1
|
Chen Q, Wan B, Zhu P, Xu S, Huang Y. The synergy of adsorption and photosensitization of platinum-doped graphitic carbon nitride for improved removal of rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16449-16459. [PMID: 34651272 DOI: 10.1007/s11356-021-15340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has attracted growing attention recently for photodegradation of pollutants. However, the photosensitization performance of g-C3N4 was limited by insufficient generation efficiency of reactive oxygen species (ROS) and weak light absorption. In this study, platinum (Pt)-doped g-C3N4 photocatalyst was synthesized by thermal polycondensation using dicyandiamide and chloroplatinic acid. The structure and composition of Pt-doped g-C3N4 were tested by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-mass spectrometry (ICP-MS), which indicated that the Pt-doped g-C3N4 was successfully prepared. Compared with bare g-C3N4, Pt2+-doped g-C3N4 has wider light absorption range, lower band gap, and higher photon-generated carrier migration efficiency, which significantly improved the light absorption range and photosensitization efficiency of Pt2+-doped g-C3N4, while photodegradation efficiency for Rhodamine B (RhB) increased from 50 to 90%. The effecting factors of adsorption and photocatalytic degradation performance of Pt2+-doped g-C3N4 for RhB were investigated in detail. The adsorption is a monolayer adsorption process that fits the Langmuir model, as well as being a spontaneous endothermic process. Using a white LED as an excitation source, electrons and holes in Pt2+-doped g-C3N4 were generated. The electrons reacting with dissolved oxygen produce active oxygen species such as •OH and 1O2, which can degrade RhB on the surface of Pt2+-doped g-C3N4. The photocatalytic method has the advantages of simple operation, low cost, and high efficiency, and has the potential to directly remove dyes in wastewater utilizing sunlight.
Collapse
Affiliation(s)
- Qiang Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Bing Wan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Paijin Zhu
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yi Huang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
2
|
Kim H, Choong CE, Han I, Park CM, Nah IW, Kim JR, Jeon BH, Yoon Y, Jang M. Insight into the role of charge carrier mediation zone for singlet oxygen production over rod-shape graphitic carbon nitride: Batch and continuous-flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127652. [PMID: 34775315 DOI: 10.1016/j.jhazmat.2021.127652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
As a new approach of creating the photo-exited electron (e-) and hole (h+) mediation zone for highly selective singlet oxygen (1O2) production, the rod-type graphitic carbon nitride (NCN) has been synthesized from the nitric acid-modified melamine followed by the calcination. The NCN exhibited a higher surface area and surface oxygen adsorption ability than bulk graphitic carbon nitride (BCN). The increment of CO and NHx groups on NCN corresponded to e- and h+ mediation groups, respectively, resulting in higher production of 1O2 than BCN. Moreover, those mediation groups on NCN result in higher recombination efficiency and longer e- decay time. As a result, the optimized NCN-0.5 (derived from 0.5 M of nitric acid-modified melamine) displayed 5.8 times higher kinetic rate constant of atrazine (ATZ) removal under UVA-LED irradiation compared to BCN. This study also evaluated the ATZ degradation pathways and toxicity effect of by-products. In addition, continuous flow experiments using NCN-0.5 showed superior ATZ removal performance with a hybrid concept between a slurry photocatalysis and a continuous stirred tank reactor system using actual effluent obtained from a wastewater treatment plant. Thus, this work provides an insight into the strategy for highly selective 1O2 production and the potential for water purification application.
Collapse
Affiliation(s)
- Hyeseong Kim
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, 26 Kwangwoon-Ro, Nowon-Gu, Seoul 01899, Republic of Korea.
| | - Ihn Han
- Plasma Bioscience Research Center, Kwangwoon University, 26 Kwangwoon-Ro, Nowon-Gu, Seoul 01899, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - In Wook Nah
- Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, 26 Kwangwoon-Ro, Nowon-Gu, Seoul 01899, Republic of Korea.
