1
|
Shaffer A, Nigh N, Weisbaum D, Anderson A, Wszalek T, Sutton BP, Webb A, Damon B, Moussa I, Arnold PM. Cardiothoracic and Vascular Surgery Implant Compatibility With Ultrahigh Field Magnetic Resonance Imaging (4.7 Tesla and 7 Tesla). Am J Cardiol 2023; 201:239-246. [PMID: 37392607 DOI: 10.1016/j.amjcard.2023.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
The use of 7 Tesla (T) magnetic resonance imaging (MRI) is expanding across medical specialties, particularly, clinical neurosciences and orthopedics. Investigational 7 T MRI has also been performed in cardiology. A limiting factor for expansion of the role of 7 T, irrespective of the body part being imaged, is the sparse testing of biomedical implant compatibility at field strengths >3 T. Implant compatibility can be tested following the American Society for Testing and Materials International guidelines. To assess the current state of cardiovascular implant safety at field strengths >3 T, a systematic search was performed using PubMed, Web of Science, and citation matching. Studies written in English that included at least 1 cardiovascular-related implant and at least 1 safety outcome (deflection angle, torque, or temperature change) were included. Data were extracted for the implant studied, implant composition, deflection angle, torque, and temperature change, and the American Society for Testing and Materials International standards were followed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines for scoping reviews were followed. A total of 9 studies were included. A total of 34 cardiovascular-related implants tested ex vivo at 7 T and 91 implants tested ex vivo at 4.7 T were included. The implants included vascular grafts and conduits, vascular access ports, peripheral and coronary stents, caval filters, and artificial valves. A total of 2 grafts, 1 vascular access port, 2 vena cava filters, and 5 stents were identified as incompatible with the 7 T MRI. All incompatible stents were 40 mm in length. Based on the safety outcomes reported, we identify several implants that may be compatible with >3 T MRI. This scoping review seeks to concisely summarize all the cardiovascular-related implants tested for ultrahigh field MRI compatibility to date.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Noah Nigh
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois
| | - David Weisbaum
- Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois
| | - Aaron Anderson
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tracey Wszalek
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bradley P Sutton
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Bruce Damon
- Carle Illinois Advanced Imaging Center, Carle Foundation Hospital, Urbana, Illinois; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Issam Moussa
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Heart and Vascular Institute, Carle Foundation Hospital, Urbana, Illinois
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana, Illinois; Department of Neurosurgery, Carle Foundation Hospital, Urbana, Illinois.
| |
Collapse
|
2
|
6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells. J Nutr Biochem 2022; 104:108975. [PMID: 35245652 DOI: 10.1016/j.jnutbio.2022.108975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/02/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.
Collapse
|
3
|
Beijnink CWH, van der Hoeven NW, Konijnenberg LSF, Kim RJ, Bekkers SCAM, Kloner RA, Everaars H, El Messaoudi S, van Rossum AC, van Royen N, Nijveldt R. Cardiac MRI to Visualize Myocardial Damage after ST-Segment Elevation Myocardial Infarction: A Review of Its Histologic Validation. Radiology 2021; 301:4-18. [PMID: 34427461 DOI: 10.1148/radiol.2021204265] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac MRI is a noninvasive diagnostic tool using nonionizing radiation that is widely used in patients with ST-segment elevation myocardial infarction (STEMI). Cardiac MRI depicts different prognosticating components of myocardial damage such as edema, intramyocardial hemorrhage (IMH), microvascular obstruction (MVO), and fibrosis. But how do cardiac MRI findings correlate to histologic findings? Shortly after STEMI, T2-weighted imaging and T2* mapping cardiac MRI depict, respectively, edema and IMH. The acute infarct size can be determined with late gadolinium enhancement (LGE) cardiac MRI. T2-weighted MRI should not be used for area-at-risk delineation because T2 values change dynamically over the first few days after STEMI and the severity of T2 abnormalities can be modulated with treatment. Furthermore, LGE cardiac MRI is the most accurate method to visualize MVO, which is characterized by hemorrhage, microvascular injury, and necrosis in histologic samples. In the chronic setting post-STEMI, LGE cardiac MRI is best used to detect replacement fibrosis (ie, final infarct size after injury healing). Finally, native T1 mapping has recently emerged as a contrast material-free method to measure infarct size that, however, remains inferior to LGE cardiac MRI. Especially LGE cardiac MRI-defined infarct size and the presence and extent of MVO may be used to monitor the effect of new therapeutic interventions in the treatment of reperfusion injury and infarct size reduction. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Casper W H Beijnink
