1
|
Liu X, Zhang X, Geng C, Hao Q, Chang J, Hu X, Li Y, Teng B. Effect of surface species on the alcohol-acid adsorption from FTS wastewater on graphene: A structure-capacity study. J Environ Sci (China) 2025; 149:651-662. [PMID: 39181675 DOI: 10.1016/j.jes.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 08/27/2024]
Abstract
Fischer-Tropsch synthesis (FTS) wastewater retaining low-carbon alcohols and acids are organic pollutants as a limiting factor for FTS industrialization. In this work, the structure-capacity relationships between alcohol-acid adsorption and surface species on graphene were reported, shedding light into their intricate interactions. The graphene oxide (GO) and reduced graphene oxide (rGO) were synthesized via improved Hummers method with flake graphite (G). The physicochemical properties of samples were characterized via SEM, XRD, XPS, FT-IR, and Raman. The alcohol-acid adsorption behaviors and adsorption quantities on G, GO, and rGO were measured via theoretical and experimental method. It was revealed that the presence of COOH, C=O and CO species on graphene occupy the adsorption sites and increase the interactions of water with graphene, which are unfavorable for alcohol-acid adsorption. The equilibrium adsorption quantities of alcohols and acids grow in pace with carbon number. The monolayer adsorption occurs on graphene was verified via model fitting. rGO has the highest FTS modeling wastewater adsorption quantity (110 mg/g) due to the reduction of oxygen species. These novel findings provide a foundation for the alcohol-acid wastewater treatment, as well as the design and development of high-performance carbon-based adsorbent materials.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaolong Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyu Geng
- National Energy Center for Coal to Liquids, Synfuels China Co. Ltd., Beijing 101407, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jie Chang
- Institute of Sustainability of Chemical, Energy and Environment, Agency for Science, Technology and Research, 627833, Singapore.
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Yongwang Li
- National Energy Center for Coal to Liquids, Synfuels China Co. Ltd., Beijing 101407, China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Liu X, Hao Q, Fan M, Teng B. Carbonaceous adsorbents in wastewater treatment: From mechanism to emerging application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177106. [PMID: 39490830 DOI: 10.1016/j.scitotenv.2024.177106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Adsorption is of great significance in the water pollution control. Carbonaceous adsorbents, such as carbon quantum dots, carbon nanotubes, graphene, and activated carbons, have long been deployed in sustainable wastewater treatment due to their excellent physical structure and strong interaction with various pollutants; these features allow them to spark greater interest in environmental remediation. Although numerous eye-catch researches on carbon materials in wastewater treatment, there is a lack of comprehensive comparison and summary of the vivid structure-activity-application relationships of different types of carbonaceous adsorbents at the molecular and atomic level. Herein, this review aims to scrutinize and contrast the adsorption mechanisms of carbonaceous adsorbents with different dimensions, analyzing the qualitative differences in adsorption capacity from microscopic perspectives, structural diversity caused by preparation methods, and environmental external factors affecting adsorption occurrence. Then, a quantitatively in-depth critical appraisal of traditional and emerging contaminants in wastewater treatment using carbonaceous adsorbents, and innovative strategies for enhancing their adsorption capacity are discussed. Finally, in the context of growing imposed circularity and zero waste wishes, this review offers some promising insights for carbonaceous adsorbents in achieving sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Maohong Fan
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Su H, Xu D, Li T, Zhu L, Wang S. Low-Temperature Upcycling of Polypropylene Waste into H 2 Fuel via a Novel Tandem Hydrothermal Process. CHEMSUSCHEM 2024; 17:e202301299. [PMID: 37806957 DOI: 10.1002/cssc.202301299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Plastic waste is a promising and abundant resource for H2 production. However, upcycling plastic waste into H2 fuel via conventional thermochemical routes requires relatively considerable energy input and severe reaction conditions, particularly for polyolefin waste. Here, we report a tandem strategy for the selective upcycling of polypropylene (PP) waste into H2 fuel in a mild and clean manner. PP waste was first oxidized into small-molecule organic acids using pure O2 as oxidant at 190 °C, followed by the catalytic reforming of oxidation aqueous products over ZnO-modified Ru/NiAl2 O4 catalysts to produce H2 at 300 °C. A high H2 yield of 44.5 mol/kgPP and a H2 mole fraction of 60.5 % were obtained from this tandem process. The entire process operated with almost no solid residue remaining and equipment contamination, ensuring relative stability and cleanliness of the reaction system. This strategy provides a new route for low-temperature transforming PP and improving the sustainability of plastic waste disposal processes.