| |
Collapse
|
3
|
Shcherban N, Shvalagin V, Korzhak G, Yaremov P, Skoryk M, Sergiienko S, Ya. Kuchmiy S. Hard template synthesis and photocatalytic activity of graphitic carbon nitride in the hydrogen evolution reaction using organic acids as electron donors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Meng F, Wang J, Tian W, Zhang H, Liu S, Tan X, Wang S. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants. J Colloid Interface Sci 2021; 608:1334-1347. [PMID: 34739993 DOI: 10.1016/j.jcis.2021.10.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Acid treatment serves as an effective engineering strategy to modify the structure of graphitic carbon nitride (g-C3N4) for enhanced metal-free photocatalysis, while their lacks a comprehensive understanding about the impacts of different acid species and acid treatment approaches on the intrinsic structure and properties of g-C3N4 and structure-activity relationships are ambiguous. Employing inorganic/organic acids including hydrochloric acid (HCl), nitric acid (HNO3), acetic acid (HAc), sulphuric acid (H2SO4), or oxalic acid (H2C2O4) as treatment acids, herein, we compare the impacts of different acid pretreatment approaches on the structure and properties of g-C3N4. Due to different acid-melamine interaction modes and the activation roles of various acids, the obtained g-C3N4 samples exhibit varied structures, physiochemical properties and photocatalytic activities. Compared with bulk graphitic carbon nitride (BCN), g-C3N4 prepared by acid pretreatment show enhanced photocatalytic performance on bisphenol A (BPA) degradation. The photocatalytic degradation rates of BPA by g-C3N4 prepared by HNO3, HAc, H2SO4, H2C2O4, or HCl pretreatment are about 2.2, 2.7, 2.8, 3.2 and 3.8 folds faster than that by BCN. HCl pretreatment proves to be the optimal approach, with the derived g-C3N4 (HTCN) showing more intact heptazine structural units, and increased specific surface area, which promote the exposure of more active sites, accelerate charge transfer, and give rise to a notable improvement in photocatalysis, eventually. Mechanistic investigations through quenching experiments and electron paramagnetic resonance (EPR) characterization unveil that superoxide ion radical (O2-) and photo-induced holes (h+) worked principally in the photodegradation reaction. This work provides new insights for the rational selection of acid types and treatment methods to synthesize metal-free carbon nitrides with improved activity for photocatalytic applications.
Collapse
Affiliation(s)
- Fanpeng Meng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Qian B, Yang X, Li X, Song Z. Fabrication of 1D/2D p-g-C3N4@RGO heterostructures with superior visible-light photoelectrochemical cathodic protection performance. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04660-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Li Y, Li X, Zhang H, Xiang Q. Porous graphitic carbon nitride for solar photocatalytic applications. NANOSCALE HORIZONS 2020; 5:765-786. [PMID: 32091529 DOI: 10.1039/d0nh00046a] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalysis is attracting increased attention in solving the energy crisis and environmental pollution. Graphitic carbon nitride (g-C3N4), a non-metal photocatalyst, has been regarded as an ideal photocatalyst to solve these problems because of its chemical stability and unique optical properties. However, traditional g-C3N4 exhibits moderate photocatalytic activity due to its low specific surface area and fast recombination rate of photogenerated electrons. Among the many modified g-C3N4 materials, porous carbon nitride (PCN) can solve the shortcomings of traditional g-C3N4 because of PCN's increased number of surface-active sites, specific surface area, light harvesting, diffusion and adsorption/activation. However, a frontier, comprehensive summary of the development of PCN is less reported. Thus, a review on recent developments in PCN research is urgently needed to further promote its advancement. In this review, the synthesis methods, structures and properties and photocatalytic applications of PCN photocatalysts are described in detail. The current challenges and future development of PCN/PCN-based photocatalysts are discussed. This review may present an up-to-date view of the PCN development to provide an in-depth understanding of PCN-based photocatalysts.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China. and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plant Resources and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huaiwu Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China. and School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
7
|
