1
|
Fan XY, Yu Y, Yao Y, Li WD, Tao FY, Wang N. Applications of Ene-Reductases in the Synthesis of Flavors and Fragrances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18305-18320. [PMID: 38966982 PMCID: PMC11342376 DOI: 10.1021/acs.jafc.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Flavors and fragrances (F&F) are interesting organic compounds in chemistry. These compounds are widely used in the food, cosmetic, and medical industries. Enzymatic synthesis exhibits several advantages over natural extraction and chemical preparation, including a high yield, stable quality, mildness, and environmental friendliness. To date, many oxidoreductases and hydrolases have been used to biosynthesize F&F. Ene-reductases (ERs) are a class of biocatalysts that can catalyze the asymmetric reduction of α,β-unsaturated compounds and offer superior specificity and selectivity; therefore, ERs have been increasingly considered an ideal alternative to their chemical counterparts. This review summarizes the research progress on the use of ERs in F&F synthesis over the past 20 years, including the achievements of various scholars, the differences and similarities among the findings, and the discussions of future research trends related to ERs. We hope this review can inspire researchers to promote the development of biotechnology in the F&F industry.
Collapse
Affiliation(s)
- Xin-Yue Fan
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yuan Yu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yao Yao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Wen-Dian Li
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Fei-Yan Tao
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Na Wang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| |
Collapse
|
2
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
3
|
Highly efficient synthesis of pharmaceutically relevant chiral 3-N-substituted-azacyclic alcohols using two enantiocomplementary short chain dehydrogenases. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
5
|
Wu Y, Zhou J, Ni J, Zhu C, Sun Z, Xu G, Ni Y. Engineering an Alcohol Dehydrogenase from
Kluyveromyces polyspora
for Efficient Synthesis of Ibrutinib Intermediate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanfei Wu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jieyu Zhou
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Life and Health Science Chinese University of Hong Kong Shenzhen), Shenzhen 518172 People's Republic of China
| | - Cheng Zhu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Zewen Sun
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Guochao Xu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Ye Ni
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| |
Collapse
|
6
|
Zhang DP, Jing XR, Wu LJ, Fan AW, Nie Y, Xu Y. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact 2021; 20:11. [PMID: 33422055 PMCID: PMC7797136 DOI: 10.1186/s12934-020-01506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
Collapse
Affiliation(s)
- Dan-Ping Zhang
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiao-Ran Jing
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lun-Jie Wu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - An-Wen Fan
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
8
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
9
|
Yang Z, Ye W, Xie Y, Liu Q, Chen R, Wang H, Wei D. Efficient Asymmetric Synthesis of Ethyl (S)-4-Chloro-3-hydroxybutyrate Using Alcohol Dehydrogenase SmADH31 with High Tolerance of Substrate and Product in a Monophasic Aqueous System. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zeyu Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenjie Ye
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinghai Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
10
|
Chen N, Chen Y, Tang Y, Zhao Q, Liu C, Niu W, Huang P, Yu F, Yang Z, Ding G. Efficient synthesis of (S)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a tetrad mutant alcohol dehydrogenase from Lactobacillus kefir. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. Int J Biol Macromol 2019; 140:1037-1046. [PMID: 31449862 DOI: 10.1016/j.ijbiomac.2019.08.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
Azo dyes are the most widely applied chemical dyes that have also raised great concerns for environmental contamination and human health issues. There has been a growing interest in discovering bioremediation methods to degrade azo dyes for environmental and economic purposes. Azoreductases are key enzymes evolved in nature capable of degrading azo dyes. The current work reports the identification, expression, and properties of a novel azoreductase (AzoRed2) from Streptomyces sp. S27 which shows an excellent stability against pH change and organic solvents. To overcome the requirements of coenzyme while degrading azo dyes, we introduced a coenzyme regeneration enzyme, Bacillus subtilis glucose 1-dehydrogenase (BsGDH), to construct a recycling system in living cells. The whole-cell biocatalyst containing AzoRed2 and BsGDH was used to degrade a representative azo dye methyl red. The degradation rate of methyl red was up to 99% in 120 min with high substrate concentration (250 μM) and no external coenzyme added. The degradation rate was still 98% in the third batch trial. To sum up, a novel azoreductase with good properties was found, which was applied to construct whole-cell biocatalyst. Both the enzymes and whole-cell biocatalysts are good candidates for the industrial wastewater treatment and environmental restoration.
Collapse
|
12
|
Wu K, Zheng K, Xiong L, Yang Z, Jiang Z, Meng X, Shao L. Efficient synthesis of an antiviral drug intermediate using an enhanced short-chain dehydrogenase in an aqueous-organic solvent system. Appl Microbiol Biotechnol 2019; 103:4417-4427. [DOI: 10.1007/s00253-019-09781-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
13
|
Ying X, Zhang J, Wang C, Huang M, Ji Y, Cheng F, Yu M, Wang Z, Ying M. Characterization of a Carbonyl Reductase from Rhodococcus erythropolis WZ010 and Its Variant Y54F for Asymmetric Synthesis of ( S)- N-Boc-3-Hydroxypiperidine. Molecules 2018; 23:molecules23123117. [PMID: 30487432 PMCID: PMC6321125 DOI: 10.3390/molecules23123117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
The recombinant carbonyl reductase from Rhodococcus erythropolis WZ010 (ReCR) demonstrated strict (S)-stereoselectivity and catalyzed the irreversible reduction of N-Boc-3-piperidone (NBPO) to (S)-N-Boc-3-hydroxypiperidine [(S)-NBHP], a key chiral intermediate in the synthesis of ibrutinib. The NAD(H)-specific enzyme was active within broad ranges of pH and temperature and had remarkable activity in the presence of higher concentration of organic solvents. The amino acid residue at position 54 was critical for the activity and the substitution of Tyr54 to Phe significantly enhanced the catalytic efficiency of ReCR. The kcat/Km values of ReCR Y54F for NBPO, (R/S)-2-octanol, and 2-propanol were 49.17 s−1 mM−1, 56.56 s−1 mM−1, and 20.69 s−1 mM−1, respectively. In addition, the (S)-NBHP yield was as high as 95.92% when whole cells of E. coli overexpressing ReCR variant Y54F catalyzed the asymmetric reduction of 1.5 M NBPO for 12 h in the aqueous/(R/S)-2-octanol biphasic system, demonstrating the great potential of ReCR variant Y54F for practical applications.
Collapse
Affiliation(s)
- Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuting Ji
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech Univeristy, Hangzhou 310018, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meirong Ying
- Grain and Oil Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|