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Nina W van der Hoeven
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Lara S F Konijnenberg
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Raymond J Kim
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Sebastiaan C A M Bekkers
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robert A Kloner
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Henk Everaars
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Saloua El Messaoudi
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Albert C van Rossum
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Niels van Royen
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| | - Robin Nijveldt
- From the Department of Cardiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (C.W.H.B., L.S.F.K., S.E.M., N.v.R., R.N.); Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands (N.W.v.d.H., H.E., A.C.v.R.); Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.K.); Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands (S.C.A.M.B.); Huntington Medical Research Institutes, Pasadena, Calif (R.A.K.); and Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, Calif (R.A.K.)
| |
Collapse
|
4
|
Yu Y, Qin N, Lu XA, Li J, Han X, Ni X, Ye L, Shen Z, Chen W, Zhao ZA, Lei W, Hu S. Human embryonic stem cell-derived cardiomyocyte therapy in mouse permanent ischemia and ischemia-reperfusion models. Stem Cell Res Ther 2019; 10:167. [PMID: 31196181 PMCID: PMC6567449 DOI: 10.1186/s13287-019-1271-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ischemic heart diseases are still a threat to human health. Human pluripotent stem cell-based transplantation exhibits great promise in cardiovascular disease therapy, including heart ischemia. The purpose of this study was to compare the efficacy of human embryonic stem cell-derived cardiomyocyte (ESC-CM) therapy in two heart ischemia models, namely, permanent ischemia (PI) and myocardial ischemia reperfusion (IR). Methods Human embryonic stem cell-derived cardiomyocytes were differentiated from engineered human embryonic stem cells (ESC-Rep) carrying green fluorescent protein (GFP), herpes simplex virus-1 thymidine kinase (HSVtk), and firefly luciferase (Fluc). Two different heart ischemia models were generated by the ligation of the left anterior descending artery (LAD), and ESC-Rep-derived cardiomyocytes (ESC-Rep-CMs) were transplanted into the mouse hearts. Cardiac function was analyzed to evaluate the outcomes of ESC-Rep-CM transplantation. Bioluminescence signal analysis was performed to assess the cell engraftment. Finally, the inflammation response was analyzed by real-time PCR and ELISA. Results Cardiac function was significantly improved in the PI group with ESC-Rep-CM injection compared to the PBS-injected control, as indicated by increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), as well as reduced fibrotic area. However, minimal improvement by ESC-Rep-CM injection was detected in the IR mouse model. We observed similar engraftment efficiency between PI and IR groups after ESC-Rep-CM injection. However, the restricted inflammation was observed after the injection of ESC-Rep-CMs in the PI group, but not in the IR group. Transplantation of ESC-Rep-CMs can partially preserve the heart function via regulating the inflammation response in the PI model, while little improvement of cardiac function in the IR model may be due to the less dynamic inflammation response by the mild heart damage. Conclusions Our findings identified the anti-inflammatory effect of ESC-CMs as a possible therapeutic mechanism to improve cardiac function in the ischemic heart. Electronic supplementary material The online version of this article (10.1186/s13287-019-1271-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Nianci Qin
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Xing-Ai Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Ghotbi AA, Clemmensen A, Kyhl K, Follin B, Hasbak P, Engstrøm T, Ripa RS, Kjaer A. Rubidium-82 PET imaging is feasible in a rat myocardial infarction model. J Nucl Cardiol 2019; 26:798-809. [PMID: 28721647 PMCID: PMC6517336 DOI: 10.1007/s12350-017-0994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/29/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Small-animal myocardial infarct models are frequently used in the assessment of new cardioprotective strategies. A validated quantification of perfusion using a non-cyclotron-dependent PET tracer would be of importance in monitoring response to therapy. We tested whether myocardial PET perfusion imaging is feasible with Rubidium-82 (82Rb) in a small-animal scanner using a rat myocardial infarct model. METHODS 18 Sprague-Dawley rats underwent permanent coronary artery ligation (infarct group), and 11 rats underwent ischemia-reperfusion (reperfusion group) procedure. 