1
|
Tang Y, Zhang J, Fang Y, Zhu K, Zhu J, Huang C, Xie Z, Zhang S, Ma W, Yan G, Liu S, Liu X, Han W, Xin Y, Yang C, Abudupataer M, Zhou P, He C, Lai H, Wang C, Liu Y, Lan F, Ye D, Yu FX, Xu Y, Zhang W. Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice. NATURE CARDIOVASCULAR RESEARCH 2025; 4:235-247. [PMID: 39809927 DOI: 10.1038/s44161-024-00603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection. These changes are accompanied by decreased expression of MFN1/2 and TFAM, mirroring findings in human patients. SMC-specific deletion of Mfn1 and/or Mfn2 genes recapitulates the aortopathy seen in Notch1-deficient mice. Prophylactic or therapeutic approaches aimed at increasing mitochondrial DNA copy number, either through AAV-mediated overexpression of Mfn1/2 or oral treatment with mitofusion activators teriflunomide or leflunomide, help mitigate or slow the progression of aortopathy in SMC-Notch1-/- mice. Our findings provide a molecular framework for exploring pharmacological interventions to restore mitochondrial function in NOTCH1-related aortopathy.
Collapse
MESH Headings
- Animals
- Receptor, Notch1/genetics
- Receptor, Notch1/deficiency
- Receptor, Notch1/metabolism
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/drug effects
- Mitochondria/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Disease Models, Animal
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mitochondrial Dynamics/drug effects
- Leflunomide/pharmacology
- Aortic Dissection/metabolism
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Aortic Dissection/prevention & control
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Mice
- High Mobility Group Proteins/metabolism
- High Mobility Group Proteins/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Mice, Inbred C57BL
- Male
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Humans
- Organelle Biogenesis
- Cells, Cultured
Collapse
Affiliation(s)
- Yuyi Tang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixuan Fang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingqiao Zhu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ce Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuxin Xie
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoquan Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaowen Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjing Han
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xin
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Peiyun Zhou
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi He
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Lan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanhui Xu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijia Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Wang C, Zhang L, Zhang Q, Zheng H, Yang X, Cai W, Zou Q, Lin J, Zhang L, Zhong L, Li X, Liao Y, Liu Q, Chen L, Li Y. Transketolase drives the development of aortic dissection by impairing mitochondrial bioenergetics. Acta Physiol (Oxf) 2024; 240:e14113. [PMID: 38380737 DOI: 10.1111/apha.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
AIM Aortic dissection (AD) is a disease with rapid onset but with no effective therapeutic drugs yet. Previous studies have suggested that glucose metabolism plays a critical role in the progression of AD. Transketolase (TKT) is an essential bridge between glycolysis and the pentose phosphate pathway. However, its role in the development of AD has not yet been elucidated. In this study, we aimed to explore the role of TKT in AD. METHODS We collected AD patients' aortic tissues and used high-throughput proteome sequencing to analyze the main factors influencing AD development. We generated an AD model using BAPN in combination with angiotensin II (Ang II) and pharmacological inhibitors to reduce TKT expression. The effects of TKT and its downstream mediators on AD were elucidated using human aortic vascular smooth muscle cells (HAVSMCs). RESULTS We found that glucose metabolism plays an important role in the development of AD and that TKT is upregulated in patients with AD. Western blot and immunohistochemistry confirmed that TKT expression was upregulated in mice with AD. Reduced TKT expression attenuated AD incidence and mortality, maintained the structural integrity of the aorta, aligned elastic fibers, and reduced collagen deposition. Mechanistically, TKT was positively associated with impaired mitochondrial bioenergetics by upregulating AKT/MDM2 expression, ultimately contributing to NDUFS1 downregulation. CONCLUSION Our results provide new insights into the role of TKT in mitochondrial bioenergetics and AD progression. These findings provide new intervention options for the treatment of AD.
Collapse
Affiliation(s)
- Chaoyun Wang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Physiology & Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qinghua Zhang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hui Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Yang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Weixing Cai
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiuying Zou
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jingjing Lin
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Lin Zhong
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinyao Li
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yuqing Liao
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qin Liu
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Yumei Li
- Fujian Center for Safety Evaluation of New Drug, The School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Li Q, Hu YZ, Gao S, Wang PF, Hu ZL, Dai RP. ProBDNF and its receptors in immune-mediated inflammatory diseases: novel insights into the regulation of metabolism and mitochondria. Front Immunol 2023; 14:1155333. [PMID: 37143663 PMCID: PMC10151479 DOI: 10.3389/fimmu.2023.1155333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) consist of a common and clinically diverse group of diseases. Despite remarkable progress in the past two decades, no remission is observed in a large number of patients, and no effective treatments have been developed to prevent organ and tissue damage. Brain-derived neurotrophic factor precursor (proBDNF) and receptors, such as p75 neurotrophin receptor (p75NTR) and sortilin, have been proposed to mediate intracellular metabolism and mitochondrial function to regulate the progression of several IMIDs. Here, the regulatory role of proBDNF and its receptors in seven typical IMIDs, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, allergic asthma, type I diabetes, vasculitis, and inflammatory bowel diseases, was investigated.