Sun S, Fan E, Xu H, Cao W, Shao G, Fan B, Wang H, Zhang R. Enhancement of photocatalytic activity of g-C 3N 4 by hydrochloric acid treatment of melamine. NANOTECHNOLOGY 2019; 30:315601. [PMID: 30889554 DOI: 10.1088/1361-6528/ab10fd] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Modified g-C3N4 samples (g-X, where X corresponds to the number of hours of acid treatment of the melamine) with outstanding photocatalytic performance were prepared by using hydrochloric acid-treated melamine as a precursor and calcining at 550 °C for 2 h. An x-ray diffractometer, field-emission scanning electron microscope, infrared spectrometer, N2 adsorption-desorption test, x-ray photoelectron spectroscopy, and ultraviolet-visible diffuse-reflectance spectroscopy analysis were carried out to characterize the phase composition, microstructure, chemical structure, specific surface area (SSA), chemical states, elemental composition and optical properties of the samples, respectively. The photocatalytic performance of the samples was evaluated by degrading the Rhodamine B (RhB) aqueous solution. The results showed that the crystal structure and vibration bands of melamine changed due to the reaction with hydrochloric acid. The crystallinity and grain size of g-C3N4 in g-X (X = 1, 2, 4, 6, 8, 10) reduced, and the SSA values of g-X increased compared to that of the g-0 sample, which was synthesized from pristine melamine. The g-X samples exhibited excellent photocatalytic activity towards degradation of RhB compared to g-0. The photocatalytic activity of the g-X samples increased gradually as the acid treatment time of the melamine increased from 1 h to 2 h, and then decreased gradually with the extension of the acid treatment time. The rate constant (k) values of g-X are higher than that of g-0. g-2 presented the highest rate constant (k = 0.052 min-1), which was 5.5 times higher than that of g-0. The improved photocatalytic activity of the g-X samples was attributed to the higher SSA value, the appearance of surface defects, the outstanding photo-carrier separation efficiency and stronger light harvesting ability of g-X, with the last two factors being more significant. Acid treatment of melamine is helpful in the preparation of high performance g-C3N4 photocatalyst, and the microstructure and photocatalytic performance of g-C3N4 were affected significantly by the acid treatment time.
Collapse
Affiliation(s)
- Shiping Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Understanding the Surface of g-C3N4, an Experimental Investigation of the Catalytic Active Site on the Interface. Catal Letters 2019. [DOI: 10.1007/s10562-019-02897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Jiang T, Du Y, Dong M, Zhao Q. The facile synthesis and enhanced photocatalytic activity of a graphitic carbon nitride isotype heterojunction with ordered mesopores. NEW J CHEM 2019. [DOI: 10.1039/c9nj02109d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the photocatalytic activity of graphitic carbon nitride, we prepared a g-C3N4 isotype heterojunction with ordered mesopores through simple one-step calcination.
Collapse
Affiliation(s)
- Tingshun Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ying Du
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Mingfeng Dong
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
10
|
Barrio J, Shalom M. Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem 2018. [DOI: 10.1002/cctc.201801410] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 8410501 Israel
| |
Collapse
|
11
|
Bushmeleva AS, Tafeenko VA, Zakharov VN, Lobova AA, Aslanov LA. Ammonium cyamelurates: synthesis and crystalline structures. Struct Chem 2018. [DOI: 10.1007/s11224-018-1187-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Xu B, Ahmed MB, Zhou JL, Altaee A, Xu G, Wu M. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:546-559. [PMID: 29579666 DOI: 10.1016/j.scitotenv.2018.03.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has drawn great attention recently because of its visible light response, suitable energy band gap, good redox ability, and metal-free nature. g-C3N4 can absorb visible light directly, therefore has better photocatalytic ability under solar irradiation and is more energy-efficient than TiO2. However, pure g-C3N4 still has the drawbacks of insufficient light absorption, small surface area and fast recombination of photogenerated electron and hole pairs. This review summarizes the recent progress in the development of g-C3N4 nanocomposites to photodegrade organic contaminants in water. Element doping especially by potassium has been reported to be an efficient method to promote the degradation efficacy. In addition, compound doping improves photodegradation performance of g-C3N4, especially