82Rb-PET and magnetic resonance imaging (MRI) were conducted before and after the intervention. Perfusion was compared to both left ventricle ejection fraction (LVEF) and infarct size assessed by MRI. RESULTS Follow-up global 82Rb-uptake correlated significantly with infarct size (infarct group: r = -0.81, P < 0.001 and reperfusion group: r = -0.61, P = 0.04). Only 82Rb-uptake in the infarct group correlated with LVEF. At follow-up, a higher segmental 82Rb-uptake in the infarct group was associated with better wall motion (β = 0.034, CI [0.028;0.039], P < 0.001, R2 = 0.30), and inversely associated with scar transmurality (β = -2.4 [-2.6; -2.2], P < 0.001, R2 = 0.59). The associations were similar for the reperfusion group. CONCLUSION 82Rb-PET is feasible in small animal scanners despite the long positron range and enables fast and time-efficient myocardial perfusion imaging in rat models.
Collapse
Affiliation(s)
- Adam Ali Ghotbi
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Andreas Clemmensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kasper Kyhl
- Department of Cardiology, The Heart Center, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cardiology Stem Cell Center, The Heart Center, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Center, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
6
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
7
|
Fang Z, Luo W, Luo Y. Protective effect of α-mangostin against CoCl2-induced apoptosis by suppressing oxidative stress in H9C2 rat cardiomyoblasts. Mol Med Rep 2018; 17:6697-6704. [PMID: 29512772 DOI: 10.3892/mmr.2018.8680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/01/2018] [Indexed: 12/07/2022] Open
Abstract
Garcinia mangostana (a fruit) has been commonly used as a traditional drug in the treatment of various types of diseases. The aim of the present study was to evaluate the potential protective effect of α‑mangostin (α‑MG), a primary constituent extracted from the hull of the G. mangostana fruit (mangosteen), against CoCl2‑induced apoptotic damage in H9C2 rat cardiomyoblasts. α‑MG was demonstrated to significantly improve the viability of the CoCl2‑treated cells by up to 79.6%, attenuating CoCl2‑induced damage. Further studies revealed that α‑MG exerted a positive effect in terms of decreased reactive oxygen species generation, malondialdehyde concentration, cellular apoptosis, and increased superoxide dismutase activity. Furthermore, treatment with CoCl2 increased the cleavage of caspase‑9, caspase‑3 and apoptosis regulator BAX, and reduced apoptosis regulator Bcl‑2 in H9C2 cells, as measured by reverse transcription‑quantitative polymerase chain reaction and western blotting, which were significantly reversed by co‑treatment with α‑MG (0.06 and 0.3 mM). In conclusion, these results demonstrated that α‑MG protects H9C2 cells against CoCl2‑induced hypoxic injury, indicating that α‑MG is a potential therapeutic agent for cardiac hypoxic injury.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wanjun Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanli Luo
- International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Lim SH. Larch Arabinogalactan Attenuates Myocardial Injury by Inhibiting Apoptotic Cascades in a Rat Model of Ischemia–Reperfusion. J Med Food 2017. [DOI: 10.1089/jmf.2016.3886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Sun-Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Korea
| |
Collapse
|
9
|
van Zuylen VL, den Haan MC, Roelofs H, Fibbe WE, Schalij MJ, Atsma DE. Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion. SPRINGERPLUS 2015; 4:336. [PMID: 26185738 PMCID: PMC4498004 DOI: 10.1186/s40064-015-1128-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022]
Abstract
Myocardial infarction animal studies are used to study disease mechanisms and new treatment options. Typically, myocardial infarction (MI) is induced by permanent occlusion of the left anterior descending artery. Since in MI patients coronary blood flow is often restored new experimental models better reflecting clinical practice are needed. Here, permanent ischemia MI (PI group) was compared with transient ischemia (45 min) (IR group) in immunodeficient NOD/Scid mice. Cardiac function, infarct size, wall thickness and total collagen deposition were significantly reduced only in PI mice. Cardiac inflammatory cells and serum cytokine levels were less dynamic in IR animals compared to PI. So although IR better reflects clinical practice, it is secondary to PI for investigating cell therapy, since it induces too little damage to provide a measurable therapeutic window. MI did result in significant changes in the inflammatory state, indicating this immunodeficient mouse strain is valuable to study human cell therapy.
