1
|
Zhang Z, Hu W, Yu A, Kuang H, Wang M. Hemostatic bioactivity and mechanism of novel Rubia cordifolia L.-derived carbon dots. NANOSCALE ADVANCES 2024:d4na00619d. [PMID: 39415773 PMCID: PMC11474582 DOI: 10.1039/d4na00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Background: Rubia cordifolia L. (RCL) Carbonisata is a typical calcined natural medicinal plant, which has been used for thousands of years for hemostasis. At present, some studies have shown that some components of processed RCL Carbonisata can enhance hemostasis, but the specific hemostatic material basis is still unclear. Novel carbon dots (CDs) were obtained from Rubia cordifolia L. and named RCL-CDs to explore the hemostatic effect and mechanism of RCL-CDs obtained from Rubia cordifolia L. Methods: RCL-CDs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible spectroscopy (UV-Vis), fluorescence spectroscopy (FL), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hemostatic effect of RCL-CDs was evaluated in a mouse tail amputation model and liver scratch model, and the hemostatic mechanism was explored using a capillary coagulation model and coagulation parameters. Results: The particle size distribution of RCL-CDs ranged from 1.74 nm to 9.78 nm, the maximum population was 3-4 nm, and the average particle size was 3.82 nm. The RCL-CDs were approximately spherical with a lattice spacing of 0.206 nm. The quantum yield (QY) of RCL-CDs is 1.09%, and there is a distinct diffraction peak at 2θ = 24.76°. The elemental composition of RCL-CDs was mainly C (65.28%), O (30.10%), and a small amount of N (4.62%). Pharmacological experiments showed that bleeding time and bleeding volume were reduced in mice treated with RCL-CDs. It is worth noting that the low-, medium- and high-dose RCL-CD groups can significantly reduce the blood loss, while the high-dose RCL-CD group can significantly reduce the bleeding time of the mouse tail amputation model and liver scratch model. Additionally, the fibrinogen level (FIB) and platelet counts (PLT) increased and prothrombin time (PT) decreased in rats after treatment with RCL-CDs. Conclusions: RCL-CDs have a significant hemostatic effect, and the mechanism may be exogenous coagulation and activation of fibrinogen. This explains the material basis of the hemostatic effect of RCLC and opens new avenues for more in-depth investigation. In addition, new insights into the potential biomedical applications of CDs in the field of nanohemostasis are provided and a solid foundation for the discovery of novel hemostatic agents is established.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150000 China
| |
Collapse
|
2
|
Liu X, Wang Q, Wang J, Guo L, Chu Y, Ma C, Kang W. Structural characterization, chain conformation and immunomodulatory activity of a heteropolysaccharide from Inonotus hispidus. Int J Biol Macromol 2024; 260:129187. [PMID: 38262551 DOI: 10.1016/j.ijbiomac.2023.129187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
A new polysaccharide (IHP-1aa) was isolated from the fruiting body of Inonotus hispidus by hot water extraction, ethanol precipitation and column chromatography. The molecular weight of IHP-1aa was 26.9 kDa. Structural analysis showed that IHP-1aa consisted of glucose (Glc), galactose (Gal), fucose (Fuc), mannose (Man) and contained a certain amount of 3-O-methylgalactose (3-O-Me-Gal). The structure was mainly composed of →6)-α/β-D-Glcp-(1→, →6)-α-D-Galp-(1→, →6)-(3-O-Me)-α-D-Galp-(1→, →6)-α-D-Manp-(1 → and →2, 6)-α-D-Galp-(1 → as the main chain. Branched at O-2 with single β-L-Fucp-(1 → 6)-α-D-Galp-(1 → 6)-α-D-Glcp-(1 → as major the side chain. The results of SEM, XRD and AFM combined with Congo red indicated that IHP-1aa may be amorphous granular chain conformation. In addition, IHP-1aa stimulated macrophage function and improved phagocytic ability of RAW264.7, as well as promoted the secretion of NO, TNF-α and IL-6. IHP-1aa, a 3-O-methylgalactose-containing heteropolysaccharide, was isolated for the first time from the I. hispidus, which may be used as a potential immunomodulator in functional foods.
