1
|
Wang C, Paiva TO, Speziale P, Dufrêne YF. Nanomechanics of CCN1-Mediated Staphylococcus aureus Phagocytosis. NANO LETTERS 2024; 24:8567-8574. [PMID: 38959438 DOI: 10.1021/acs.nanolett.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVβ3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVβ3 ternary complex. While CCN1 binds αVβ3 integrins with moderate force (∼60 pN), much higher binding strengths (up to ∼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVβ3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.
Collapse
Affiliation(s)
- Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Donahue TC, Zong G, Ou C, DeShong P, Wang LX. Catanionic Vesicles as a Facile Scaffold to Display Natural N-Glycan Ligands for Probing Multivalent Carbohydrate-Lectin Interactions. Bioconjug Chem 2023; 34:392-404. [PMID: 36642983 PMCID: PMC10349922 DOI: 10.1021/acs.bioconjchem.2c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multivalent interactions are a key characteristic of protein-carbohydrate recognition. Phospholipid-based liposomes have been explored as a popular platform for multivalent presentation of glycans, but this platform has been plagued by the instability of typical liposomal formulations in biological media. We report here the exploitation of catanionic vesicles as a stable lipid-based nanoparticle scaffold for displaying large natural N-glycans as multivalent ligands. Hydrophobic insertion of lipidated N-glycans into the catanionic vesicle bilayer was optimized to allow for high-density display of structurally diverse N-glycans on the outer membrane leaflet. In an enzyme-linked competitive lectin-binding assay, the N-glycan-coated vesicles demonstrated a clear clustering glycoside effect, with significantly enhanced affinity for the corresponding lectins including Sambucus nigra agglutinin (SNA), concanavalin A (ConA), and human galectin-3, in comparison with their respective natural N-glycan ligands. Our results showed that relatively low density of high-mannose and sialylated complex type N-glycans gave the maximal clustering effect for binding to ConA and SNA, respectively, while relatively high-density display of the asialylated complex type N-glycan provided maximal clustering effects for binding to human galectin 3. Moreover, we also observed a macromolecular crowding effect on the binding of ConA to high-mannose N-glycans when catanionic vesicles bearing mixed high-mannose and complex-type N-glycans were used. The N-glycan-coated catanionic vesicles are stable and easy to formulate with varied density of ligands, which could serve as a feasible vehicle for drug delivery and as potent inhibitors for intervening protein-carbohydrate interactions implicated in disease.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
3
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Jaeschke SO, Vom Sondern I, Lindhorst TK. Synthesis of regioisomeric maltose-based Man/Glc glycoclusters to control glycoligand presentation in 3D space. Org Biomol Chem 2021; 19:7013-7023. [PMID: 34350924 DOI: 10.1039/d1ob01150b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of carbohydrate recognition in a natural environment suffers from the complexity of overlapping functional effects such as multivalency and heteromultivalency effects. Another key factor in carbohydrate recognition is the presentation mode of glycoligands in three-dimensional (3D) space. In order to trace out the effect of 3D ligand presentation, we utilized an oligosaccharide model to precisely control the spatial relation between a mannose ligand (Man) and a glucose moiety (Glc). A disaccharide (maltose) served as a scaffold to alternately conjugate Man and Glc at position 6 and 6' of a synthetic maltoside, resulting in a pair of regioisomeric heterobivalent glycoclusters. The biological effect of this specific structural tuning was tested in a native system employing mannose-specific adhesion of live E. coli cells. Indeed, the variable 3D presentation of the Man ligand resulted in a 2-fold difference between the regioisomeric heterobivalent glycoclusters as inhibitors of bacterial adhesion. This can be considered a remarkable effect, which could be interpreted by computer-aided modelling of the complexes between the bacterial lectin and the synthetic regioisomeric glycoligands.
Collapse
Affiliation(s)
- Sven Ole Jaeschke
- Christiana Albertina University of Kiel, Otto Diels Institute for Organic Chemistry, Otto-Hahn-Platz 3-4, D-24118 Kiel, Germany.
| | | | | |
Collapse
|
5
|
Ciuk AK, Gloe TE, Lindhorst TK. Carbohydrate-Scaffolded Thymine Multimers: Scope and Limitations of the Allylation-Hydroboration Sequence. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anna K. Ciuk
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| | - Tobias-Elias Gloe
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| |
Collapse
|
6
|
Calvert MB, Jumde VR, Titz A. Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections. Beilstein J Org Chem 2018; 14:2607-2617. [PMID: 30410623 PMCID: PMC6204809 DOI: 10.3762/bjoc.14.239] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
The rapid development of antimicrobial resistance is threatening mankind to such an extent that the World Health Organization expects more deaths from infections than from cancer in 2050 if current trends continue. To avoid this scenario, new classes of anti-infectives must urgently be developed. Antibiotics with new modes of action are needed, but other concepts are also currently being pursued. Targeting bacterial virulence as a means of blocking pathogenicity is a promising new strategy for disarming pathogens. Furthermore, it is believed that this new approach is less susceptible towards resistance development. In this review, recent examples of anti-infective compounds acting on several types of bacterial targets, e.g., adhesins, toxins and bacterial communication, are described.
Collapse
Affiliation(s)
- Matthew B Calvert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Varsha R Jumde
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
7
|
Tsering D, Chen C, Ye J, Han Z, Jing BQ, Liu XW, Chen X, Wang F, Ling P, Cao H. Enzymatic synthesis of human blood group P1 pentasaccharide antigen. Carbohydr Res 2016; 438:39-43. [PMID: 27960098 DOI: 10.1016/j.carres.2016.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
The enzymatic synthesis of biologically important and structurally unique human P1PK blood group type P1 pentasaccharide antigen is described. This synthesis features a three-step sequential one-pot multienzyme (OPME) glycosylation for the stepwise enzymatic chain elongation of readily available lactoside acceptor with cheap and commercially available galactose and N-acetylglucosamine as donor precursors. This enzymatic synthesis provides an operationally simple approach to access P1 pentasaccharide and its structurally related Gb3 and P1 trisaccharide epitopes.
