1
|
Chiu PH, Wu ZY, Hsu CC, Chang YC, Huang CM, Hu CT, Lin CM, Chang SC, Hsieh HJ, Dai CA. Enhancement of antibacterial activity in electrospun fibrous membranes based on quaternized chitosan with caffeic acid and berberine chloride for wound dressing applications. RSC Adv 2024; 14:34756-34768. [PMID: 39483382 PMCID: PMC11526035 DOI: 10.1039/d4ra05114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Electrospun nanofibers made from chitosan are promising materials for surgical wound dressings due to their non-toxicity and biocompatibility. However, the antibacterial activity of chitosan is limited by its poor water solubility under physiological conditions. This study addresses this issue by producing electrospun nanofibers mainly from natural compounds, including chitosan and quaternized chitosan, which enhance both its solubility for electrospinning and the antibacterial activity of the resulting electrospun nanofibers. Additionally, antimicrobial agents like caffeic acid or berberine chloride were incorporated. The glutaraldehyde-treated nanofibers showed improved mechanical properties, with an average tensile strength exceeding 2.7 MPa, comparable to other chitosan-based wound dressings. They also demonstrated enhanced water stability, retaining over 50% of their original weight after one week in phosphate-buffered saline (PBS) at 37 °C. The morphology and performance of these nanofibers were thoroughly examined and discussed. Furthermore, these membranes displayed rapid drug release, indicating potential for inhibiting bacterial growth. Antibacterial assays revealed that S2-CX nanofibers containing caffeic acid were most effective against E. coli and S. aureus, reducing their survival rates to nearly 0%. Similarly, berberine chloride-containing S4-BX nanofibers reduced the survival rates of E. coli and S. aureus to 19.82% and 0%, respectively. These findings suggest that electrospun membranes incorporating chitosan and caffeic acid hold significant potential for use in antibacterial wound dressings and drug delivery applications.
Collapse
Affiliation(s)
- Po-Hsun Chiu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Chih-Chin Hsu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Chang-Ming Huang
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Cheng-Ti Hu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Che-Min Lin
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Shin C Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Hsyue-Jen Hsieh
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Chi-An Dai
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
2
|
Ju R, Lu Y, Jiang Z, Chi J, Wang S, Liu W, Yin Y, Han B. A Thermosensitive and Degradable Chitin-Based Hydrogel as a Brucellosis Vaccine Adjuvant. Polymers (Basel) 2024; 16:2815. [PMID: 39408526 PMCID: PMC11478596 DOI: 10.3390/polym16192815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Brucellosis is a zoonotic infectious disease that has long endangered the development of animal husbandry and human health. Currently, vaccination stands as the most efficacious method for preventing and managing brucellosis. Alum, as the most commonly used adjuvant for the brucellosis vaccine, has obvious disadvantages, such as the formation of granulomas and its non-degradability. Therefore, the aims of this study were to prepare an absorbable, injectable, and biocompatible hydroxypropyl chitin (HPCT) thermosensitive hydrogel and to evaluate its immunization efficacy as an adjuvant for Brucella antigens. Specifically, etherification modification of marine natural polysaccharide chitin was carried out to obtain a hydroxypropyl chitin. Rheological studies demonstrated the reversible temperature sensitivity of HPCT hydrogel. Notably, 5 mg/mL of bovine serum albumin can be loaded in HPCT hydrogels and released continuously for more than one week. Furthermore, the L929 cytotoxicity test and in vivo degradation test in rats proved that an HPCT hydrogel had good cytocompatibility and histocompatibility and can be degraded and absorbed in vivo. In mouse functional experiments, as adjuvants for Brucella antigens, an HPCT hydrogel showed better specific antibody expression levels and cytokine (Interleukin-4, Interferon-γ) expression levels than alum. Thus, we believe that HPCT hydrogels hold much promise in the development of adjuvants.
Collapse
Affiliation(s)
- Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Yanjing Lu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (R.J.); (Z.J.); (J.C.); (S.W.); (W.L.)
| |
Collapse
|
3
|
Liu F, Liu Y, Guo Y, Liu J, Dong J, Wang T, Hao D, Zhang Y. FTIR determination of the degree of molar substitution for hydroxypropyl chitosan. Carbohydr Polym 2024; 339:122229. [PMID: 38823904 DOI: 10.1016/j.carbpol.2024.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
We developed and validated a novel Fourier transform infrared (FTIR) method to determine the degree of molar substitution (MS) for hydroxypropyl chitosan (HPCS) using nuclear magnetic resonance (1H NMR) as a reference, and investigated the factors influencing the MS assay. Through extensive screening of integration methods for candidate bands in the FTIR spectrum of HPCS using 20 HPCS samples with degrees of acetylation (DA) ranging from 0.003 to 0.139, we found that when using band area at 2970 cm-1 as a probe integral, the MS values obtained via the 1H NMR method exhibited linear correlations (R2 > 0.98) with at least 16 integral ratios derived from their FTIR spectra. The optimal reference bands with high reliability are located at 3440 cm-1 and 1415 cm-1, with R2 exceeding 0.99 and a MS range of 0.17-1.92. The band at 2875 cm-1 is less affected by the trace moisture present in HPCS samples than the others. The results of the method validation demonstrated a mean recovery of 98.9 ± 2.8 % and an RSD below 10 %, suggesting a simple, robust, and highly accurate and precise method. This method could be extendable for the determination of the MS of insoluble HPCS derivatives and other hydroxypropylated polysaccharides.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Yinchun Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Youli Guo
- Yantai Tianlu Food Co., Ltd., No. 2 Fenhe Road, Yantai 264000, China
| | - Jianrui Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Jingwen Dong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Tengbin Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Di Hao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China
| | - Yongqin Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, No.53 Zhengzhou Road, Qingdao 266042, China.