Collapse
Affiliation(s)
- Xiaopeng Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jie Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Lin Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Yanhai Chu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; College of Agriculture, Henan University, Kaifeng 475004, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Luo HJ, Zhang YK, Wang SZ, Lin SQ, Wang LF, Lin ZX, Lu GD, Lin DM. Structural characterization and anti-oxidative activity for a glycopeptide from Ganoderma lucidum fruiting body. Int J Biol Macromol 2024; 261:129793. [PMID: 38290627 DOI: 10.1016/j.ijbiomac.2024.129793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
A water-soluble glycopeptide (named GL-PWQ3) with a molecular weight (Mw) of 2.40 × 104 g/mol was isolated from Ganoderma lucidum fruiting body by hot water extraction, membrane ultrafiltration, and gel column chromatography, which mainly consisted of glucose and galactose. Based on the methylation, FT-IR, 1D, and 2D NMR analysis, the polysaccharide portion of GL-PWQ3 was identified as a glucogalactan, which was comprised of unsubstituted (1,6-α-Galp, 1,6-β-Glcp, 1,4-β-Glcp) and monosubstituted (1,2,6-α-Galp and 1,3,6-β-Glcp) in the backbone and possible branches that at the O-3 position of 1,3-Glcp and T-Glcp, and the O-2 position of T-Fucp, T-Manp or T-Glcp. The chain conformational study by SEC-MALLS-RI and AFM revealed that GL-PWQ3 was identified as a highly branched polysaccharide with a polydispersity index of 1.25, and might have compact sphere structures caused by stacked multiple chains. Moreover, the GL-PWQ3 shows strong anti-oxidative activity in NRK-52E cells. This study provides a theoretical basis for further elucidating the structure-functionality relationships of GL-PWQ3 and its potential application as a natural antioxidant in pharmacotherapy as well as functional food additives.
Collapse
Affiliation(s)
- Hong-Jian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Life Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Yu-Kun Zhang
- Chongqing Key Laboratory for the Development and Utilization of Genuine Medicinal Materials in the Three Gorges Reservoir Area, Chongqing Three Gorge Medical College, Chongqing 404120, China
| | - Sai-Zhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Shu-Qian Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Lian-Fu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Zhan-Xi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China
| | - Guo-Dong Lu
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China.
| | - Dong-Mei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian, Fuzhou 350002, China.
| |
Collapse
|
4
|
Wu J, Zheng W, Luo P, Lin Z, Li F, Liang L, Liu H. Structural characterization of a water-soluble acidic polysaccharide CSP-IV with potential anticoagulant activity from fruit pulp of Clausena lansium (Lour.) Skeels Guifei. Int J Biol Macromol 2024; 254:128029. [PMID: 37952330 DOI: 10.1016/j.ijbiomac.2023.128029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Four main water-soluble wampee fruit pulp polysaccharides, named CSP-I, CSP-II, CSP-III and CSP-IV, were isolated from Clausena lansium (Lour.) Skeels Guifei, therein CSP-IV content was higher than the others. All components possess certain anticoagulant activity demonstrated by prolonged activated partial thromboplastin time, especially CSP-IV, which suggests that CSP-IV plays anticoagulant effect through disturbing intrinsic coagulation pathway. The wampee polysaccharide CSP-IV with Mw of 510.1 kDa was mainly composed of Gal, Ara and GalA. Backbone of CSP-IV contains Gal, Ara and GalA, two kinds of side chains contain one monosaccharide Gal or Ara, both branch on Gal residue of backbone. CSP-IV has no the conformation of triple helix demonstrated by Congo red test. These results showed that CSP-IV is an acidic polysaccharide with potential anticoagulant activity via targeting intrinsic coagulation pathway.