Collapse
Affiliation(s)
- Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shan Gao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| |
Collapse
|
4
|
Qin HL, Bao JH, Tang JJ, Xu DY, Shen L. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells. Am J Physiol Cell Physiol 2023; 324:C183-C192. [PMID: 36468843 DOI: 10.1152/ajpcell.00074.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial remodeling is a common pathological basis of cardiovascular diseases such as atherosclerosis, vascular restenosis, hypertension, pulmonary hypertension, aortic dissection, and aneurysm. Vascular smooth muscle cells (VSMCs) are not only the main cellular components in the middle layer of the arterial wall but also the main cells involved in arterial remodeling. Dedifferentiated VSMCs lose their contractile properties and are converted to a synthetic, secretory, proliferative, and migratory phenotype, playing key roles in the pathogenesis of arterial remodeling. As mitochondria are the main site of biological oxidation and energy transformation in eukaryotic cells, mitochondrial numbers and function are very important in maintaining the metabolic processes in VSMCs. Mitochondrial dysfunction and oxidative stress are novel triggers of the phenotypic transformation of VSMCs, leading to the onset and development of arterial remodeling. Therefore, pharmacological measures that alleviate mitochondrial dysfunction reverse arterial remodeling by ameliorating VSMCs metabolic dysfunction and phenotypic transformation, providing new options for the treatment of cardiovascular diseases related to arterial remodeling. This review summarizes the relationship between mitochondrial dysfunction and cardiovascular diseases associated with arterial remodeling and then discusses the potential mechanism by which mitochondrial dysfunction participates in pathological arterial remodeling. Furthermore, maintaining or improving mitochondrial function may be a new intervention strategy to prevent the progression of arterial remodeling.
Collapse
Affiliation(s)
- Hua-Li Qin
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing-Hui Bao
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Jun Tang
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Shen
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm. EBioMedicine 2022; 81:104080. [PMID: 35636318 PMCID: PMC9156889 DOI: 10.1016/j.ebiom.2022.104080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Thoracic aortic aneurysm (TAA) is the permanent dilation of the thoracic aortic wall that predisposes patients to lethal events such as aortic dissection or rupture, for which effective medical therapy remains scarce. Human-relevant microphysiological models serve as a promising tool in drug screening and discovery. Methods We developed a dynamic, rhythmically stretching, three-dimensional microphysiological model. Using patient-derived human aortic smooth muscle cells (HAoSMCs), we tested the biological features of the model and compared them with native aortic tissues. Drug testing was performed on the individualized TAA models, and the potentially effective drug was further tested using β-aminopropionitrile-treated mice and retrospective clinical data. Findings The HAoSMCs on the model recapitulated the expressions of many TAA-related genes in tissue. Phenotypic switching and mitochondrial dysfunction, two disease hallmarks of TAA, were highlighted on the microphysiological model: the TAA-derived HAoSMCs exhibited lower alpha-smooth muscle actin expression, lower mitochondrial membrane potential, lower oxygen consumption rate and higher superoxide accumulation than control cells, while these differences were not evidently reflected in two-dimensional culture flasks. Model-based drug testing demonstrated that metformin partially recovered contractile phenotype and mitochondrial function in TAA patients’ cells. Mouse experiment and clinical investigations also demonstrated better preserved aortic microstructure, higher nicotinamide adenine dinucleotide level and lower aortic diameter with metformin treatment. Interpretation These findings support the application of this human-relevant microphysiological model in studying personalized disease characteristics and facilitating drug discovery for TAA. Metformin may regulate contractile phenotypes and metabolic dysfunctions in diseased HAoSMCs and limit aortic dilation. Funding This work was supported by grants from National Key R&D Program of China (2018YFC1005002), National Natural Science Foundation of China (82070482, 81771971, 81772007, 51927805, and 21734003), the Science and Technology Commission of Shanghai Municipality (20ZR1411700, 18ZR1407000, 17JC1400200, and 20YF1406900), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and Shanghai Municipal Education Commission (Innovation Program 2017-01-07-00-07-E00027). Y.S.Z. was not supported by any of these funds; instead, the Brigham Research Institute is acknowledged.
