1
|
Kim HJ, Lee TH, Hong Y, Lee JC, Kim HW. Enhanced oxidation of parabens in an aqueous solution by air-assisted cold plasma. CHEMOSPHERE 2024; 361:142570. [PMID: 38852636 DOI: 10.1016/j.chemosphere.2024.142570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Various contaminants of emerging concern (CECs) including pharmaceuticals and personal care products (PPCPs) have been known to threaten the aquatic ecosystem and human health even at low levels in surface water. Among them, the wide variety use of parabens as preservatives may pose potential threat to human because parabens may present estrogenic activity. Various advanced oxidation processes have been attempted to reduce parabens, but challenges using cold plasma (CP) are very rare. CP is worth paying attention to in reducing parabens because it has the advantage of generating radical ions, including reactive oxygen/nitrogen species and various ions. Accordingly, this study demonstrates how CP can be utilized and how CP competes with other advanced oxidation processes in energy requirements. Quantified ethyl-, propyl-, and butyl-paraben indicate that CP can effectively degrade them up to 99.1% within 3 h. Regression reveals that the kinetic coefficients of degradation can be increased to as high as 0.0328 min-1, comparable to other advanced oxidation processes. Many by-products generated from the oxidation of parabens provide evidence of the potential degradation pathway through CP treatment. In addition, we found that the electrical energy consumption per order of CP (39-95 kWh/m3/order) is superior to other advanced oxidation processes (69∼31,716 kWh/m3/order). Overall, these results suggest that CP may be a viable option to prevent adverse health-related consequences associated with parabens in receiving water.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Environmental Fate and Exposure Research Group, Korea Institute of Toxicology, Jinju, Republic of Korea.
| | - Tae-Hun Lee
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Youngpyo Hong
- Groon., Ltd., 109, Wonmanseong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| | - Jae-Cheol Lee
- Department of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Mokpo National University, Mokpo, 58554, Republic of Korea.
| | - Hyun-Woo Kim
- Division of Civil, Environmental, Mineral Resource and Energy Engineering, Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Environment and Energy (BK21 Four), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Sánchez-Silva JM, Ojeda-Galván HJ, Villabona-Leal EG, Labrada-Delgado GJ, Aguilar-Maruri SA, Fuentes-Ramírez R, González-Ortega O, López-Ramón MV, Ocampo-Pérez R. Synergistic photocatalysis of a hydrochar/CeO 2 composite for dye degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16453-16472. [PMID: 38321273 DOI: 10.1007/s11356-024-32281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.
Collapse
Affiliation(s)
- Jonathan Michel Sánchez-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Hiram Joazet Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - Edgar Giovanny Villabona-Leal
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | | | - Saul Alejandro Aguilar-Maruri
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | | | - Omar González-Ortega
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - María Victoria López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| |
Collapse
|
4
|
Li YW, Li SZ, Zhao MB, Liu LY, Zhang ZF, Ma WL. Acid-induced tubular g-C 3N 4 for the selective generation of singlet oxygen by energy transfer: Implications for the photocatalytic degradation of parabens in real water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165316. [PMID: 37414160 DOI: 10.1016/j.scitotenv.2023.165316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Parabens are widely present in aquatic environments and pose potential health risk. Although great progress has been made in the field of the photocatalytic degradation of parabens, the powerful Coulomb interactions between electrons and holes are the major limitations to photocatalytic performance. Hence, acid-induced tubular g-C3N4 (AcTCN) was prepared and applied for the removal of parabens from a real water environment. AcTCN not only increased the specific surface area and light absorption capacity, but also selectively generated 1O2 via an energy transfer-mediated oxygen activation pathway. The 1O2 yield of AcTCN was 11.8 times higher than that of g-C3N4. AcTCN exhibited remarkable removal efficiencies for parabens depending on the length of the alkyl group. Furthermore, the rate constants (k values) of parabens in ultrapure water were higher than those in tap and river water because of the presence of organic and inorganic species in real water environments. Two possible pathways for the photocatalytic degradation of parabens are proposed based on the identification of intermediates and theoretical calculations. In summary, this study offers theoretical support for the efficient enhancement of the photocatalytic performance of g-C3N4 for the removal of parabens in real water environments.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shu-Zhi Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Min-Bo Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
5
|
Sánchez-Silva JM, Aguilar-Aguilar A, Labrada-Delgado GJ, Villabona-Leal EG, Ojeda-Galván HJ, Sánchez-García JL, Collins-Martínez H, López-Ramón MV, Ocampo-Pérez R. Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO 2 for degradation of crystal violet by UV and visible radiation. ENVIRONMENTAL RESEARCH 2023; 231:116280. [PMID: 37257742 DOI: 10.1016/j.envres.2023.116280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.