Collapse
Affiliation(s)
- Dawa Tsering
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Congcong Chen
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Zhipeng Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Bai-Qian Jing
- Department of Pharmacy, Qilu Hospital, Shandong University, Jinan, 250012, China.
| | - Xian-Wei Liu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, Shandong University, Jinan, 250012, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
8
|
Trant JF, Jain N, Mazzuca DM, McIntosh JT, Fan B, Haeryfar SMM, Lecommandoux S, Gillies ER. Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron-lipid amphiphiles. NANOSCALE 2016; 8:17694-17704. [PMID: 27714067 DOI: 10.1039/c6nr05030a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron-lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron-lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron-lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer.
Collapse
Affiliation(s)
- John F Trant
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5B7.
| | - Namrata Jain
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5B7.
| | - Delfina M Mazzuca
- Department of Microbiology and Immunology, Department of Medicine, Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5C1
| | - James T McIntosh
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5B7.
| | - Bo Fan
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Canada N6A 5B9
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Department of Medicine, Centre for Human Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5C1
| | - Sebastien Lecommandoux
- Univ. Bordeaux, Bordeaux-INP ENSCBP, CNRS, Laboratoire de Chimie des Polymères Organique (LCPO), UMR 5629, 16 avenue Pey Berland, F-33600, Pessac, France
| | - Elizabeth R Gillies
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Canada N6A 5B7. and Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Canada N6A 5B9
| |
Collapse
|
9
|
Sattin S, Bernardi A. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends Biotechnol 2016; 34:483-495. [DOI: 10.1016/j.tibtech.2016.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/31/2022]
|
10
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
11
|
Synthesis of AB4-type carbohydrate scaffolds as branching units in the glycosciences. Carbohydr Res 2016; 425:1-9. [DOI: 10.1016/j.carres.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/27/2016] [Indexed: 11/21/2022]
|
12
|
Beaussart A, Abellán-Flos M, El-Kirat-Chatel S, Vincent SP, Dufrêne YF. Force Nanoscopy as a Versatile Platform for Quantifying the Activity of Antiadhesion Compounds Targeting Bacterial Pathogens. NANO LETTERS 2016; 16:1299-1307. [PMID: 26812480 DOI: 10.1021/acs.nanolett.5b04689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of bacterial strains that are resistant to multiple antibiotics has urged the need for new antibacterial therapies. An exciting approach to fight bacterial diseases is the use of antiadhesive agents capable to block the adhesion of the pathogens to host tissues, the first step of infection. We report the use of a novel atomic force microscopy (AFM) platform for quantifying the activity of antiadhesion compounds directly on living bacteria, thus without labeling or purification. Novel fullerene-based mannoconjugates bearing 10 carbohydrate ligands and a thiol bond were efficiently prepared. The thiol functionality could be exploited as a convenient handle to graft the multimeric species onto AFM tips. Using a combination of single-molecule and single-cell AFM assays, we demonstrate that, unlike mannosidic monomers, multivalent glycofullerenes strongly block the adhesion of uropathogenic Escherichia coli bacteria to their carbohydrate receptors. We expect that the nanoscopy technique developed here will help designing new antiadhesion drugs to treat microbial infections, including those caused by multidrug resistant organisms.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Marta Abellán-Flos
- University of Namur , Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Sofiane El-Kirat-Chatel
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane P Vincent
- University of Namur , Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) 1300 Wavre, Belgium
| |
Collapse
|
13
|
Müller C, Despras G, Lindhorst TK. Organizing multivalency in carbohydrate recognition. Chem Soc Rev 2016; 45:3275-302. [DOI: 10.1039/c6cs00165c] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Visini R, Jin X, Bergmann M, Michaud G, Pertici F, Fu O, Pukin A, Branson TR, Thies-Weesie DME, Kemmink J, Gillon E, Imberty A, Stocker A, Darbre T, Pieters RJ, Reymond JL. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA. ACS Chem Biol 2015; 10:2455-62. [PMID: 26295304 DOI: 10.1021/acschembio.5b00302] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Ricardo Visini
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Xian Jin
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Myriam Bergmann
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Gaelle Michaud
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Francesca Pertici
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Ou Fu
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Aliaksei Pukin
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Thomas R. Branson
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Dominique M. E. Thies-Weesie
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johan Kemmink
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Emilie Gillon
- Centre
de Recherches sur les Macromolécules Végétales,
UPR5301, CNRS and Université Grenoble Alpes, 601 rue de la
Chimie, F38041 Grenoble, France
| | - Anne Imberty
- Centre
de Recherches sur les Macromolécules Végétales,
UPR5301, CNRS and Université Grenoble Alpes, 601 rue de la
Chimie, F38041 Grenoble, France
| | - Achim Stocker
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Tamis Darbre
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| | - Roland J. Pieters
- Department of Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Jean-Louis Reymond
- Department
of Chemistry and Biochemistry, University of Berne, Freiestrasse
3, 3012 Berne, Switzerland
| |
Collapse
|
15
|
Zelli R, Longevial JF, Dumy P, Marra A. Synthesis and biological properties of multivalent iminosugars. NEW J CHEM 2015. [DOI: 10.1039/c5nj00462d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clustering 1-deoxynojirimycin (DNJ), first isolated from white mulberry, and other iminosugars around various scaffolds gave strong glycosidase inhibitors.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier cedex 5
| |
Collapse
|