Collapse
|
6
|
Oller J, Gabandé-Rodríguez E, Roldan-Montero R, Ruiz-Rodríguez MJ, Redondo JM, Martín-Ventura JL, Mittelbrunn M. Rewiring Vascular Metabolism Prevents Sudden Death due to Aortic Ruptures-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:462-469. [PMID: 35196876 DOI: 10.1161/atvbaha.121.317346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The goal of this study was to determine whether boosting mitochondrial respiration prevents the development of fatal aortic ruptures triggered by atherosclerosis and hypertension. METHODS Ang-II (angiotensin-II) was infused in ApoE (Apolipoprotein E)-deficient mice fed with a western diet to induce acute aortic aneurysms and lethal ruptures. RESULTS We found decreased mitochondrial respiration and mitochondrial proteins in vascular smooth muscle cells from murine and human aortic aneurysms. Boosting NAD levels with nicotinamide riboside reduced the development of aortic aneurysms and sudden death by aortic ruptures. CONCLUSIONS Targetable vascular metabolism is a new clinical strategy to prevent fatal aortic ruptures and sudden death in patients with aortic aneurysms.
Collapse
Affiliation(s)
- Jorge Oller
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.)
| | - Enrique Gabandé-Rodríguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.)
| | - Raquel Roldan-Montero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (R.R.-M., J.L.M.-V.)
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (M.J.R.-R., J.M.R.)
| | - Juan Miguel Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (M.J.R.-R., J.M.R.)
| | - José Luís Martín-Ventura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (R.R.-M., J.L.M.-V.)
| | - María Mittelbrunn
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.)
| |
Collapse
|
7
|
Sun R, Zhou Y, Cui Q. Comparative analysis of aneurysm subtypes associated genes based on protein-protein interaction network. BMC Bioinformatics 2021; 22:587. [PMID: 34895131 PMCID: PMC8665538 DOI: 10.1186/s12859-021-04513-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
The arterial aneurysm refers to localized dilation of blood vessel wall and is common in general population. The majority of aneurysm cases remains asymptomatic until a sudden rupture which is usually fatal and of extremely high mortality (~ 50-60%). Therefore, early diagnosis, prevention and management of aneurysm are in urgent need. Unfortunately, current understanding of disease driver genes of various aneurysm subtypes is still limited, and without appropriate biomarkers and drug targets no specialized drug has been developed for aneurysm treatment. In this research, aneurysm subtypes were analyzed based on protein-protein interaction network to better understand aneurysm pathogenesis. By measuring network-based proximity of aneurysm subtypes, we identified a relevant closest relationship between aortic aneurysm and aortic dissection. An improved random walk method was performed to prioritize candidate driver genes of each aneurysm subtype. Thereafter, transcriptomes of 6 human aneurysm subtypes were collected and differential expression genes were identified to further filter potential driver genes. Functional enrichment of above driver genes indicated a general role of ubiquitination and programmed cell death in aneurysm pathogenesis. Especially, we further observed participation of BCL-2-mediated apoptosis pathway and caspase-1 related pyroptosis in the development of cerebral aneurysm and aneurysmal subarachnoid hemorrhage in corresponding transcriptomes.
Collapse
Affiliation(s)
- Ruya Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| |
Collapse
|
8
|
Qiu L, Yi S, Yu T, Hao Y. Sirt3 Protects Against Thoracic Aortic Dissection Formation by Reducing Reactive Oxygen Species, Vascular Inflammation, and Apoptosis of Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:675647. [PMID: 34095262 PMCID: PMC8176563 DOI: 10.3389/fcvm.2021.675647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Sirtuin3 (Sirt3) is a histone deacetylase involved in the regulation of many cellular processes. Sirt3 deficiency is known to increase oxidative stress. Reactive oxygen species (ROS) promote degradation of the extracellular matrix and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by Sirt3 overexpression could have therapeutic potential for limiting thoracic aortic dissection (TAD) development. We hypothesized that Sirt3 deficiency could increase the risk for TAD by decreasing ROS elimination and that Sirt3 overexpression (Sirt3OE) could provide an alternative option for TAD treatment. Mice with TAD had significantly lower Sirt3 expression than normal subjects. Sirt3 KO mice exhibit significantly increased TAD incidence rate and increased aortic diameters. Moreover, Sirt3 overexpression reduced Ang II-induced ROS production, NF-kB activation, and apoptosis in human aortic smooth muscle cells (HASMCs). Sirt3 overexpression attenuated aneurysm formation and decreased aortic expansion. In conclusion, our data showed that Sirt3 deficiency increases susceptibility to TAD formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation.
Collapse
Affiliation(s)
- Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shaolei Yi
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|