Ag3PO4-g-C3N4 which can completely degrade 10mgL-1 of methyl orange under visible light irradiation in 5min, with the rate constant (k) as high as 0.236min-1. Moreover, co-doping enhances the photodegradation rate of multiple contaminants while immobilization significantly improves catalyst stability. Most of g-C3N4 composites possess high reusability enabling their practical applications in wastewater treatment. Furthermore, environmental conditions such as solution pH, reaction temperature, dissolved oxygen, and dissolved organic matter all have important effects on the photocatalytic ability of g-C3N4 photocatalyst. Future work should focus on the synthesis of innovative g-C3N4 nanocomposites for the efficient removal of organic contaminants in water and wastewater.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Zhou T, Zhang G, Yang H, Zhang H, Suo R, Xie Y, Liu G. Fabrication of Ag 3PO 4/GO/NiFe 2O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B. RSC Adv 2018; 8:28179-28188. [PMID: 35542723 PMCID: PMC9084322 DOI: 10.1039/c8ra02962h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/19/2018] [Indexed: 12/23/2022] Open
Abstract
Effective visible-light-driven Ag3PO4/GO/NiFe2O4 Z-scheme magnetic composites were successfully fabricated by a simple ion-exchange deposition method. The Ag3PO4/GO/NiFe2O4 (8%) composite exhibited excellent photocatalytic activity (degradation efficiency was ∼96% within 15 min and kinetic constant reached 0.1956 min-1) and stability when compared to Ag3PO4, NiFe2O4, and Ag3PO4/NiFe2O4 for rhodamine B (RhB) degradation. Furthermore, by electrochemical and fluorescence measurements, the Ag3PO4/GO/NiFe2O4 (8%) material also showed larger transient photocurrent, lower impedance, and longer fluorescence lifetime (7.82 ns). Comparing the activity result dependence with characterization results, it was indicated that photocatalytic activity depended on fast charge transfer from Ag3PO4 to NiFe2O4 through GO sheet. The h+ and ·O2 - species played important roles in RhB degradation under visible-light. A possible Z-scheme mechanism is proposed over the Ag3PO4/GO/NiFe2O4 (8%) composite. This study might provide a promising visible light responsive photocatalyst for the photocatalytic degradation of organic dyes in wastewater.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730000 P. R. China
| | - Ruini Suo
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yingshuang Xie
- Gansu Import and Export Inspection and Quarantine Bureau Inspection and Quarantine Integrated Technology Center Lanzhou 730000 P. R. China
| | - Gang Liu
- Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
14
|
Study on the Visible-Light Photocatalytic Performance and Degradation Mechanism of Diclofenac Sodium under the System of Hetero-Structural CuBi₂O₄/Ag₃PO₄ with H₂O₂. MATERIALS 2018; 11:ma11040511. [PMID: 29597267 PMCID: PMC5951357 DOI: 10.3390/ma11040511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022]
Abstract
Two kinds of CuBi2O4/Ag3PO4 with different heterojunction structures were prepared based on the combination of hydrothermal and in-situ precipitation methods with surfactant additives (sodium citrate and sodium stearate), and their characteristics were systematically resolved by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM)/ High-resolution Transmission Electron Microscopy (HRTEM), UV-vis Diffuse Reflectance Spectra (DRS) and Photoluminescence (PL). Meanwhile, the photocatalytic properties of the catalysts were determined for diclofenac sodium (DS) degradation and the photocatalytic mechanism was also explored. The results indicate that both of the two kinds of CuBi2O4/Ag3PO4 exhibit higher photocatalytic efficiency, mineralization rate, and stability than that of pure CuBi2O4 or Ag3PO4. Moreover, the catalytic activity of CuBi2O4/Ag3PO4 can be further enhanced by adding H2O2. The free radical capture experiments show that in the pure CuBi2O4/Ag3PO4 photocatalytic system, the OH• and O2•− are the main species participating in DS degradation; however, in the CuBi2O4/Ag3PO4 photocatalytic system with H2O2, all OH•, h+, and O2•− take part in the DS degradation, and the contribution order is OH• > h+ > O2•−. Accordingly, the photocatalytic mechanism of CuBi2O4/Ag3PO4 could be explained by the Z-Scheme theory, while the catalysis of CuBi2O4/Ag3PO4 with H2O2 follows the heterojunction energy band theory.
Collapse
|
15
|
Sun M, Wang Y, Shao Y, He Y, Zeng Q, Liang H, Yan T, Du B. Fabrication of a novel Z-scheme g-C 3 N 4 /Bi 4 O 7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants. J Colloid Interface Sci 2017; 501:123-132. [DOI: 10.1016/j.jcis.2017.04.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/16/2017] [Indexed: 11/24/2022]
|