| |
Collapse
|
4
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
5
|
Wang Z, Yan Y, Zhang Z, Li C, Mei L, Hou R, Liu X, Jiang H. Effect of Chitosan and Its Water-Soluble Derivatives on Antioxidant Activity. Polymers (Basel) 2024; 16:867. [PMID: 38611124 PMCID: PMC11013083 DOI: 10.3390/polym16070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The antioxidant activity of chitosan (CS) and three water-soluble derivatives was analyzed comparatively by in vitro and in vivo experiments, including hydroxypropyl chitosan (HPCS), quaternary ammonium salt of chitosan (HACC), and carboxymethyl chitosan (CMCS). The results show that chitosan and its water-soluble derivatives have a scavenging ability on DPPH radicals, superoxide radicals, and hydroxyl radicals, and a reducing ability. A remarkable difference (p < 0.05) was found for HACC and HPCS compared with CS on DPPH radicals, hydroxyl radicals, and reducing ability. The antioxidant ability of the four chitosan samples was in the order of HPCS > HACC > CMCS > CS. Furthermore, antioxidant activity of all samples increased gradually in a concentration-dependent manner. The in vivo result indicates that oral CS and its derivatives samples result in a decrease in lipid peroxides (LPO) and free fatty acids (FFA) levels in serum with an increase in superoxide dismutase (SOD) activity. Especially for the HPCS and HACC groups, the LPO, FFA, and SOD activity in serum was different significantly in comparison with the high-fat controlgroup (HF) (p < 0.05). These results indicate that chitosan and its derivatives can be used as good antioxidants, and the antioxidant activity might be related to the molecular structure of chitosan derivatives.
Collapse
Affiliation(s)
- Zhihua Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Yongbin Yan
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Zhengmao Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Lanfei Mei
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Ruyi Hou
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Xiaodan Liu
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Chen X, Yan G, Chen M, Yang P, Xu B. Alkylated chitosan-attapulgite composite sponge for rapid hemostasis. BIOMATERIALS ADVANCES 2023; 153:213569. [PMID: 37531822 DOI: 10.1016/j.bioadv.2023.213569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
This study reported the development of a composite sponge (ACATS) based on alkylated chitosan (AC) and attapulgite (AT) for rapid hemostasis. The well-designed ACATS, with an optimal AC N-alkylation of 5.9 % and an optimal AC/AT mass ratio of 3:1, exhibited a hierarchical porous structure with a favorable biocompatibility. The ACATS can effectively and rapidly stop the uncontrolled bleeding in 235 ± 64 s with a total blood loss of 8.4 ± 4.0 g in comparison with those of Celox as a positive control (602 ± 101 s and 22.3 ± 2.4 g, respectively) using rabbit carotid artery injury model in vivo. ACATS could rapidly interact with blood and its components, including platelets (PLs), red blood cells (RBCs), and coagulation factors, resulting in these blood components rapidly accumulation and the following thrombus formation and coagulation factors activation.
Collapse
Affiliation(s)
- Xue Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Guoliang Yan
- Basic Medical Department of School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; Pingtan Research Institute of Xiamen University, Pingtan 350400, China.
| | - Ping Yang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Bolin Xu
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Liu J, Xu Y, Huang Y, Sun X, Peng Y, Song W, Yuan J, Ren L. Collagen membrane loaded with doxycycline through hydroxypropyl chitosan microspheres for the early reconstruction of alkali-burned cornea. Int J Biol Macromol 2023:125188. [PMID: 37270120 DOI: 10.1016/j.ijbiomac.2023.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Corneal alkali burn is one of the most devastating ophthalmic emergencies correlated with remarkable morbidity resulting in severe visual impairment. Appropriate intervention in the acute phase determines the eventual outcome for later corneal restoration treatment. Since the epithelium plays an essential role in inhibiting inflammation and promoting tissue repair, sustained anti-matrix metalloproteinases (MMPs) and pro-epithelialization are the prior remedies during the first week. In this study, a drug-loaded collagen membrane (Dox-HCM/Col) that could be sutured to overlay the burned cornea was developed to accelerate the early reconstruction. Doxycycline (Dox), a specific inhibitor of MMPs, was encapsulated in collagen membrane (Col) through hydroxypropyl chitosan microspheres (HCM) to develop Dox-HCM/Col, affording a preferable pro-epithelialization microenvironment and an in-situ controlled release. Results showed that loading HCM into Col prolonged the release time to 7 days, and Dox-HCM/Col could significantly suppress the expression of MMP-9 and -13 in vitro and in vivo. Furthermore, the membrane accelerated the corneal complete re-epithelialization and promoted early reconstruction within the first week. Overall, Dox-HCM/Col was a promising biomaterial membrane for treating alkali-burned cornea in the early stage, and our attempt may provide a clinically feasible method for the ocular surface reconstruction.