Collapse
Affiliation(s)
- J M Sánchez-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | | | - E G Villabona-Leal
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - H J Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - J L Sánchez-García
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - H Collins-Martínez
- Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C, Chihuahua, 31136, Mexico
| | - M V López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, 23071, Spain
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
6
|
Chakinala N, Ranjan P, Chakinala AG, Gogate PR. Performance comparison of photocatalysts for degradation of organic pollutants using experimental studies supported with DFT and fundamental characterization. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Fatima H, Rizwan Azhar nvestigation M, Cao C, Shao Z. ZnHCF@PB nanoparticles with reduced bandgap as a promising photocatalyst for the degradation of conventional and emerging water contaminants. J Colloid Interface Sci 2022; 631:258-268. [DOI: 10.1016/j.jcis.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
8
|
Peñas-Garzón M, Sampaio MJ, Wang YL, Bedia J, Rodriguez JJ, Belver C, Silva CG, Faria JL. Solar photocatalytic degradation of parabens using UiO-66-NH2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Sabri M, Habibi-Yangjeh A, Rahim Pouran S, Wang C. Titania-activated persulfate for environmental remediation: the-state-of-the-art. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1996776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mina Sabri
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shima Rahim Pouran
- Social Determinants of Health Research Center, Department of Environmental and Occupational Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan PR China
| |
Collapse
|
10
|
Bolujoko NB, Unuabonah EI, Alfred MO, Ogunlaja A, Ogunlaja OO, Omorogie MO, Olukanni OD. Toxicity and removal of parabens from water: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148092. [PMID: 34147811 DOI: 10.1016/j.scitotenv.2021.148092] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
Parabens are biocides used as preservatives in food, cosmetics and pharmaceuticals. They possess antibacterial and antifungal activity due to their ability to disrupt cell membrane and intracellular proteins, and cause changes in enzymatic activity of microbial cells. Water, one of our most valuable natural resource, has become a huge reservoir for parabens. Halogenated parabens from chlorination/ozonation of water contaminated with parabens have shown to be even more persistent in water than other types of parabens. Unfortunately, there is dearth of data on their (halogenated parabens) presence and fate in groundwater which serves as a major source of drinking water for a huge population in developing countries. An attempt to neglect the presence of parabens in water will expose man to it through ingestion of contaminated food and water. Although there are reviews on the occurrence, fate and behaviour of parabens in the environment, they largely omit toxicity and removal aspects. This review therefore, presents recent reports on the acute and chronic toxicity of parabens, their estrogenic agonistic and antagonistic activity and also their relationship with antimicrobial resistance. This article further X-rays several techniques that have been employed for the removal of parabens in water and their drawbacks including adsorption, biodegradation, membrane technology and advanced oxidation processes (AOPs). The heterogeneous photocatalytic process (one of the AOPs) appears to be more favoured for removal of parabens due to its ability to mineralize parabens in water. However, more work is needed to improve this ability of heterogeneous photocatalysts. Perspectives that will be relevant for future scientific studies and which will drive policy shift towards the presence of parabens in our drinking waters are also offered. It is hoped that this review will elicit some spontaneous actions from water professionals, scientists and policy makers alike that will provide more data, effective technologies, and adaptive policies that will address the growing threat of the presence of parabens in our environment with respect to human health.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Moses O Alfred
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