Collapse
Affiliation(s)
- Jiayi Wu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenyan Zheng
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ping Luo
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Lin
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fangping Li
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linlin Liang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huazhong Liu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Gong H, Zhong H, Xu HM, Liu XC, Li LP, Zhang DK. Insight into increased risk of portal vein thrombosis in nonalcoholic fatty liver disease. Eur J Intern Med 2023; 114:23-34. [PMID: 37330315 DOI: 10.1016/j.ejim.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading chronic liver diseases with increased morbidity and mortality rates for extrahepatic diseases (including cardiovascular disease, portal vein thrombosis, etc.). There is an increased risk of thrombosis in both the portal and systemic circulation in patients with NAFLD, independent of traditional liver cirrhosis. However, increased portal pressure, the most critical factor, is frequently observed in NAFLD patients, predisposing them to portal vein thrombosis (PVT). It has been reported that there is an 8.5% incidence of PVT among patients with non-cirrhotic NAFLD in a prospective cohort study. Based on the prothrombotic status of NAFLD itself, patients combined with cirrhosis may accelerate the development of PVT and lead to a poor prognosis. Moreover, PVT has been shown to complicate the procedure and adversely affect the outcome during liver transplantation surgery. NAFLD is in a prothrombotic state, and its underlying mechanisms have not been fully understood so far. Particularly noteworthy is that gastroenterologists currently overlook the higher risk of PVT in NAFLD. We investigate the pathogenesis of NAFLD complicated with PVT from the perspective of primary, secondary, and tertiary hemostasis, and also summarize relevant studies in humans. Some treatment options that may affect NAFLD and its PVT are also explored to improve patient-oriented outcomes.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan Province, China
| | - Hui-Mei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiong-Chang Liu
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, Gansu Province, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan Province, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
6
|
Li XY, Jiang CL, Zheng C, Hong CZ, Pan LH, Li QM, Luo JP, Zha XQ. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6468-6479. [PMID: 37043685 DOI: 10.1021/acs.jafc.2c08192] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Osteocalcin was reported to regulate muscle energy metabolism, thus fighting fatigue during exercise. The current work aimed to investigate the anti-fatigue effect and the underlying mechanism of a homogeneous polysaccharide (PCPY-1) from Polgonatum cyrtonema after structure characterization. In the exhaustive swimming mouse model and the co-culture system of BMSCs/C2C12 cells, PCPY-1 significantly stimulated BMSC differentiation into osteoblasts as determined by ALP activity, matrix mineralization, and the protein expressions of osteogenic markers BMP-2, phosphor-Smad1, RUNX2, and osteocalcin. Meanwhile, PCPY-1 remarkably enhanced myoblast energy metabolism by upregulating osteocalcin release and GPRC6A protein expression; the phosphorylation levels of CREB and HSL; the mRNA levels of GLUT4, CD36, FATP1, and CPT1B; and ATP production in vitro and in vivo. Accordingly, PCPY-1 exhibited good anti-fatigue capacity in mice as confirmed by fatigue-related indicators. Our findings indicated PCPY-1 could enhance osteocalcin-mediated communication between bones and muscles, which was conducive to muscle energy metabolism and ATP generation, thus alleviating fatigue in exhausted swimming mice.
Collapse
Affiliation(s)
- Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
- Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| |
Collapse
|
7
|
Liang Z, Yin Z, Liu X, Ma C, Wang J, Zhang Y, Kang W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr Polym 2022; 287:119346. [DOI: 10.1016/j.carbpol.2022.119346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
|
8
|
Mutailifu P, Nuerxiati R, Lu C, Huojiaaihemaiti H, Abuduwaili A, Yili A. Extraction, purification, and characterization of polysaccharides from Alhagi pseudoalhagi with antioxidant and hypoglycemic activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
9
|
Hu L, Zhou X, Tian X, Li R, Sui W, Liu R, Wu T, Zhang M. Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ. Foods 2022; 11:1245. [PMID: 35563968 PMCID: PMC9100059 DOI: 10.3390/foods11091245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
A purified polysaccharide, designated as SE-WGPI, was isolated from wheat germ modified by steam explosion. The primary structure characteristics were determined by HPGPC, GC, periodate oxidation-Smith degradation, methylation analysis, FT-IR, NMR and Congo red test. The results showed that SE-WGPI was a homogeneous hetero-polysaccharide with the average molecular weight of 5.6 × 103 Da. The monosaccharide composition mainly consisted of glucose, arabinose and xylose with a molar ratio of 59.51: 20.71: 19.77. The main backbone of SE-WGPI consisted of →4,6)-α-D-Glcp(1→6)-α-D-Glcp(1→3)-β-D-Xylp(1→5)-α-L-Araf(1→ and the side chain was α-D-Glcp(1→ linked at the C4-position of →4,6)-α-D-Glcp(1→. SE-WGPI likely has a complex netted structure with triple helix conformation and good thermal stability. In addition, SE-WGPI had valid in vitro radical scavenging activities on DPPH and hydroxyl radicals. This study may provide structural information of SE-WGPI for its promising application in the fields of functional foods or medicines.