Collapse
Affiliation(s)
- Vanessa-Leigh van Zuylen
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Melina C den Haan
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Wang Z, Liao SG, He Y, Li J, Zhong RF, He X, Liu Y, Xiao TT, Lan YY, Long QD, Wang YL. Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:540-545. [PMID: 23542142 DOI: 10.1016/j.jep.2013.03.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Except for as a well-known tonic Chinese herbal medicine for the treatment of splenic asthenia, anorexia, lassitude and weakness, the roots of Pseudostellaria heterophylla was also used in Chinese medicines for the treatment of palpitation. AIM OF THE STUDY The study was designed to determine whether fractions from Pseudostellaria heterophylla could provide cardioprotection on hypoxic cardiomyocytes, what structural types of compounds were responsible for the observed effects, and which is the possible mechanism of action. MATERIALS AND METHODS The roots of Pseudostellaria heterophylla were extracted successively with 70% aqueous ethanol and water to give a 70% ethanol extract and a water extract. The latter was first precipitated by 80% ethanol and then protein-removed by the Sevag method to give a fraction enriched in polysaccarides (PHP). The former was separated by column chromatography into a fraction enriched in small-molecule sugars and amino acids (PHSSAC), saponins (PHS), cyclopeptides (PHCP), and sapogenins (PHSG). UV spectral or chemical methods were used to confirm the five fractions. The cardioprotective effects of the fractions were evaluated by measuring the viability and the leakage of lactate dehydrogenase (LDH) of the fraction-pretreated cardiomyocyte H9c2 after exposure to CoCl2-induced hypoxia. The mechanism of action was studied by investigating the nature of cell death inhibition (by Annexin V/PI flow cytometric analysis) and their effects on the levels of malonaldehyde (MDA), superoxide dismutase (SOD) and intracellular reactive oxygen species (ROS). RESULTS Fractions PHS and PHP could attenuate CoCl2-induced hypoxic damage to an extent higher than or comparable to the effect of the positive control N-acetyl-l-cysteine (NAC). Pretreatment of the cells with 800 μg/mL of PHS or 10mg/mL of PHP markedly decreased the level of MDA, reduced intracellular ROS, increased the activity of SOD, and reduced leakage of LDH to the levels close to or better than that with 326 μg/mL of NAC. Reduction of apoptosis was also observed for both fractions. CONCLUSIONS The overall results suggested that the traditional use of this plant for the treatment of palpitation may be attributed to the presence of cardioprotective agents in Pseudostellaria heterophylla. PHP and PHS were the two active fractions responsible for its cardioprotective effect. The mechanism might involve protections of the cell membrane from hypoxic damage and of the cells from oxidative injury via preventing increased oxidative stress. Protection of the cells via inhibition of cellular apoptosis may also be involved.
Collapse
Affiliation(s)
- Zhen Wang
- Provincial Key Laboratory of Pharmaceutics in Guizhou Province, School of Pharmacy, Guiyang Medical College, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|