11
|
Álvarez MA, Ruidíaz-Martínez M, Rivera-Utrilla J, Sánchez-Polo M, López-Ramón MV. Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO 2 composite under UV radiation. ENVIRONMENTAL RESEARCH 2021; 200:111750. [PMID: 34303683 DOI: 10.1016/j.envres.2021.111750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to analyze the influence of different operational variables (catalyst loading, initial EtP concentration, medium pH, the presence of anions and radical scavengers) on the performance of ethylparaben (EtP) photodegradation catalyzed with an rGO/TiO2 composite. EtP was selected for study after analyzing the effect of paraben chain length on its catalytic photodegradation, finding that the photodegradation rate constant values of methyl-, ethyl-, and butyl-paraben are 0.050, 0.096, and 0.136 min-1, respectively. This indicates that the photodegradation rate constant of parabens is higher with longer alkyl chain, which augments its oxidation capacity. The percentage removal of EtP at 40 min increases from 66.3 to 98.6 % when the composite dose rises from 100 to 700 mg/L; however, an additional increase in the composite dose to 1000 mg/L does not substantively improve the photodegradation rate or percentage EtP removal (98.9 %). A rise in the initial EtP concentration from 15 to 100 mg/L reduces the percentage of degradation from 100 to 76.4 %. The percentage EtP degradation is lower with higher solution pH. The presence of HCO3- or Cl- anions in the medium reduces the degradation performance. Results obtained using positive hole and hydroxyl radical scavengers demonstrate that positive holes play an important role in EtP degradation. No degradation product evidences toxicity against the cultured human embryonic kidney cell line HEK-293.
Collapse
Affiliation(s)
- Miguel A Álvarez
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain
| | - M Ruidíaz-Martínez
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - José Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - M Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
12
|
Nguyen VH, Phan Thi LA, Chandana PS, Do HT, Pham TH, Lee T, Nguyen TD, Le Phuoc C, Huong PT. The degradation of paraben preservatives: Recent progress and sustainable approaches toward photocatalysis. CHEMOSPHERE 2021; 276:130163. [PMID: 33725624 DOI: 10.1016/j.chemosphere.2021.130163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Parabens are a class of compounds primarily used as antimicrobial preservatives in pharmaceutical products, cosmetics, and foodstuff. Their widely used field leads to increasing concentrations detected in various environmental matrices like water, soil, and sludges, even detected in human tissue, blood, and milk. Treatment techniques, including chemical advanced oxidation, biological degradation, and physical adsorption processes, have been widely used to complete mineralization or to degrade parabens into less complicated byproducts. All kinds of processes were reviewed to give a completed picture of parabens removal. In light of these treatment techniques, advanced photocatalysis, which is emerging rapidly and widely as an economical, efficient, and environmentally-friendly technique, has received considerable attention. TiO2-based and non-TiO2-based photocatalysts play an essential role in parabens degradation. The effect of experimental parameters, such as the concentration of targeted parabens, concentration of photocatalyst, reaction time, and initial solution pH, even the presence of radical scavengers, are surveyed and compared from the literature. Some representative parabens such as methylparaben, propylparaben, and benzylparaben have been successfully studied the reaction pathways and their intermediates in their degradation process. As reported in the literature, the degradation of parabens involves the production of highly reactive species, mainly hydroxyl radicals. These reactive radicals would attack the paraben preservatives, break, and finally mineralize them into simpler inorganic and nontoxic molecules. Concluding perspectives on the challenges and opportunities for photocatalysis toward parabens remediation are also intensively highlighted.
Collapse
Affiliation(s)
- Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam.
| | - P Sri Chandana
- Department of Civil and Environmental Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, 516003, A.P., India.
