|
Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, Cuchiara ML, West JL, Grande-Allen KJ. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater 2015; 14:11-21. [PMID: 25433168 PMCID: PMC4334908 DOI: 10.1016/j.actbio.2014.11.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
Abstract
The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Bin Xu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Aline L Yonezawa
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hubert Tseng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maude L Cuchiara
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
15
|
Jana S, Tranquillo RT, Lerman A. Cells for tissue engineering of cardiac valves. J Tissue Eng Regen Med 2015; 10:804-824. [DOI: 10.1002/term.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Soumen Jana
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| | - Robert T. Tranquillo
- Department of Biomedical Engineering; University of Minnesota; Minneapolis MN USA
| | - Amir Lerman
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester MN USA
| |
Collapse
|
16
|
Liu MM, Flanagan TC, Lu CC, French AT, Argyle DJ, Corcoran BM. Culture and characterisation of canine mitral valve interstitial and endothelial cells. Vet J 2015; 204:32-9. [PMID: 25747697 DOI: 10.1016/j.tvjl.2015.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/07/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
Abstract
Valve interstitial cells (VICs) have an important role in the aetiopathogenesis of myxomatous mitral valve disease (MMVD) in the dog. Furthermore, there is evidence that valve endothelial cells (VECs) also contribute to disease development. In addition to examining native valve tissue to understand MMVD, another strategy is to separately examine VIC and VEC biology under in vitro culture conditions. The aim of this study was to isolate and characterise canine mitral VICs and VECs from normal dog valves using a combination of morphology, immunohistochemistry and reverse transcription PCR (RT-PCR). Canine mitral VECs and VICs were isolated and cultured in vitro. The two cell populations exhibited different morphologies and growth patterns. VECs, but not VICs, expressed the endothelial markers, platelet endothelial cell adhesion molecule (PECAM-1 or CD31) and acetylated low density lipoprotein (Dil-Ac-LDL). Both VECs and VICs expressed vimentin and embryonic non-smooth muscle myosin heavy chain (SMemb), an activated mesenchymal cell marker. The myofibroblast marker, alpha smooth muscle actin (α-SMA), was detected at the mRNA level in both VEC and VIC cultures, but only at the protein level in VIC cultures. The morphological heterogeneity and expression of non-endothelial phenotypic markers in VEC cultures suggested that a mixture of cell types was present, which might be due to cell contamination and/or endothelial-mesenchymal transition (EndoMT). The use of a specific endothelial culture medium for primary VEC cultures enhanced the endothelial properties of the cells and reduced α-SMA and SMemb expression.
Collapse
Affiliation(s)
- M-M Liu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - T C Flanagan
- School of Medicine & Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - C-C Lu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - A T French
- University of Glasgow School of Veterinary Medicine, Bearsden Road, Glasgow, Scotland G61 1QH, United Kingdom
| | - D J Argyle
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom.
| |
Collapse
|
17
|
Poggio P, Branchetti E, Grau JB, Lai EK, Gorman RC, Gorman JH, Sacks MS, Bavaria JE, Ferrari G. Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-Akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis. Arterioscler Thromb Vasc Biol 2014; 34:2086-94. [PMID: 25060796 DOI: 10.1161/atvbaha.113.303017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The activation of valve interstitial cells (VICs) toward an osteogenic phenotype characterizes aortic valve sclerosis, the early asymptomatic phase of calcific aortic valve disease. Osteopontin is a phosphorylated acidic glycoprotein that accumulates within the aortic leaflets and labels VIC activation even in noncalcified asymptomatic patients. Despite this, osteopontin protects VICs against in vitro calcification. Here, we hypothesize that the specific interaction of osteopontin with CD44v6, and the related intracellular pathway, prevents calcium deposition in human-derived VICs from patients with aortic valve sclerosis. APPROACH AND RESULTS On informed consent, 23 patients and 4 controls were enrolled through the cardiac surgery and heart transplant programs. Human aortic valves and VICs were tested for osteogenic transdifferentiation, ex vivo and in vitro. Osteopontin-CD44 interaction was analyzed using proximity ligation assay and the signaling pathways investigated. A murine model based on angiotensin II infusion was used to mimic early pathological remodeling of the aortic valves. We report osteopontin-CD44 functional interaction as a hallmark of early stages of calcific aortic valve disease. We demonstrated that osteopontin-CD44 interaction mediates calcium deposition via phospho-Akt in VICs from patients with noncalcified aortic valve sclerosis. Finally, microdissection analysis of murine valves shows increased cusp thickness in angiotensin II-treated mice versus saline infused along with colocalization of osteopontin and CD44 as seen in human lesions. CONCLUSIONS Here, we unveil a specific protein-protein association and intracellular signaling mechanisms of osteopontin. Understanding the molecular mechanisms of early VIC activation and calcium deposition in asymptomatic stage of calcific aortic valve disease could open new prospective for diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Paolo Poggio
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Emanuela Branchetti
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Juan B Grau
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Eric K Lai
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Robert C Gorman
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Joseph H Gorman
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Michael S Sacks
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Joseph E Bavaria
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.)