Collapse
Affiliation(s)
- Lei Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Xiaodan Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Xue Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Ranran Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (L.H.); (X.Z.); (X.T.); (R.L.); (R.L.); (T.W.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
10
|
|
11
|
Yin Z, Zhang J, Guo Q, Sun K, Chen L, Zhang W, Yang B, Kang W. Two novel heteroglycan with coagulant activity from flowers of Cercis chinensis Bunge. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Yang M, Li R, Wang X, Liu X, Zhang B, Wang Y. Preparation, characterization and wound healing effect of alginate/chitosan microcapsules loaded with polysaccharides from Nostoc Commune Vaucher. Biomed Mater 2021; 16:025015. [PMID: 33605229 DOI: 10.1088/1748-605x/abd051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biologically active coating materials could promote the growth of granulation tissue as auxiliary materials, while natural polysaccharides could promote vascular regeneration and wound healing. Therefore, in this study, ultrasound-assisted extract of Nostoc commune Vaucher polysaccharides (UAP) yield after the process optimization was 12.89 ± 0.24%, which was used to prepare microcapsules by emulsification and cross-linking. The effect of alginate/chitosan-UAP composite materials on wound healing in an experimental rat model for 14 d and its physical properties were evaluated. In vitro experiments indicated that the UAP microcapsule material had a porous and loose three-dimensional network structure, and had good biocompatibility and swelling properties as a wound healing material. Animal experiments indicated that UAP microcapsules could extremely significantly promote wound healing (P < 0.01), and wound closure rate reached 79.16 ± 3.91% on 14th day. Meanwhile UAP microcapsules might promote angiogenesis and granulation growth by enhancing immunity and increasing the expression of VEGF and miR-21. Therefore, the composites of UAP microcapsules have shown encouraging results as a potential dressing for wound healing.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Run Li
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Xinjian Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Baigang Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, Gansu Province 730000, People's Republic of China
| |
Collapse
|
13
|
Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two polysaccharides were isolated successfully from Flammulina velutipes and identified as CHFVP-1 (24.44 kDa) and CHFVP-2 (1497 kDa). Based on the results of Fourier transform-infrared spectroscopy (FT-IR), gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy regarding the structure of CHFVP-1 and CHFVP-2, CHFVP-1 was constructed with the backbone of→6)-α-D-Galp-(1→ and the branch of Galp by an →3,6)-α-D-Manp-(1→attached with T-β-D-Glcp or t-α-L-Fucp side chains. Meanwhile, the CHFVP-2 was a glucan with the construction of →6)-β-D-Glcp-(1→ and T-β-D-Glcp. Moreover, the coagulant activity in vitro of CHFVP-1 and CHFVP-2 was evaluated, and the results showed that CHFVP-1 exerts procoagulant activity by shortening the activated partial thromboplastin time (APTT) and thrombin time (TT), while CHFVP-2 did not reveal a definite coagulant activity. The finding would benefit the further application of F. velutipes in the field of medicine.
Collapse
|
14
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
15
|
Zheng T, Gu D, Wang X, Shen X, Yan L, Zhang W, Pu Y, Ge C, Fan J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int J Biol Macromol 2020; 148:647-656. [DOI: 10.1016/j.ijbiomac.2020.01.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|