Collapse
Affiliation(s)
- Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangzhou Proud Seeing Biotechnology Co., Ltd, Guangzhou 510623, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
8
|
Omer AM, Eltaweil AS, El-Fakharany EM, Abd El-Monaem EM, Ismail MMF, Mohy-Eldin MS, Ayoup MS. Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:7587-7601. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted againstEscherichia coli(E coli) andStaphylococcus aureus(S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth ofS. aureusup to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
9
|
Naik K, Du Toit LC, Ally N, Choonara YE. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics 2023; 15:566. [PMID: 36839888 PMCID: PMC9961338 DOI: 10.3390/pharmaceutics15020566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The vitreous humour is a gel-like structure that composes the majority of each eye. It functions to provide passage of light, be a viscoelastic dampener, and hold the retina in place. Vitreous liquefaction causes retinal detachment and retinal tears requiring pars plana vitrectomy for vitreous substitution. An ideal vitreous substitute should display similar mechanical, chemical, and rheological properties to the natural vitreous. Currently used vitreous substitutes such as silicone oil, perfluorocarbon liquids, and gases cannot be used long-term due to adverse effects such as poor retention time, cytotoxicity, and cataract formation. Long-term, experimental vitreous substitutes composed of natural, modified and synthetic polymers are currently being studied. This review discusses current long- and short-term vitreous substitutes and the disadvantages of these that have highlighted the need for an ideal vitreous substitute. The review subsequently focuses specifically on currently used polysaccharide- and synthetic polymer-based vitreous substitutes, which may be modified or functionalised, or employed as the derivative, and discusses experimental vitreous substitutes in these classes. The advantages and challenges associated with the use of polymeric substitutes are discussed. Innovative approaches to vitreous substitution, namely a novel foldable capsular vitreous body, are presented, as well as future perspectives related to the advancement of this field.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
10
|
Effect of hydroxypr1opylation on physical properties, antifungal and mycotoxin inhibitory activities of clove oil emulsions coated with chitosan. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Gaballah EY, Borg TM, Mohamed EA. Hydroxypropyl chitosan nail lacquer of ciclopirox-PLGA nanocapsules for augmented in vitro nail plate absorption and onychomycosis treatment. Drug Deliv 2022; 29:3304-3316. [PMID: 36372978 PMCID: PMC9848413 DOI: 10.1080/10717544.2022.2144543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Onychomycosis accounts for 90% of nail infections worldwide. Topical therapy provides localized effects with minimal adverse systemic actions, yet its effectiveness is limited by minimal drug permeation through the keratinized nail plate. Ciclopirox (CIX) is a FDA-approved broad-spectrum antimycotic agent. However, the complete cure with its nail lacquer (8% w/v) may continue for one year with a high cost. Therefore, poly lactide-co-glycolide (PLGA) nanocapsules (NCs) of CIX were prepared by nanoprecipitation and optimized through a 23 factorial design to be incorporated into hydroxypropyl chitosan (HPCH) based nail lacquer. Nail hydration, in vitro nail absorption, minimum inhibitory concentration (MIC), inhibition zones and ex vivo fungal growth on nail fragments were evaluated. The optimized NCs of CIX based on 100 mg PLGA 2 A and lipoid S75 showed a mean diameter of 174.77 ± 7.90 nm, entrapment efficiency (EE%) of 90.57 ± 0.98%, zeta potential (ZP) of -52.27 ± 0.40 mV and a prolonged drug release. Nail lacquer of the optimized NCs exhibited a higher stability than NCs dispersion. Compared to CIX solution (1% w/v), the respective decrease in MIC for NCs and their lacquer was four- and eight-fold. The lacquer superiority was confirmed by the enhancement in the nail hydration and absorption by 4 and 2.60 times, respectively, relative to CIX solution and the minimal ex vivo fungal growth. Therefore, HPCH nail lacquer of (1% w/v) CIX-PLGA-NCs can be represented as a potential topical delivery system for enhanced in vitro nail absorption and therapeutic efficacy against onychomycosis at a low dose.
Collapse
Affiliation(s)
- Eman Yahya Gaballah
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Thanaa Mohammed Borg
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Elham Abdelmonem Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt,CONTACT Elham Abdelmonem Mohamed Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University Mansoura, 35516, Egypt
| |
Collapse
|
12
|
The complex hydrogel based on diatom biosilica and hydroxybutyl chitosan for wound healing. Colloids Surf B Biointerfaces 2022; 216:112523. [PMID: 35596961 DOI: 10.1016/j.colsurfb.2022.112523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
In this study, doxycycline (DOXY)-loaded diatom biosilica (DBs) were developed and coated with hydroxybutyl chitosan (HBC) hydrogel for wound healing. The HBC/DBs/DOXY composite hydrogel had significant inhibitory activity against S. aureus (100%) and E. coli (98%). In addition, the HBC/DBs/DOXY hydrogel showed minimum cytotoxicity on L929 cells in vitro, indicating the great biocompatibility of the composite hydrogel. The in vivo results demonstrated that HBC/DBs/DOXY composite hydrogel could promote the wound re-epithelialization and accelerate the healing. The wound closure was evaluated to be 99.4 ± 0.4% at day 12 after treated with the hydrogel, with the presence of neovascularization and collagen deposition, all indicating the great potential of HBC/DBs/DOXY hydrogel in wound healing.
