1
|
Ong JYS, Tan SML, Koh AS, Kong W, Sia CH, Yeo TC, Quek SC, Poh KK. Novel Circulating Biomarkers in Aortic Valve Stenosis. Int J Mol Sci 2025; 26:1902. [PMID: 40076529 PMCID: PMC11899762 DOI: 10.3390/ijms26051902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The underlying pathophysiology of aortic stenosis and factors affecting its clinical progression remain poorly understood. Apart from B-type natriuretic peptide (BNP), novel and emerging biomarkers have been described in association with aortic stenosis, emphasising the potential for these biomarkers to illuminate on yet unknown mechanisms of its pathogenesis. In this review, we aimed to summarise what is known about aortic stenosis biomarkers, highlight the emerging ones, and provide a roadmap for translating these insights into clinical applications. Among the biomarkers studied, lipoprotein(a) [Lp(a)] has emerged as the most promising for risk stratification. Elevated Lp(a) levels are often associated with more rapid aortic stenosis progression. This detrimental effect is attributed to its role in promoting valve calcification. While other emerging biomarkers such as matrix metalloproteinases, monocytes, and metabolites show promises, their specific roles in aortic stenosis pathophysiology remain less clear. This may be due to their relatively recent discovery. Ongoing research aims to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Joy Yi-Shan Ong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
| | - Sarah Ming Li Tan
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
| | - Angela S. Koh
- National Heart Centre Singapore, Singapore 169609, Singapore
- DUKE-NUS Medical School, Singapore 169857, Singapore
| | - William Kong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ching Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tiong Cheng Yeo
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Swee Chye Quek
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
2
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
3
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Ren Z, Luo Y, Meng Z, Zhang J, Yu R, Sun M, Xu T, Li J, Ma Y, Huang Y, Qin T. Multi-walled carbon nanotube polysaccharide modified Hericium erinaceus polysaccharide as an adjuvant to extend immune responses. Int J Biol Macromol 2021; 182:574-582. [PMID: 33798583 DOI: 10.1016/j.ijbiomac.2021.03.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022]
Abstract
In recent years, the utilization of CS-MWCNT as targeted drug carriers has attracted considerable attention. Hericium erinaceus polysaccharide (HEP) has been reported as an immunostimulant to improve immune responses. This study was focussed on developing CS-MWCNT encapsulating HEP (CS-MWCNT-HEP). Using in mice peritoneal macrophages, we found the immune response could be effectively regulated by CS-MWCNT-HEP, promoted the expression of the MHCII, CD86, F4/80 and gp38. Moreover, the mice immunized with CS-MWCNT-HEP nanoparticles significantly extended PCV2-specific IgG immune response and the levels of cytokines. The results demonstrated that CS-MWCNT-HEP may be a promising drug delivery system for immuno-enhancement.
Collapse
Affiliation(s)
- Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yufang Ma
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
5
|
Weisell J, Ruotsalainen AK, Näpänkangas J, Jauhiainen M, Rysä J. Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice. Sci Rep 2021; 11:3014. [PMID: 33542347 PMCID: PMC7862223 DOI: 10.1038/s41598-021-82724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
In calcific aortic valve disease (CAVD) progressive valvular calcification causes aortic valve dysfunction. CAVD has several risk factors such as age and dyslipidemia. Vitamin K was shown to inhibit vascular calcification in mice and valvular calcification in patients with CAVD. We studied the effect of menaquinone 4 (MK4/vitamin K2) on valvular calcification in the hypercholesterolemic mouse model of CAVD. LDLr−/−ApoB100/100 male mice were fed with a Western diet for 5 months, with (n = 10) or without (n = 10) added 0.2 mg/g MK4. Body weight gain was followed weekly. Morphology of aortic valves and liver was assessed with immunohistochemistry. Plasma cholesterol levels and cytokines from hepatic tissue were assessed in the end of the study. Hepatic gene expression of lipid metabolism regulating genes were assessed after 18 h diet. MK4 exacerbated the lipoprotein lipid profile without affecting aortic valve morphology in hypercholesterolemic LDLr−/− ApoB100/100 mice. The MK4-containing WD diet increased plasma levels of LDL and triglycerides, hepatic steatosis, and mRNA expression of genes required for triglyceride and cholesterol synthesis. MK4 diminished levels of several cytokines and chemokines in liver, including IL-6, TNFα and MCP1, as measured by hepatic cytokine array. Consequently, MK4 may exert non-beneficial effects on circulating lipid levels, especially in hypercholesterolemic individuals.
Collapse
Affiliation(s)
- Jonna Weisell
- School of Pharmacy, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha Näpänkangas
- Department of Pathology, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| |
Collapse
|
6
|
Iqbal F, Lupieri A, Aikawa M, Aikawa E. Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:585-600. [PMID: 33327741 PMCID: PMC8105278 DOI: 10.1161/atvbaha.120.314776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The transition of healthy arteries and cardiac valves into dense, cell-rich, calcified, and fibrotic tissues is driven by a complex interplay of both cellular and molecular mechanisms. Specific cell types in these cardiovascular tissues become activated following the exposure to systemic stimuli including circulating lipoproteins or inflammatory mediators. This activation induces multiple cascades of events where changes in cell phenotypes and activation of certain receptors may trigger multiple pathways and specific alterations to the transcriptome. Modifications to the transcriptome and proteome can give rise to pathological cell phenotypes and trigger mechanisms that exacerbate inflammation, proliferation, calcification, and recruitment of resident or distant cells. Accumulating evidence suggests that each cell type involved in vascular and valvular diseases is heterogeneous. Single-cell RNA sequencing is a transforming medical research tool that enables the profiling of the unique fingerprints at single-cell levels. Its applications have allowed the construction of cell atlases including the mammalian heart and tissue vasculature and the discovery of new cell types implicated in cardiovascular disease. Recent advances in single-cell RNA sequencing have facilitated the identification of novel resident cell populations that become activated during disease and has allowed tracing the transition of healthy cells into pathological phenotypes. Furthermore, single-cell RNA sequencing has permitted the characterization of heterogeneous cell subpopulations with unique genetic profiles in healthy and pathological cardiovascular tissues. In this review, we highlight the latest groundbreaking research that has improved our understanding of the pathological mechanisms of atherosclerosis and future directions for calcific aortic valve disease.