| | - Huu-Tuan Do
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Thuy-Hanh Pham
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; Center of Excellence for Green Energy and Environmental Nanomaterials (CE GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Cuong Le Phuoc
- Department of Environmental Management, Faculty of Environment, The University of Da Nang - University of Science and Technology, Da Nang, 550000, Viet Nam
| | - Pham Thi Huong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam
| |
Collapse
|
13
|
Paraben Compounds—Part II: An Overview of Advanced Oxidation Processes for Their Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water scarcity represents a problem for billions of people and is expected to get worse in the future. To guarantee people’s water needs, the use of “first-hand water” or the reuse of wastewater must be done. Wastewater treatment and reuse are favorable for this purpose, since first-hand water is scarce and the economic needs for the exploration of this type of water are increasing. In wastewater treatment, it is important to remove contaminants of emerging concern, as well as pathogenic agents. Parabens are used in daily products as preservatives and are detected in different water sources. These compounds are related to different human health problems due to their endocrine-disrupting behavior, as well as several problems in animals. Thus, their removal from water streams is essential to achieve safe reusable water. Advanced Oxidation Processes (AOPs) are considered very promising technologies for wastewater treatment and can be used as alternatives or as complements of the conventional wastewater treatments that are inefficient in the removal of such contaminants. Different AOP technologies such as ozonation, catalytic ozonation, photocatalytic ozonation, Fenton’s, and photocatalysis, among others, have already been used for parabens abatement. This manuscript critically overviews several AOP technologies used in parabens abatement. These treatments were evaluated in terms of ecotoxicological assessment since the resulting by-products of parabens abatement can be more toxic than the parent compounds. The economic aspect was also analyzed to evaluate and compare the considered technologies.
Collapse
|
14
|
Fernandes E, Martins RC, Gomes J. Photocatalytic ozonation of parabens mixture using 10% N-TiO 2 and the effect of water matrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137321. [PMID: 32088485 DOI: 10.1016/j.scitotenv.2020.137321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen-doped TiO2 was applied in photocatalytic ozonation reactions for the degradation of a mixture of five parabens under UVA radiation, being evaluated the influence of the reaction medium. The initial mixture parabens concentration considered in these experiments was 50 mg L-1. The parabens degradation rate was considerably enhanced under neutral pH, specially using a buffered solution, leading to a complete removal under 60 min and with transferred ozone dose (TOD) 36% lower compared to reaction under natural conditions. Isopropanol, known radical scavenger, impeded the complete contaminants removal, affecting the reaction route and by-products formation, but when KI was jointly added, total removal was achieved under 30 min and with a TOD of 25.9 mg L-1. Parabens depletion was also improved in the presence of Cl-, SO42- and HCO3-, commonly present in wastewaters. The use of river water (RW) and a secondary wastewater (SWW) as water matrices maintained the process efficiency with lower TOD required, and treated solutions presented lower phytotoxicity towards Lepidium sativum.
Collapse
Affiliation(s)
- Eryk Fernandes
- CIEPQPF - Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF - Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - João Gomes
- CIEPQPF - Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
15
|
Fernandes RA, Sampaio MJ, Dražić G, Faria JL, Silva CG. Efficient removal of parabens from real water matrices by a metal-free carbon nitride photocatalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135346. [PMID: 31843308 DOI: 10.1016/j.scitotenv.2019.135346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Metal-free graphite-like carbon nitride (GCN-500) was obtained by thermal post-treatment of bulk polymeric carbon nitride at 500 °C. The catalyst was thoroughly characterized by morphological, optical and textural analysis techniques. The efficiency of GCN-500 was evaluated under visible (λexc = 417 nm) LED excitation for the photocatalytic degradation of methyl-, ethyl- and propyl-paraben in different water matrices either isolated or in a mixture of the three compounds. The GCN-500 proved to be more efficient than the benchmark TiO2 P25, with complete conversion of the individual parabens within 20 min of irradiation, contrasting with 120 min needed for total degradation using TiO2. Experiments in the presence of selected scavengers confirmed the high importance of superoxide radicals in the photocatalytic oxidation of parabens using GCN-500. The effect of the nature of the aqueous matrix in the kinetics of the photocatalytic process was assessed using ultrapure, tap and river waters spiked with a mixture of the three parabens. Although still very efficient, the complexity of the real water samples turned the degradation process slower due to the presence of other components such as ions and dissolved organic matter. GCN-500 proved to be stable in a continuous-flow system using GCN-500 coated glass rings (GCN-500-GR) to remove MP, EP and PP from real water matrices.