Collapse
|
13
|
Yue L, Zheng M, Wang M, Khan IM, Ding X, Zhang Y, Wang Z. Water-soluble chlorin e6-hydroxypropyl chitosan as a high-efficiency photoantimicrobial agent against Staphylococcus aureus. Int J Biol Macromol 2022; 208:669-677. [PMID: 35346676 DOI: 10.1016/j.ijbiomac.2022.03.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The development of new antimicrobial agents is important to combat infections caused by pathogenic bacteria. Herein, Hydroxypropyl chitosan (HPCS), a hydrophilic modified product of chitosan (CS), was employed as a carrier of the photosensitizer chlorin e6 (Ce6) through an amide bond to obtain the products (HPCS-Ce6 conjugates) with a degree of substitution (DS) ranging from 2.95% to 5.25%. The UV-vis absorption spectra and 1H NMR spectra confirmed the successful synthesis of the products. The products have a better and more stable reactive oxygen species (ROS) generation capacity and higher bacterial affinity than Ce6. At a very low dose (1.8 μg/mL), the highest DS product (HPCS-Ce6-3) can effectively kill Staphylococcus aureus (S. aureus) under 660 nm irradiation. In addition, the HPCS-Ce6 conjugates showed high biocompatibility in the CCK-8 test. The HPCS-Ce6 conjugates could be a photodynamic antibacterial agent with good water solubility, high biocompatibility, and antibacterial activity.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Xiaowei Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
14
|
Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022; 10:899760. [PMID: 35600891 PMCID: PMC9114740 DOI: 10.3389/fbioe.2022.899760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The treatment of infected bone defects includes infection control and repair of the bone defect. The development of biomaterials with anti-infection and osteogenic ability provides a promising strategy for the repair of infected bone defects. Owing to its antibacterial properties, chitosan (an emerging natural polymer) has been widely studied in bone tissue engineering. Moreover, it has been shown that chitosan promotes the adhesion and proliferation of osteoblast-related cells, and can serve as an ideal carrier for bone-promoting substances. In this review, the specific molecular mechanisms underlying the antibacterial effects of chitosan and its ability to promote bone repair are discussed. Furthermore, the properties of several kinds of functionalized chitosan are analyzed and compared with those of pure chitosan. The latest research on the combination of chitosan with different types of functionalized materials and biomolecules for the treatment of infected bone defects is also summarized. Finally, the current shortcomings of chitosan-based biomaterials for the treatment of infected bone defects and future research directions are discussed. This review provides a theoretical basis and advanced design strategies for the use of chitosan-based biomaterials in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Yuhang Tian
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Danhua Wu
- The People’s Hospital of Chaoyang District, Changchun, China
| | - Dankai Wu
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yutao Cui
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Guangkai Ren
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yanbing Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chuangang Peng,
| |
Collapse
|
15
|
Liu XL, Zhu CF, Liu HC, Zhu JM. Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives. Des Monomers Polym 2022; 25:75-88. [PMID: 35341117 PMCID: PMC8956314 DOI: 10.1080/15685551.2022.2054118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.
