1
|
Takafuji M, Ishida M, Nakamura S, Nakata K, Ito H, Kokawa T, Domae K, Araki S, Nakamori S, Ishiura J, Dohi K, Sakuma H. Microvascular Dysfunction in Patients with Idiopathic Dilated Cardiomyopathy: Quantitative Assessment with Phase Contrast Cine MR Imaging of the Coronary Sinus. Magn Reson Med Sci 2025; 24:10-19. [PMID: 37766549 PMCID: PMC11733506 DOI: 10.2463/mrms.mp.2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE The purposes of this study were to compare global coronary flow reserve (CFR) between patients with idiopathic dilated cardiomyopathy (DCM) and risk-matched controls using cardiac MRI (CMR), and to evaluate the relationship between global CFR and CMR left ventricular (LV) parameters. METHODS Twenty-six patients with DCM and 26 risk-matched controls who underwent comprehensive CMR examination, including stress-rest coronary sinus flow measurement by phase contrast (PC) cine CMR were retrospectively studied. LV peak global longitudinal, radial, and circumferential strains (GLS, GRS, and GCS) were determined by feature tracking. RESULTS Patients with DCM had significantly lower global CFR compared with the risk-matched controls (2.87 ± 0.86 vs. 4.03 ± 1.47, P = 0.001). Among the parameters, univariate linear regression analyses revealed significant correlation of global CFR with LV end-diastolic volume index (r = -0.396, P = 0.045), LV mass index (r = -0.461, P = 0.018), GLS (r = -0.558, P = 0.003), and GRS (r = 0.392, P = 0.047). Multiple linear regression analysis revealed GLS as the only independent predictor of global CFR (standardized β = -0.558, P = 0.003). CONCLUSION Global CFR was significantly impaired in patients with idiopathic DCM and independently associated with LV GLS, suggesting that microvascular dysfunction may contribute to deterioration of LV function in patients with idiopathic DCM.
Collapse
Affiliation(s)
| | - Masaki Ishida
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Satoshi Nakamura
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Kei Nakata
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Haruno Ito
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Takanori Kokawa
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Kensuke Domae
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Suguru Araki
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Junko Ishiura
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Hospital, Tsu, Mie, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu, Mie, Japan
| |
Collapse
|
2
|
Kan A, Leng Y, Li S, Lin F, Fang Q, Tao X, Hu M, Gong L. The predictive value of coronary microvascular dysfunction for left ventricular reverse remodelling in dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1301509. [PMID: 38111885 PMCID: PMC10726051 DOI: 10.3389/fcvm.2023.1301509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Aims To evaluate the degree of coronary microvascular dysfunction (CMD) in dilated cardiomyopathy (DCM) patients by cardiac magnetic resonance (CMR) first-pass perfusion parameters and to examine the correlation between myocardial perfusion and left ventricle reverse remodelling (LVRR). Methods In this study, 94 DCM patients and 35 healthy controls matched for age and sex were included. Myocardial perfusion parameters, including upslope, time to maximum signal intensity (Timemax), maximum signal intensity (SImax), baseline signal intensity (SIbaseline), and the difference between maximum and baseline signal intensity (SImax-baseline) were measured. Additionally, left ventricular (LV) structure, function parameters, and late gadolinium enhancement (LGE) were also recorded. The parameters were compared between healthy controls and DCM patients. Univariable and multivariable logistic regression analyses were used to determine the predictors of LVRR. Results With a median follow-up period of 12 months [interquartile range (IQR), 8-13], 41 DCM patients (44%) achieved LVRR. Compared with healthy controls, DCM patients presented CMD with reduced upslope, SIbaseline, and increased Timemax (all p < 0.01). Timemax, SImax, and SImax-baseline were further decreased in LVRR than non-LVRR group (Timemax: 60.35 [IQR, 51.46-74.71] vs. 72.41 [IQR, 59.68-97.70], p = 0.017; SImax: 723.52 [IQR, 209.76-909.27] vs. 810.92 [IQR, 581.30-996.89], p = 0.049; SImax-baseline: 462.99 [IQR, 152.25-580.43] vs. 551.13 [IQR, 402.57-675.36], p = 0.038). In the analysis of multivariate logistic regression, Timemax [odds ratio (OR) 0.98; 95% confidence interval (CI) 0.95-1.00; p = 0.032)], heart rate (OR 1.04; 95% CI 1.01-1.08; p = 0.029), LV remodelling index (OR 1.73; 95% CI 1.06-3.00; p = 0.038) and LGE extent (OR 0.85; 95% CI 0.73-0.96; p = 0.021) were independent predictors of LVRR. Conclusions CMD could be found in DCM patients and was more impaired in patients with non-LVRR than LVRR patients. Timemax at baseline was an independent predictor of LVRR in DCM.