Collapse
Affiliation(s)
- Farwah Iqbal
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| |
Collapse
|
7
|
Liu X, Ren Z, Yu R, Chen S, Zhang J, Xu Y, Meng Z, Luo Y, Zhang W, Huang Y, Qin T. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity. Int J Biol Macromol 2020; 166:1396-1408. [PMID: 33166554 DOI: 10.1016/j.ijbiomac.2020.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
In this study, the enzyme degradation of Hericium erinaceus polysaccharide (HEP) was successfully modified with endo-rhamnosidase to obtain the enzymatic hydrolysis of Hericium erinaceus polysaccharide product (EHEP). The gas chromatography-mass spectrometry (GC-MS), high performance gel permeation chromatography (HPGPC), Fourier transformed infrared spectrometry (FT-IR), scanning electron microscopy (SEM), atomic particle microscopy (AFM), nuclear magnetic resonance (NMR) and particle size distribution were used to characterize polysaccharides. In vitro, EHEP significantly enhanced the phagocytosis, NO, CD40 and CD86 by macrophage than HEP. In vivo, female Balb/c mice were injected respectively with EHEP and HEP after administrated with cyclophosphamide, once a day for 7 days. On days 11, the morphology and structure of jejunal sections, immunofluorescence of spleen and peritoneal macrophages were determined. These results indicated that the enzymatic hydrolysis product could enhance the activation of peritoneal macrophages, and enhance the immunomodulation function of HEP. This study demonstrated that enzymatic modification was an effective method to improve the activities of HEP, and could be developed as a potential technology for use in pharmaceutical and cosmeceutical industry.
Collapse
Affiliation(s)
- Xiaopan Liu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ruihong Yu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shixiong Chen
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Junwen Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongde Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhen Meng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yang Luo
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Weini Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yifan Huang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
8
|
Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovasc Disord 2019; 19:306. [PMID: 31856737 PMCID: PMC6923932 DOI: 10.1186/s12872-019-01294-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
Background Calcific aortic valve disease (CAVD) is an atheroinflammatory process; finally it leads to progressive calcification of the valve. There is no effective pharmacological treatment for CAVD and many of the underlying molecular mechanisms remain unknown. We conducted a proteomic study to reveal novel factors associated with CAVD. Methods We compared aortic valves from patients undergoing valvular replacement surgery due to non-calcified aortic insufficiency (control group, n = 5) to a stenotic group (n = 7) using two-dimensional difference gel electrophoresis (2D-DIGE). Protein spots were identified with mass spectrometry. Western blot and immunohistochemistry were used to validate the results in a separate patient cohort and Ingenuity Pathway Analysis (IPA) was exploited to predict the regulatory network of CAVD. Results We detected an upregulation of complement 9 (C9), serum amyloid P-component (APCS) and transgelin as well as downregulation of heat shock protein (HSP90), protein disulfide isomerase A3 (PDIA3), annexin A2 (ANXA2) and galectin-1 in patients with aortic valve stenosis. The decreased protein expression of HSP90 was confirmed with Western blot. Conclusions We describe here a novel data set of proteomic changes associated with CAVD, including downregulation of the pro-inflammatory cytosolic protein, HSP90.
Collapse
|
9
|
Cimini M, Garikipati VNS, de Lucia C, Cheng Z, Wang C, Truongcao MM, Lucchese AM, Roy R, Benedict C, Goukassian DA, Koch WJ, Kishore R. Podoplanin neutralization improves cardiac remodeling and function after acute myocardial infarction. JCI Insight 2019; 5:126967. [PMID: 31287805 DOI: 10.1172/jci.insight.126967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Podoplanin, a small mucine-type transmembrane glycoprotein, has been recently shown to be expressed by lymphangiogenic, fibrogenic and mesenchymal progenitor cells in the acutely and chronically infarcted myocardium. Podoplanin binds to CLEC-2, a C-type lectin-like receptor 2 highly expressed by CD11bhigh cells following inflammatory stimuli. Why podoplanin expression appears only after organ injury is currently unknown. Here, we characterize the role of podoplanin in different stages of myocardial repair after infarction and propose a podoplanin-mediated mechanism in the resolution of post-MI inflammatory response and cardiac repair. Neutralization of podoplanin led to significant improvements in the left ventricular functions and scar composition in animals treated with podoplanin neutralizing antibody. The inhibition of the interaction between podoplanin and CLEC-2 expressing immune cells in the heart enhances the cardiac performance, regeneration and angiogenesis post MI. Our data indicates that modulating the interaction between podoplanin positive cells with the immune cells after myocardial infarction positively affects immune cell recruitment and may represent a novel therapeutic target to augment post-MI cardiac repair, regeneration and function.
Collapse
|