Collapse
Affiliation(s)
- Xue-Li Liu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
- School of Chemistry & Chemical Engineering, Anhui University, Anhui, China
| | - Chun-Feng Zhu
- Department of Pharmacy, Traditional Chinese Hospital of Lu’an, Anhui, China
| | - Han-Chun Liu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
| | - Jia-Ming Zhu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
| |
Collapse
|
16
|
Wang M, Yue L, Niazi S, Khan IM, Zhang Y, Wang Z. Synthesis and characterization of cinnamic acid conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride derivatives: A hybrid flocculant with antibacterial activity. Int J Biol Macromol 2022; 206:886-895. [PMID: 35306015 DOI: 10.1016/j.ijbiomac.2022.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022]
Abstract
The modified natural biopolymers, recognized as environmentally friendly flocculants, are gaining tremendous attention in the field of water treatment. In this study, a novel hybrid flocculant with antibacterial activity, cinnamic acid (CA) conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC) derivative (HTCC-CA), was prepared via quaternary ammonium and amide reactions. The characterization, flocculation, and antibacterial activities were carried out to access the structural properties and potential application. The results of UV-vis, FT-TR, and 1H NMR confirmed the successful synthesis of HTCC-CA1-3 derivatives. XRD and TGA revealed the lower crystallinity and thermal stability of HTCC-CA1-3 derivatives than chitosan (CS). Bacterial flocculation and antibacterial tests indicated the excellent flocculation effect of HTCC-CA1-3 derivatives and showed high antibacterial activity for Escherichia coli suspension. Moreover, the mechanism of action of the derivatives was investigated via zeta potential measurements and scanning electron microscope, which can be summed up as the effective interaction between charges. The results proved that HTCC-CA derivatives are promising agents for wastewater treatment.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
17
|
Zhao L, Khan IM, Wang B, Yue L, Zhang Y, Wang Z, Xia W. Synthesis and antibacterial properties of new monomethyl fumaric acid‐modified chitosan oligosaccharide derivatives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyu Zhao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| |
Collapse
|
18
|
Zhang W, Zhao L, Gao C, Huang J, Li Q, Zhang Z. Highly resilient, biocompatible, and antibacterial carbon nanotube/hydroxybutyl chitosan sponge dressing for rapid and effective hemostasis. J Mater Chem B 2021; 9:9754-9763. [PMID: 34796365 DOI: 10.1039/d1tb01911b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrolled hemorrhage is the leading cause of trauma death. The development of safe and efficient hemostatic agents that can rapidly and effectively control bleeding is of great significance to rescue the injured. However, the mechanical, absorptive, and antibacterial properties of conventional two-dimensional hemostatic agents are not satisfactory. Herein, a series of effective three-dimensional hemostatic dressings (JWCNT/HBC sponges) are developed by chemical modification of joint-welded carbon nanotube (JWCNT) sponges with hydroxybutyl chitosan (HBC) for hemorrhage hemostasis. The JWCNT/HBC sponges exhibit high elasticity, porous structure, and suitable blood-absorption and blood-maintaining performance. Moreover, the introduction of HBC endows the JWCNT/HBC sponges with favorable blood compatibility and good antibacterial activity. The sponge treated with 0.5% HBC (JWCNT/0.5%HBC sponge) displays better antiseptic capability, faster blood clotting ability in vitro and shorter hemostasis time in vivo than the commercial gelatin sponge. The JWCNT/HBC sponges combine the advantages of JWCNT sponges and HBC in the adhesion and activation of platelets and red blood cells, thus becoming a good medical material for trauma hemostasis.
Collapse
Affiliation(s)
- Wei Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liming Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Chen Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qingwen Li
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
19
|
Elucidation of substituent distribution states for carboxymethyl chitosan by detailed NMR analysis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Wan X, He Q, Wang X, Liu M, Lin S, Shi R, Tian J, Chen G. Water-soluble chitosan-based indicator label membrane and its response behavior to carbon dioxide. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
22
|
Huang Q, Yu H, Wang L, Shen D, Chen X, Wang N. Preparation of Dendritic Mesoporous Silica/Phenylboronic Acid-Modified Hydroxypropyl Chitosan and Its Glucose-Responsive Performance. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21060055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Yue L, Wang M, Khan IM, Xu J, Peng C, Wang Z. Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives. Int J Biol Macromol 2021; 189:657-667. [PMID: 34455000 DOI: 10.1016/j.ijbiomac.2021.08.164] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
In this study, cinnamic acid (CA) conjugated hydroxypropyl chitosan (HPCS) derivatives (HPCS-CA) with different degrees of substitution (DS) were successfully synthesized. The reaction was divided into two steps: the first step was to modify chitosan (CS) to HPCS, and the second step was to graft CA onto HPCS. Structural characterization and properties were carried out employing elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, nuclear magnetic resonance (NMR) spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The solubility test revealed the better water solubility of derivatives than CS. In addition, in vitro antibacterial and antibiofilm tests were performed. As expected, HPCS-CA derivatives exhibited good antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The MIC and MBC of HPCS-CA derivatives could reach 256 μg/mL and 512 μg/mL, respectively. Confocal laser scanning microscopy (CLSM) analysis proved the inhibitory effect of HPCS-CA derivatives on S. aureus and E. coli biofilms by disrupting the formation of biofilms, reducing the thickness of biofilms, and the number of live bacteria. These results suggest the potential applicability of HPCS-CA derivatives in the treatment of biofilm-associated infections and provide a practical strategy for the design of novel CS-based antibacterial materials.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Jianguo Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| |