Collapse
Affiliation(s)
- Ao Kan
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yinping Leng
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuhao Li
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang Lin
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qimin Fang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Tao
- Department of Medical, Bayer Healthcare, Shanghai, China
| | - Mengyao Hu
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Wang Y, Jia H, Song J. Accurate Classification of Non-ischemic Cardiomyopathy. Curr Cardiol Rep 2023; 25:1299-1317. [PMID: 37721634 PMCID: PMC10651539 DOI: 10.1007/s11886-023-01944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE OF REVIEW This article aims to review the accurate classification of non-ischemic cardiomyopathy, including the methods, basis, subtype characteristics, and prognosis, especially the similarities and differences between different classifications. RECENT FINDINGS Non-ischemic cardiomyopathy refers to a myocardial disease that excludes coronary artery disease or ischemic injury and has a variety of etiologies and high incidence. Recent studies suggest that traditional classification methods based on primary/mixed/acquired or genetic/non-genetic cannot meet the precise needs of contemporary clinical management. This article systematically describes the history of classifications of cardiomyopathy and presents etiological and genetic differences between cardiomyopathies. The accurate classification is described from the perspective of morphology, function, and genomics in hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular noncompaction, and partially acquired cardiomyopathy. The different clinical characteristics and treatment needs of these cardiomyopathies are elaborated. Some single-gene mutant cardiomyopathies have unique phenotypes, and some cardiomyopathies have mixed phenotypes. These special classifications require personalized precision treatment, which is worthy of independent research. This article describes recent advances in the accurate classification of non-ischemic cardiomyopathy from clinical phenotypes and causative genes, discusses the advantages and usage scenarios of each classification, compares the differences in prognosis and patient management needs of different subtypes, and summarizes common methods and new exploration directions for accurate classification.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Sun M, Li L. Identification of Biomarkers Associated with Heart Failure Caused by Idiopathic Dilated Cardiomyopathy Using WGCNA and Machine Learning Algorithms. Int J Genomics 2023; 2023:2250772. [PMID: 37143707 PMCID: PMC10154102 DOI: 10.1155/2023/2250772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Background The genetic factors and pathogenesis of idiopathic dilated cardiomyopathy-induced heart failure (IDCM-HF) have not been understood thoroughly; there is a lack of specific diagnostic markers and treatment methods for the disease. Hence, we aimed to identify the mechanisms of action at the molecular level and potential molecular markers for this disease. Methods Gene expression profiles of IDCM-HF and non-heart failure (NF) specimens were acquired from the database of Gene Expression Omnibus (GEO). We then identified the differentially expressed genes (DEGs) and analyzed their functions and related pathways by using "Metascape". Weighted gene co-expression network analysis (WGCNA) was utilized to search for key module genes. Candidate genes were identified by intersecting the key module genes identified via WGCNA with DEGs and further screened via the support vector machine-recursive feature elimination (SVM-RFE) method and the least absolute shrinkage and selection operator (LASSO) algorithm. At last, the biomarkers were validated and evaluated the diagnostic efficacy by the area under curve (AUC) value and further confirmed the differential expression in the IDCM-HF and NF groups using an external database. Results We detected 490 genes exhibiting differential expression between IDCM-HF and NF specimens from the GSE57338 dataset, with