Collapse
Affiliation(s)
- Raquel A Fernandes
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria J Sampaio
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Cláudia G Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
16
|
Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts 2020. [DOI: 10.3390/catal10050520] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of reduced graphene oxide-TiO2 composites (rGO-TiO2) were prepared by hydrothermal treatment using graphite and titanium isopropoxide as raw materials. The structural, surface, electronic, and optical properties of the prepared composites were extensively characterized by N2 adsorption, FTIR, XRD, XPS, Raman spectroscopy, and DRS. GO was found to be effectively reduced and TiO2 to be in pure anatase phase in all composites obtained. Finally, experiments were performed to evaluate the effectiveness of these new materials as photocatalysts in the degradation of ethylparaben (EtP) by UV radiation. According to the band-gap energies obtained (ranging between 3.09 eV for 4% rGO-TiO2 to 2.55 eV for 30% rGO-TiO2), the rGO-TiO2 composites behave as semiconductor materials. The photocatalytic activity is highest with a rGO content of 7 wt% (7% rGO-TiO2), being higher than observed for pure TiO2 (Eg = 3.20 eV) and achieving 98.6% EtP degradation after only 40 min of treatment. However, the degradation yield decreases with higher percentages of rGO. Comparison with rGO-P25 composites showed that a better photocatalytic performance in EtP degradation is obtained with synthesized TiO2 (rGO-TiO2), probably due to the presence of the rutile phase (14.1 wt %) in commercial P25.
Collapse
|
17
|
Peng H, Yang JCE, Fu ML, Yuan B. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism. CHEMOSPHERE 2020; 242:125140. [PMID: 31669997 DOI: 10.1016/j.chemosphere.2019.125140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneous catalysts activated peroxymonosulfate (PMS) for degradation of refractory organic contaminants has been recognized as a promising removal technology for the environmental remediation. In this study, nanocrystalline ferrihydrite (NFH) was prepared to activate PMS for the degradation of butyl-4-hydroxybenzoate (BHB). XPS analysis indicates that calcination process played a key role in regulating the surface oxygen species of NFH, thus control its activation ability toward PMS. NFH exhibits excellent stability (the released concentration of Fe ions < 0.13 mg/L) and desirable reusability. Increasing solution temperature and NFH dosage exerted a positive role in PMS activation for BHB removal, while such positive correlation was not found in the case of increasing initial pH. Increasing the static solution dissolved oxygen remarkably enhanced BHB oxidation kinetics. However, continuous N2 and air blowing caused a significant decline in BHB removal. Reaction mechanism study showed that SO4‒, OH, O2‒, and 1O2 were the main reactive oxygen species for degrading BHB by NFH/PMS. LC/MS analysis indicated BHB was degraded by the pathways of hydroxylation, carboxylation, decarboxylation, dehydrogenation, ring cleavage and chain cleavage reaction. This work suggests the ferrihydrite might be a promising catalyst to activate PMS to destroy refractory organic pollutants in the environmental remediation.
Collapse
Affiliation(s)
- Huihui Peng
- College of Civil Engineering, Huaqiao University, Xiamen, 361020, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), No.1799, Jimei Avenue, Xiamen, 361021, China
| | - Jia-Cheng E Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), No.1799, Jimei Avenue, Xiamen, 361021, China
| | - Ming-Lai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences (CAS), No.1799, Jimei Avenue, Xiamen, 361021, China
| | - Baoling Yuan
- College of Civil Engineering, Huaqiao University, Xiamen, 361020, China.
| |
Collapse
|
18
|
Frontistis Z. Degradation of the nonsteroidal anti-inflammatory drug piroxicam from environmental matrices with UV-activated persulfate. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gomes JF, Lopes A, Gmurek M, Quinta-Ferreira RM, Martins RC. Study of the influence of the matrix characteristics over the photocatalytic ozonation of parabens using Ag-TiO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1468-1477. [PMID: 30235632 DOI: 10.1016/j.scitotenv.2018.07.430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 05/22/2023]
Abstract
Parabens are widely used as antimicrobial and preservative in pharmaceutical and personal products. Their presence has been detected in rivers and wastewater treatment plants. Photocatalytic ozonation process using a low amount of 0.1 wt% Ag-TiO2 proved to be efficient on the degradation of a mixture of five parabens using a low transferred ozone dose (TOD). The pH effect was analyzed under acidic and neutral conditions. Also, the effect of hydroxyl radical scavenger on parabens degradation and on by-products formation was discussed. Hydroxyl radical present a significant role over parabens degradation and also on by-products formation. The reaction mechanism was analyzed using municipal wastewater as a matrix to infer about the behavior of the process at actual conditions. Municipal wastewater as a matrix clearly enhanced the parabens degradation when compared with the case where ultrapure water was used. In fact, the TOD required for total parabens degradation is lowered 10-20 mg/L of TOD. Therefore, to understand the main responsible species for this improvement, the effects of several ions naturally present in wastewater (HCO3-, Cl- and SO42-) were tested. According to the results it seems that sulfate radical improves the process, while chloride and bicarbonate radicals decrease the process efficiency. In terms of toxicity the luminescence inhibition for Vibrio fischeri was analyzed. The inhibition significantly decreased for treated spiked municipal wastewater.