Collapse
|
24
|
Li X, Lei Z, Sheng J, Song Y. Preparation and properties of caffeic-chitosan grafting fish bone collagen peptide. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211046417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel peptide grafted chitosan (CACS-FBP) with high peptide content, excellent moisture-absorption and moisture-retention abilities was prepared. Caffeic acid (CA) was used to modify chitosan, the highly water-soluble intermediate further reacted with fish bone collagen peptide to obtain the final product, and the synthesis of CACS-FBP was confirmed by the Fourier transform infrared spectroscopy (FT-IR), NMR, and UV-vis. The single-factor experiments indicated that the degree of substitution (DS) of CACS-FBP depended on the reaction temperature, reaction time, the mass ratio of fish bone collagen peptide to CACS (mFBP/mCACS) and the mass ratio of MTGase to CACS (mMTGase/mCACS). In addition, the antioxidant assay indicated that CACS-FBP had an excellent antioxidant capacity, and the CACS-FBP showed no cytotoxicity toward L929 mouse fibroblasts, all the results mean that the prepared peptide-containing chitosan derivative has potential application in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Xuqin Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Zhou Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, P.R. China
| |
Collapse
|
25
|
Tyagi R, Kumar V, Sharma P, Nautiyal R. Hydroxypropylation of 1,2 Galactomannan by Taguchi's L9 Orthogonal Array Design. ChemistrySelect 2021. [DOI: 10.1002/slct.202101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rakhi Tyagi
- Chemistry and Bioprospecting Division Forest Research Institute Dehradun, 248006 India
| | - Vineet Kumar
- Chemistry and Bioprospecting Division Forest Research Institute Dehradun, 248006 India
| | - Pradeep Sharma
- Chemistry and Bioprospecting Division Forest Research Institute Dehradun, 248006 India
| | - Raman Nautiyal
- Division of Forestry Statistics Indian Council of Forestry Research and Education Dehradun 248006 India
| |
Collapse
|
26
|
Wang P, Lv X, Zhang B, Wang T, Wang C, Sun J, Zhang K, Wu Y, Zhao J, Zhang Y. Simultaneous determination of molar degree of substitution and its distribution fraction, degree of acetylation in hydroxypropyl chitosan by 1H NMR spectroscopy. Carbohydr Polym 2021; 263:117950. [DOI: 10.1016/j.carbpol.2021.117950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
|
27
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|
28
|
The antibacterial structure-activity relationship for common chitosan derivatives. Int J Biol Macromol 2020; 165:1686-1693. [DOI: 10.1016/j.ijbiomac.2020.09.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
|
29
|
Won Y, Sadman K, Stein G, Sabba F, Shull KR, Gray KA. Functionalizing a Polyelectrolyte Complex with Chitosan Derivatives to Tailor Membrane Surface Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12784-12794. [PMID: 33095986 DOI: 10.1021/acs.langmuir.0c01032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte complex (PEC) materials show promise in the development of tunable membranes for aqueous and organic solvent separations, as well as in the creation of surface layers for fouling control. In this study, we developed a polyelectrolyte complex (PEC) functionalized by negatively charged carboxymethyl chitosan (CMC-) and positively charged quaternized chitosan (QC+) to tailor its surface properties and antibacterial efficacy. CMC- and QC+ were prepared and characterized using FT-IR and 1H NMR, which confirmed the presence of the carboxymethyl group and trimethylammonium group in CMC- and QC+ with 65.6% and 83.9% substitution, respectively. The CMC- functionalized PEC (CMC-/PEC) and QC+ functionalized PEC materials (QC+/PEC) were evaluated for their stability in water, resistance to organic and inorganic adsorption, and antibacterial action against a model microorganism, Pseudomonas putida. The results showed no release of chitosan derivatives after adsorption, and CMC-/PEC and QC+/PEC exhibited charge-based, selective repulsion of model organic and inorganic substances. Moreover, the functionalized PEC surfaces displayed lower bacterial attachment due to their smoother surfaces as compared to the bare ceramic membrane and their antimicrobial properties. Among the PEC samples, CMC-/PEC had the lowest cell attachment, while QC+/PEC showed the highest attachment due to electrostatic attraction. The ceramic and bare PEC surfaces were negligibly bactericidal, while cell viability decreased to 34.4 ± 10.2% and 30.6 ± 8.2% with the CMC-/PEC and QC+/PEC surfaces, respectively. In the filtration experiments, the unmodified PEC and CMC-/PEC showed lower rates of flux decline due to organic fouling than did the bare ceramic or QC+/PEC due to electrostatic repulsion. Furthermore, PECs as protective layers promoted much higher flux recoveries than simply backwashing the uncoated membranes. This surface tunability, then, enhances the potential of PECs either as fouling resistant materials or as a method to create a sacrificial, protective layer on surfaces that once fouled can be dissolved and re-established.