most of them being concentrated in the extracellular matrix (ECM) of cells related to biological processes and pathways. After screening, 13 candidate genes were identified. Aquaporin 3 (AQP3) and cytochrome P450 2J2 (CYP2J2) showed high diagnostic efficacy in the GSE57338 and GSE6406 datasets, respectively. In comparison to the NF group, AQP3 was significantly down-regulated in the IDCM-HF group, while CYP2J2 was significantly up-regulated. Conclusion As far as we know, this is the first study that combines WGCNA and machine learning algorithms to screen for potential biomarkers of IDCM-HF. Our findings suggest that AQP3 and CYP2J2 could be used as novel diagnostic markers and treatment targets of IDCM-HF.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Clinical Laboratory, Jining First People′s Hospital, Jining, Shandong, China
| | - Linping Li
- Institute of Cardiovascular Diseases of Jining Medical Research Academy, Jining First People′s Hospital, Jining, Shandong, China
| |
Collapse
|
5
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
6
|
Chen HF, Chang YH, Lo HJ, Isfandiari MA, Martini S, Hou WH, Li CY. Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: age, sex, and urbanization status-stratified analysis. Cardiovasc Diabetol 2020; 19:177. [PMID: 33054769 PMCID: PMC7558694 DOI: 10.1186/s12933-020-01144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidemiology of diabetes and idiopathic cardiomyopathy have limited data. We investigated the overall and the age-, sex-, and urbanization-specific incidence and relative hazard of idiopathic cardiomyopathy in association with type 2 diabetes and various anti-diabetic medications used in Taiwan. METHODS A total of 474,268 patients with type 2 diabetes were identified from ambulatory care and inpatient claims in 2007-2009 from Taiwan's National Health Insurance (NHI) database. We randomly selected 474,266 age-, sex-, and diagnosis date-matched controls from the registry of NHI beneficiaries. All study subjects were linked to ambulatory care and inpatient claims (up to the end of 2016) to identify the possible diagnosis of idiopathic cardiomyopathy. The person-year approach with Poisson assumption was used to estimate the incidence, and Cox proportional hazard regression model with Fine and Gray's method was used to estimate the relative hazards of idiopathic cardiomyopathy in relation to type 2 diabetes. RESULTS The overall incidence of idiopathic cardiomyopathy for men and women patients, respectively, was 3.83 and 2.94 per 10,000 person-years, which were higher than the corresponding men and women controls (2.00 and 1.34 per 10,000 person-years). Compared with the control group, patients with type 2 diabetes were significantly associated with an increased hazard of idiopathic cardiomyopathy (adjusted hazard ratio [aHR]: 1.60, 95% confidence interval [CI]: 1.45-1.77] in all age and sex stratifications except in those men aged > 64 years. Patients with type 2 diabetes aged < 45 years confronted the greatest increase in the hazard of idiopathic cardiomyopathy, with an aHR of 3.35 (95% CI 2.21-5.06) and 3.48 (95% CI 1.60-7.56) for men and women, respectively. The usage of some anti-diabetic medications revealed lower risks of idiopathic cardiomyopathy. CONCLUSIONS In Taiwan, diabetes increased the risk of idiopathic cardiomyopathy in both sexes and in all age groups, except in men aged > 64 years. Younger patients were vulnerable to have higher HRs of idiopathic cardiomyopathy. Some anti-diabetic medications may reduce the risks of cardiomyopathy.
Collapse
Affiliation(s)
- Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine and Department of Public Health, College of Medicine, Fujen Catholic University, New Taipei City, Taiwan
| | - Ya-Hui Chang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Jung Lo
- Department of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Santi Martini
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Wen-Hsuan Hou
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.
- Department of Public Health, College of Public Health, China Medical University, Taichung City, Taiwan.