Collapse
Affiliation(s)
- João F Gomes
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Ana Lopes
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Marta Gmurek
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - Rosa M Quinta-Ferreira
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
20
|
Lv C, Lan X, Wang L, Yu Q, Zhang M, Sun H, Shi J. Alkaline-earth-metal-doped TiO2 for enhanced photodegradation and H2 evolution: insights into the mechanisms. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01687b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The doping strategy of TiO2 with an AM (alkali earth metal) for photocatalysis applications has been reported in several literature reports.
Collapse
Affiliation(s)
- Chao Lv
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Xuefang Lan
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Lili Wang
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Qi Yu
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Minghui Zhang
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Hualong Sun
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| | - Jinsheng Shi
- Qingdao Agricultural University
- Department of Chemistry and Pharmaceutical Science
- Qingdao
- China
| |
Collapse
|
21
|
Frontistis Z, Mantzavinos D, Meriç S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation - Sodium persulfate process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:878-887. [PMID: 29990877 DOI: 10.1016/j.jenvman.2018.06.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/18/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
In this work, the electrochemical oxidation of antibiotic ampicillin (AMP) on a boron-doped diamond anode in the presence of sodium persulfate (SPS) was investigated (EO/SPS process). Experiments were conducted at AMP concentrations between 0.8 and 3 mg/L, SPS concentrations between 100 and 500 mg/L, current densities between 5 and 110 mA/cm2, in three water matrices (ultrapure water, bottled water and secondary treated wastewater), using 0.1 M Na2SO4 as the supporting electrolyte. AMP degradation follows a pseudo-first order kinetic expression with the apparent rate constant increasing with (i) increasing SPS concentration (from 0.08 min-1 to 0.36 min-1 at 0 and 500 mg/L SPS, respectively, 1.1 mg/L AMP, 25 mA/cm2), (ii) increasing current (from 0.08 min-1 to 0.6 min-1 at 5 and 110 mA/cm2, respectively, 1.1 mg/L AMP, 250 mg/L SPS), and (iii) decreasing AMP concentration (from 0.16 min-1 to 0.31 min-1 at 3 and 0.8 mg/L, respectively, 250 mg/L SPS, 25 mA/cm2). The presence of various anions (mainly bicarbonates) in bottled water did not impact AMP degradation. The observed kinetic constant decreased by 40% in the presence of 10 mg/L humic acid. On the other hand, process efficiency was enhanced almost 3.5 times in secondary effluent due to the electrogeneration of active chlorine species that promote indirect oxidation reactions in the bulk solution. The efficacy of the EO/SPS process was compared to and found to be considerably greater than a process where SPS was activated by simulated solar irradiation at an intensity of 7.3 × 10-7 E/(L.s) (SLR/SPS process). Coupling the two processes (EO/SLR/SPS) resulted in a cumulative, in terms of AMP degradation, effect. The combined process was tested for AMP degradation, mineralization and inhibition to Vibrio fischeri in wastewater; fast AMP removal was accompanied by low mineralization and incomplete toxicity removal.
Collapse
Affiliation(s)
- Zacharias Frontistis
- Department of Environmental Engineering, University of Western Macedonia, GR-50100, Kozani, Greece.
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Sureyya Meriç
- Department of Environmental Engineering, Tekirdag Namik Kemal University, Corlu 59860, Tekirdag, Turkey
| |
Collapse
|