Collapse
Affiliation(s)
- Yechan Won
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kazi Sadman
- Department of Material Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Gabrielle Stein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Shull
- Department of Material Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Shou Y, Zhang J, Yan S, Xia P, Xu P, Li G, Zhang K, Yin J. Thermoresponsive Chitosan/DOPA-Based Hydrogel as an Injectable Therapy Approach for Tissue-Adhesion and Hemostasis. ACS Biomater Sci Eng 2020; 6:3619-3629. [PMID: 33463168 DOI: 10.1021/acsbiomaterials.0c00545] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) hydrogels are widely used in wound hemostatic agents due to their superior biocompatibility, biodegradability, and hemostatic effect. However, most of them fail to achieve great hemostatic effect because of poor adhesion to bleeding tissues. Also, the conventional implantation surgery of hemostatic hydrogels to internal bleeding wounds may cause secondary trauma to the human body. In this work, catechol-hydroxybutyl chitosan (HBCS-C) has been designed and prepared by grafting hydroxybutyl groups and catechol groups to the CS backbones. The multifunctional HBCS-C hydrogels are fabricated with the properties of thermosensitivity, injectability, tissue-adhesion, biodegradation, biocompatibility, and wound hemostasis. They exhibit excellent liquid-gel transition at different temperatures, through the changes of hydrophilic-hydrophobic interaction and hydrogen bonds generating from hydroxybutyl groups. By the multiple interactions between catechol groups/amino groups and tissues, the biocompatible hydrogels can strongly adhere on the surface of tissue. To further study, the bleeding rat-liver models are made to evaluate the hemostatic effects. After injecting the hydrogel precursor solution into the rat body, the hydrogels are not only formed in situ within 30 s but are also firmly adhered to the bleeding tissues which shows effective hemostasis. The injectability and tissue-adhesion improvement in this study gives a new insight into hemostatic agents, and the multifunctional hydrogels have a great potential in the biomedical application.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahui Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Pengfei Xia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Pengliang Xu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
32
|
Jones M, Kujundzic M, John S, Bismarck A. Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Mar Drugs 2020; 18:E64. [PMID: 31963764 PMCID: PMC7024172 DOI: 10.3390/md18010064] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chitin and its derivative chitosan are popular constituents in wound-treatment technologies due to their nanoscale fibrous morphology and attractive biomedical properties that accelerate healing and reduce scarring. These abundant natural polymers found in arthropod exoskeletons and fungal cell walls affect almost every phase of the healing process, acting as hemostatic and antibacterial agents that also support cell proliferation and attachment. However, key differences exist in the structure, properties, processing, and associated polymers of fungal and arthropod chitin, affecting their respective application to wound treatment. High purity crustacean-derived chitin and chitosan have been widely investigated for wound-treatment applications, with research incorporating chemically modified chitosan derivatives and advanced nanocomposite dressings utilizing biocompatible additives, such as natural polysaccharides, mineral clays, and metal nanoparticles used to achieve excellent mechanical and biomedical properties. Conversely, fungi-derived chitin is covalently decorated with -glucan and has received less research interest despite its mass production potential, simple extraction process, variations in chitin and associated polymer content, and the established healing properties of fungal exopolysaccharides. This review investigates the proven biomedical properties of both fungal- and crustacean-derived chitin and chitosan, their healing mechanisms, and their potential to advance modern wound-treatment methods through further research and practical application.
Collapse
Affiliation(s)
- Mitchell Jones
- School of Engineering, RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora VIC 3083, Australia
| | - Marina Kujundzic
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Sabu John
- School of Engineering, RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora VIC 3083, Australia
| | - Alexander Bismarck
- Institute of Material Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
33
|
Liu X, Song S, Huang J, Fu H, Ning X, He Y, Zhang Z. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B 2020; 8:6115-6127. [DOI: 10.1039/d0tb00616e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels have been developed to provide a multifunctional biomimetic microenvironment for hMSC chondrogenesis.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Shaoshuai Song
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Han Fu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province
- College of Mechanical Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
34
|
Cai Q, Qiao C, Ning J, Ding X, Wang H, Zhou Y. A Polysaccharide-based Hydrogel and PLGA Microspheres for Sustained P24 Peptide Delivery: An In vitro and In vivo Study Based on Osteogenic Capability. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Pokhrel S, Yadav PN. Functionalization of chitosan polymer and their applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shanta Pokhrel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
36
|
Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1703-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Zhao Y, Wang Z, Zhang Q, Chen F, Yue Z, Zhang T, Deng H, Huselstein C, Anderson DP, Chang PR, Li Y, Chen Y. Accelerated skin wound healing by soy protein isolate-modified hydroxypropyl chitosan composite films. Int J Biol Macromol 2018; 118:1293-1302. [PMID: 30021397 DOI: 10.1016/j.ijbiomac.2018.06.195] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022]
Abstract
In this study, a series of hydroxypropyl chitosan (HPCS)/soy protein isolate (SPI) composite films (HCSFs) with different SPI contents were developed via crosslinking, solution casting, and evaporation process. Effects of the SPI content on the structure and physical properties of the HCSFs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction patterns, scanning electron microscopy, swelling kinetics analysis, and mechanical testing. The HCSFs exhibited a lower swelling ratio with an increase in the SPI content. The tensile strength was in a tunable range from 7.88 ± 3.08 to 40.44 ± 2.31 MPa by adjusting the SPI content. Cytocompatibility and hemocompatibility of the HCSFs were evaluated by a series of in vitro assays, including MTT assay, live/dead assay, cell morphology observation, hemolysis ratio testing, and plasma recalcification time measurement. Results showed that the HCSFs support L929 cells attachment and proliferation without obvious hemolysis, indicating good cytocompatibility and hemocompatibility. The potential of resultant HCSFs as the wound dressings was investigated using a full-thickness skin wound model in rats. Results exhibited that the HCSFs with 50% SPI content had the fastest healing speed and the best skin regeneration efficiency and may be a potential candidate as the wound dressing.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zijian Wang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Feixiang Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiyi Yue
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiantian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongbing Deng
- Department of School of Environmental Sciences, Resource and Environmental Sciences, Wuhan 430065, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09 Nancy University, Vandœuvre-lès-Nancy, France
| | - Debbie P Anderson
- Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Peter R Chang
- Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Yinping Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
38
|
Jiang C, Sun G, Zhou Z, Bao Z, Lang X, Pang J, Sun Q, Li Y, Zhang X, Feng C, Chen X. Optimization of the preparation conditions of thermo-sensitive chitosan hydrogel in heterogeneous reaction using response surface methodology. Int J Biol Macromol 2018; 121:293-300. [PMID: 30287376 DOI: 10.1016/j.ijbiomac.2018.09.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
A thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel was prepared by using 1,2‑butene oxide as an etherification modifying agent. To obtain the maximum yield of HBC, response surface methodology (RSM) was applied to optimize its preparation conditions. Key factors were chosen firstly by Plackett-Burman design (PBD) experiments, such as the concentration of NaOH, the ratio of isopropanol to water and reaction temperature. Steepest ascent experiments were employed to reach the top region of the response and determine the appropriate levels of three key factors. A three-level-three-variable Box-Behnken design (BBD) was used to further optimize the synthesis parameters. The results indicated that when the concentration of NaOH and the ratio of isopropyl alcohol to water were 40.65% and 2.68:1 at reaction temperature of 59 °C, respectively, the yield of HBC production was 5.897 ± 0.112 g and close to the predicted value (6.002 g), which demonstrated that the effectiveness of BBD model and the controllability for the yield of HBC in the heterogeneous reaction system.