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung City, Taiwan.
| |
Collapse
|
7
|
Cavallari I, Maddaloni E, Pieralice S, Mulè MT, Buzzetti R, Ussia GP, Pozzilli P, Grigioni F. The Vicious Circle of Left Ventricular Dysfunction and Diabetes: From Pathophysiology to Emerging Treatments. J Clin Endocrinol Metab 2020; 105:5866664. [PMID: 32615596 DOI: 10.1210/clinem/dgaa427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT Diabetes and heart failure (HF) are 2 deadly and strictly related epidemic disorders. The aim of this review is to present an updated discussion of the epidemiology, pathophysiology, clinical presentation and treatment options for HF in diabetes. EVIDENCE ACQUISITION Relevant references published up to February 2020 were identified through searches in PubMed. Quality was graded using the Newcastle-Ottawa score in observational studies and the Cochrane Collaboration tool in randomized studies. EVIDENCE SYNTHESIS Metabolic and neurohumoral derangements, oxidative stress, inflammation, micro- and macroangiopathy all contribute through complex molecular and cellular mechanisms to cardiac dysfunction in diabetes, which in turn, results as one the most frequent underlying conditions affecting up to 42% of patients with HF and causing a 34% increased risk of cardiovascular death. On top of traditional guideline-based HF medical and device therapies, equally effective in patients with and without diabetes, a new class of glucose-lowering agents acting through the sodium-glucose cotransporter 2 (SGLT2) inhibition showed impressive results in reducing HF outcomes in individuals with diabetes and represents an active area of investigation. CONCLUSIONS Diabetes and HF are strictly linked in a bidirectional and deadly vicious circle difficult to break. Therefore, preventive strategies and a timely diagnosis are crucial to improve outcomes in such patients. SGLT2 inhibitors represent a major breakthrough with remarkably consistent findings. However, it is still not clear whether their benefits may be definitely extended to patients with HF with preserved ejection fraction, to those without diabetes and in the acute setting.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Medicine, Unit of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Silvia Pieralice
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Italy
| | - Maria Tea Mulè
- Department of Medicine, Unit of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Italy
| | | | - Gian Paolo Ussia
- Department of Medicine, Unit of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Italy
| | - Paolo Pozzilli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Italy
| | - Francesco Grigioni
- Department of Medicine, Unit of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Italy
| |
Collapse
|
8
|
Sun C, Su S, Zhu Y, Guo J, Guo S, Qian D, Yu L, Gu W, Duan JA. Salvia miltiorrhiza stem-leaf active components of salvianolic acids and flavonoids improved the hemorheological disorder and vascular endothelial function on microcirculation dysfunction rats. Phytother Res 2020; 34:1704-1720. [PMID: 32185841 DOI: 10.1002/ptr.6652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Microcirculation, which connects macrocirculation and cells between arterioles and venules, plays a major role in the early onset of a variety of diseases. In this article, a dextran-induced microcirculation dysfunction (MCDF) model rats were adopted to evaluate the effects and mechanism of Salvia miltiorrhiza stem-leaf extracts based on plasma and urine metabonomics. The results showed the effective components of S. miltiorrhiza stem-leaf could significantly improve the hemorheology and coagulation index of MCDF rats and callback the expression of endothelin-1 (ET-1), induciblenitric oxide synthase (iNOS), vascularendothelial growth factor (VEGF), P-Selectin, thromboxane A2, 6-keto-PGF1α , TNF-α, and interleukin-1β to control group in MCDF rats. The decrease of microvessel density (MVD) in lung and thymus caused by MCDF was upgraded by Salvia miltiorrhiza stem-leaf. Based on the plasma and urine metabolic data, 20 potential biomarkers were identified. These biomarkers are mainly related to linoleic acid metabolism, glutathione metabolism, pantothenate and coenzyme A biosynthesis, pentose and glucuronate interconversions, pyruvate metabolism, glyoxylate and dicarboxylate metabolism, beta-alanine metabolism, and citrate cycle. The results indicated that the effective components of S. miltiorrhiza stem-leaf can improve the hemorheological disorder and vascular endothelial function. Meanwhile, the effective components can regulate potential biomarkers and correlated metabolic pathway, which can provide guidance for the research and development of new drugs for MCDF.