| | - Giovanni Ferrari
- From the Department of Surgery, Perelman School of Medicine at University of Pennsylvania, Philadelphia (P.P., E.B., J.B.G., E.K.L., R.C.G., J.H.G., J.E.B., G.F.); Centro Cardiologico Monzino IRCCS, Milan, Italy (P.P.); Columbia University-Valley Heart Center, Ridgewood, NJ (J.B.G.); and Department of Biomedical Engineering, University of Texas at Austin (M.S.S.).
| |
Collapse
|
18
|
Abstract
The aortic valve is highly responsive to cyclical and continuous mechanical forces, at the macroscopic and cellular levels. In this report, we delineate mechanokinetics (effects of mechanical inputs on the cells) and mechanodynamics (effects of cells and pathologic processes on the mechanics) of the aortic valve, with a particular focus on how mechanical inputs synergize with the inflammatory cytokine and other biomolecular signaling to contribute to the process of aortic valve calcification.
Collapse
|
19
|
Xu S, Gotlieb AI. Wnt3a/β-catenin increases proliferation in heart valve interstitial cells. Cardiovasc Pathol 2012; 22:156-66. [PMID: 22889676 DOI: 10.1016/j.carpath.2012.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Valve interstitial cells (VICs), the most prevalent cells in the heart valve, mediate normal valve function and repair in valve injury and disease. The Wnt3a/β-catenin pathway, important for proliferation and endothelial-to-mesenchymal transition in endocardial cushion formation in valve development, is up-regulated in adult valves with calcific aortic stenosis. Therefore, we tested the hypothesis that Wnt3a/β-catenin signaling regulates proliferation in adult VICs. METHODS Porcine VICs were treated with 150 ng/ml of exogenous Wnt3a. To measure proliferation, cells were counted on day 4 posttreatment and stained for bromodeoxyuridine (BrdU) at 24 h posttreatment. β-Catenin small interfering RNA (siRNA) was used to knock down β-catenin expression. Apoptosis was measured with terminal deoxynucleotidyl transferase dUTP nick end labeling assay. To assess changes in β-catenin, cells were stained for β-catenin at days 1, 3, 6, and 9 posttreatment. Western blot for β-catenin was performed on whole cell, cytoplasmic, and nuclear extracts at day 4 posttreatment. To measure β-catenin-mediated transcription, TOPFLASH/FOPFLASH reporter assay was performed at 24 h posttreatment. RESULTS Wnt3a produced a significant increase in cell number at day 4 posttreatment and in the percentage of BrdU-positive nuclei at 24 h posttreatment. The increase in proliferation was abolished by β-catenin siRNA. Apoptosis was minimal in all conditions. Wnt3a produced progressively greater β-catenin staining as treatment length increased from 1 to 9 days. Wnt3a produced a significant increase in β-catenin protein in both whole cell and nuclear lysates after 4 days of treatment. Wnt3a significantly increased TOPFLASH/FOPFLASH reporter activity after 24 h of treatment. CONCLUSION Wnt3a/β-catenin signaling pathway is an important regulator of proliferation in adult VICs.
Collapse
Affiliation(s)
- Songyi Xu
- Department of Pathology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
20
|
Matthes SA, Taffet S, Delmar M. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. ACTA ACUST UNITED AC 2011; 18:73-84. [PMID: 21985446 DOI: 10.3109/15419061.2011.621561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|