Collapse
Affiliation(s)
- Changqing Jiang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Guohui Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhongzheng Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zixian Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science, Qingdao 266101, PR China
| | - Xuqian Lang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jianhui Pang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yang Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
39
|
Synthesis, Characterization, and Anti-Phytopathogen Evaluation of 6-Oxychitosan Derivatives Containing N-Quaternized Moieties in Its Backbone. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3970142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure modification of chitosan has great application potential. 6-Oxychitosan was prepared by specially oxidizing the C6-OH of chitosan, then 6-oxychitosan was reacted with three kinds of aldehydes to prepare N-quaternized 6-oxychitosan derivatives in this paper. The derivatives were characterized by FT-IR, NMR, and elemental analysis. The antimicrobial activity of these derivatives was tested against two common plant-threatening fungi and three plant disease bacteria. The results showed that N-quaternized 6-oxychitosan derivatives had good water-solubility and excellent antimicrobial activity. Moreover, derivative 3 which connected 8-hydroxyquinolines had the highest antimicrobial activity than the other derivatives. The inhibitory indices of derivative 3 against V. albo-atrum and P. hibernalis are 89.1% and 72.8% at 0.4 mg/ml. The MICs of 3 against X. oryzae, P. syringae, and E. rhapontici were 625, 625, and 156 mg/l, respectively. All the results indicate that derivative 3 has the potential of becoming an alternative to harmful agricultural chemicals.
Collapse
|
40
|
Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology. Carbohydr Polym 2018; 189:280-288. [DOI: 10.1016/j.carbpol.2018.01.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/20/2022]
|
41
|
Jiang X, Peng Y, Yang C, Liu W, Han B. The feasibility study of an in situ
marine polysaccharide-based hydrogel as the vitreous substitute. J Biomed Mater Res A 2018; 106:1997-2006. [DOI: 10.1002/jbm.a.36403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolei Jiang
- College of Marine Life Sciences, Ocean University of China; Qingdao Shandong China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China; Qingdao Shandong China
| | - Chaozhong Yang
- School of Medicine; Heze Medical College; Heze Shandong China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China; Qingdao Shandong China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China; Qingdao Shandong China
| |
Collapse
|
42
|
Hattori H, Ishihara M. Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections. Polymers (Basel) 2018; 10:polym10040410. [PMID: 30966445 PMCID: PMC6415235 DOI: 10.3390/polym10040410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC) to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH) and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation.
Collapse
Affiliation(s)
- Hidemi Hattori
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
43
|
Wang Q, Yan X, Chang Y, Ren L, Zhou J. Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment. Carbohydr Polym 2018; 180:81-87. [DOI: 10.1016/j.carbpol.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
44
|
Thaya R, Vaseeharan B, Sivakamavalli J, Iswarya A, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G. Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog 2018; 114:17-24. [DOI: 10.1016/j.micpath.2017.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
|
45
|
Liu H, Li C, Wang B, Sui X, Wang L, Yan X, Xu H, Zhang L, Zhong Y, Mao Z. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. CELLULOSE 2018; 25:559-571. [DOI: 10.1007/s10570-017-1546-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2025]
|
46
|
Zhu C, Zou S, Rao Z, Min L, Liu M, Liu L, Fan L. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int J Biol Macromol 2017; 105:1017-1024. [DOI: 10.1016/j.ijbiomac.2017.07.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
|
47
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
48
|
Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 2017; 164:268-283. [DOI: 10.1016/j.carbpol.2017.02.001] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023]
|
49
|
Fan L, Zou S, Ge H, Xiao Y, Wen H, Feng H, Liu M, Nie M. Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide. Int J Biol Macromol 2016; 93:636-643. [DOI: 10.1016/j.ijbiomac.2016.07.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
|
50
|
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 2016; 151:172-188. [DOI: 10.1016/j.carbpol.2016.05.049] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|