Collapse
Affiliation(s)
- Chengjing Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Gulati A, Ismail TF, Ali A, Hsu LY, Gonçalves C, Ismail NA, Krishnathasan K, Davendralingam N, Ferreira P, Halliday BP, Jones DA, Wage R, Newsome S, Gatehouse P, Firmin D, Jabbour A, Assomull RG, Mathur A, Pennell DJ, Arai AE, Prasad SK. Microvascular Dysfunction in Dilated Cardiomyopathy: A Quantitative Stress Perfusion Cardiovascular Magnetic Resonance Study. JACC Cardiovasc Imaging 2019; 12:1699-1708. [PMID: 30660522 PMCID: PMC8616858 DOI: 10.1016/j.jcmg.2018.10.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study sought to quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) in dilated cardiomyopathy (DCM) and examine the relationship between myocardial perfusion and adverse left ventricular (LV) remodeling. BACKGROUND Although regarded as a nonischemic condition, DCM has been associated with microvascular dysfunction, which is postulated to play a role in its pathogenesis. However, the relationship of the resulting perfusion abnormalities to myocardial fibrosis and the degree of LV remodeling is unclear. METHODS A total of 65 patients and 35 healthy control subjects underwent adenosine (140 μg/kg/min) stress perfusion cardiovascular magnetic resonance with late gadolinium enhancement imaging. Stress and rest MBF and MPR were derived using a modified Fermi-constrained deconvolution algorithm. RESULTS Patients had significantly higher global rest MBF compared with control subjects (1.73 ± 0.42 ml/g/min vs. 1.14 ± 0.42 ml/g/min; p < 0.001). In contrast, global stress MBF was significantly lower versus control subjects (3.07 ± 1.02 ml/g/min vs. 3.53 ± 0.79 ml/g/min; p = 0.02), resulting in impaired MPR in the DCM group (1.83 ± 0.58 vs. 3.50 ± 1.45; p < 0.001). Global stress MBF (2.70 ± 0.89 ml/g/min vs. 3.44 ± 1.03 ml/g/min; p = 0.017) and global MPR (1.67 ± 0.61 vs. 1.99 ± 0.50; p = 0.047) were significantly reduced in patients with DCM with LV ejection fraction ≤35% compared with those with LV ejection fraction >35%. Segments with fibrosis had lower rest MBF (mean difference: -0.12 ml/g/min; 95% confidence interval: -0.23 to -0.01 ml/g/min; p = 0.035) and lower stress MBF (mean difference: -0.15 ml/g/min; 95% confidence interval: -0.28 to -0.03 ml/g/min; p = 0.013). CONCLUSIONS Patients with DCM exhibit microvascular dysfunction, the severity of which is associated with the degree of LV impairment. However, rest MBF is elevated rather than reduced in DCM. If microvascular dysfunction contributes to the pathogenesis of DCM, then the underlying mechanism is more likely to involve stress-induced repetitive stunning rather than chronic myocardial hypoperfusion.
Collapse
Affiliation(s)
| | | | - Aamir Ali
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Li-Yueh Hsu
- National Institutes of Health, Bethesda, Maryland
| | | | - Nizar A Ismail
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Kaushiga Krishnathasan
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Natasha Davendralingam
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Pedro Ferreira
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Brian P Halliday
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, Bart's Health NHS Trust, London, United Kingdom
| | | | - Simon Newsome
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Gatehouse
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | - David Firmin
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| | | | | | - Anthony Mathur
- Department of Cardiology, Bart's Health NHS Trust, London, United Kingdom
| | - Dudley J Pennell
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom.
| | | | - Sanjay K Prasad
- Royal Brompton Hospital, London, United Kingdom; Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Sun G, Liu F, Xiu C. High thoracic sympathetic block improves coronary microcirculation disturbance in rats with chronic heart failure. Microvasc Res 2019; 122:94-100. [DOI: 10.1016/j.mvr.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
|
11
|
Coronary Microcirculatory Dysfunction in Human Cardiomyopathies: A Pathologic and Pathophysiologic Review. Cardiol Rev 2018; 25:165-178. [PMID: 28574936 DOI: 10.1097/crd.0000000000000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiomyopathies are a heterogeneous group of diseases of the myocardium. The term cardiomyopathy involves a wide range of pathogenic mechanisms that affect the structural and functional states of cardiomyocytes, extravascular tissues, and coronary vasculature, including both epicardial coronary arteries and the microcirculation. In the developed phase, cardiomyopathies present with various clinical symptoms: dyspnea, chest pain, palpitations, swelling of the extremities, arrhythmias, and sudden cardiac death. Due to the heterogeneity of cardiomyopathic patterns and symptoms, their diagnosis and therapies are great challenges. Despite extensive research, the relation between the structural and functional abnormalities of the myocardium and the coronary circulation are still not well understood in the various forms of cardiomyopathy. The main pathological characteristics of cardiomyopathies and the coronary microcirculation develop in a progressive manner due to (1) genetic-immunologic-systemic factors; (2) comorbidities with endothelial, myogenic, metabolic, and inflammatory changes; (3) aging-induced arteriosclerosis; and (4) myocardial fibrosis. The aim of this review is to summarize the most important common pathological features and/or adaptations of the coronary microcirculation in various types of cardiomyopathies and to integrate the present understanding of the underlying pathophysiological mechanisms responsible for the development of various types of cardiomyopathies. Although microvascular dysfunction is present and contributes to cardiac dysfunction and the potential outcome of disease, the current therapeutic approaches are not specific for the given types of cardiomyopathy.
Collapse
|
12
|
Gil KE, Pawlak A, Gil RJ, Frontczak-Baniewicz M, Bil J. The role of invasive diagnostics and its impact on the treatment of dilated cardiomyopathy: A systematic review. Adv Med Sci 2016; 61:331-343. [PMID: 27589574 DOI: 10.1016/j.advms.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dilated cardiomyopathy is one of the most frequent causes of non-ischemic heart failure. Many factors including genetic disorders, infectious agents, toxins, drugs and autoimmune disorders might take part in the development of dilated cardiomyopathy. Diagnosis of left ventricular dilatation is most often limited to performing echocardiography and excluding ischemic etiology (coronary angiography). Since many pathologies take place at the cellular and subcellular level the only way to clarify the etiology of the disease is to examine the myocardium itself (endomyocardial biopsy). METHODS A systematic literature search was conducted for studies published between September 2000 and September 2015 using the PubMed database. RESULTS Of 7104 studies identified, 73 studies were included in this review. Controversies raised by opponents of the endomyocardial biopsy collide with the low percentage of serious complications confirmed in several single-center registries. Based on the available data the overall complication rate varies from 1% to about 3%, with 0.5% risk of serious complications. According to the current recommendations of the European and American scientific societies endomyocardial biopsy should be performed in most cases of left ventricular dilatation and heart failure of non-ischemic etiology. Endomyocardial biopsy allows for making the diagnosis and providing prognostic information especially in patients with familial dilated cardiomyopathy, diabetic cardiomyopathy with dilated phenotype, alcoholic cardiomyopathy, peripartum cardiomyopathy, iron overload cardiomyopathy, as well as inflammatory and viral cardiomyopathy. Iron overload cardiomyopathy, peripartum cardiomyopathy, inflammatory and viral cardiomyopathy are potentially treatable and reversible. CONCLUSIONS Targeted therapies are more effective when started early before myocardial injury becomes irreversible. Unfortunately, non-invasive techniques are not precise enough to decide if and which targeted therapy is required. Therefore endomyocardial biopsy should be mainly recognized as the essential diagnostic tool and should not be postponed.
Collapse
Affiliation(s)
- Katarzyna E Gil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland.
| | - Agnieszka Pawlak
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland; Mossakowski Medical Research Centre, Academy of Science, Warsaw, Poland
| | - Robert J Gil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland; Mossakowski Medical Research Centre, Academy of Science, Warsaw, Poland
| | | | - Jacek Bil
- Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| |
Collapse
|