Collapse
Affiliation(s)
- Hongcai Su
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Dan Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Tian Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| |
Collapse
|
4
|
Wang J, Yao X, Li Y, Zhang J, Zhao C, Strathmann TJ. Catalytic Hydrothermal Deoxygenation of Stearic Acid with Ru/C: Effects of Alcohol- and Carboxylic Acid-Based Hydrogen Donors. ACS OMEGA 2023; 8:19969-19975. [PMID: 37305242 PMCID: PMC10249376 DOI: 10.1021/acsomega.3c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Catalytic hydrothermal processing is a promising technology for the production of biofuels used in transportation to alleviate the energy crisis. An important challenge for these processes is the need for an external supply of hydrogen gas to accelerate the deoxygenation of fatty acids or lipids. It follows that in situ-produced hydrogen can improve process economics. This study reports on the use of various alcohol and carboxylic acid amendments as sources for in situ hydrogen production to accelerate Ru/C-catalyzed hydrothermal deoxygenation of stearic acid. Addition of these amendments significantly increases yields of liquid hydrocarbon products, including the major product heptadecane, from stearic acid conversion at subcritical conditions (330 °C, 14-16 MPa during the reaction). This research provided guidance for simplifying the catalytic hydrothermal process of biofuel production, making the production of the desired biofuel in one pot possible without the need for an external H2 supply.
Collapse
Affiliation(s)
- Jianyu Wang
- School
of Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- College
of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Xiaoyi Yao
- School
of Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yalin Li
- Institute
of Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody Drive, Urbana, Illinois 61801, United States
| | - Jing Zhang
- School
of Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Chun Zhao
- College
of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Timothy J. Strathmann
- Department
of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
A Recent Review of Primary Hydrogen Carriers, Hydrogen Production Methods, and Applications. Catalysts 2023. [DOI: 10.3390/catal13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydrogen is a promising energy carrier, especially for transportation, owing to its unique physical and chemical properties. Moreover, the combustion of hydrogen gas generates only pure water; thus, its wide utilization can positively affect human society to achieve global net zero CO2 emissions by 2050. This review summarizes the characteristics of the primary hydrogen carriers, such as water, methane, methanol, ammonia, and formic acid, and their corresponding hydrogen production methods. Additionally, state-of-the-art studies and hydrogen energy applications in recent years are also included in this review. In addition, in the conclusion section, we summarize the advantages and disadvantages of hydrogen carriers and hydrogen production techniques and suggest the challenging tasks for future research.
Collapse
|
6
|
Salomone F, Sartoretti E, Ballauri S, Castellino M, Novara C, Giorgis F, Pirone R, Bensaid S. CO2 Hydrogenation to Methanol Over Zr- and Ce-doped Indium Oxide. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Salomone F, Bonura G, Frusteri F, Castellino M, Fontana M, Chiodoni AM, Russo N, Pirone R, Bensaid S. Physico-Chemical Modifications Affecting the Activity and Stability of Cu-Based Hybrid Catalysts during the Direct Hydrogenation of Carbon Dioxide into Dimethyl-Ether. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7774. [PMID: 36363366 PMCID: PMC9657723 DOI: 10.3390/ma15217774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The direct hydrogenation of CO2 into dimethyl-ether (DME) has been studied in the presence of ferrierite-based CuZnZr hybrid catalysts. The samples were synthetized with three different techniques and two oxides/zeolite mass ratios. All the samples (calcined and spent) were properly characterized with different physico-chemical techniques for determining the textural and morphological nature of the catalytic surface. The experimental campaign was carried out in a fixed bed reactor at 2.5 MPa and stoichiometric H2/CO2 molar ratio, by varying both the reaction temperature (200-300 °C) and the spatial velocity (6.7-20.0 NL∙gcat-1∙h-1). Activity tests evidenced a superior activity of catalysts at a higher oxides/zeolite weight ratio, with a maximum DME yield as high as 4.5% (58.9 mgDME∙gcat-1∙h-1) exhibited by the sample prepared by gel-oxalate coprecipitation. At lower oxide/zeolite mass ratios, the catalysts prepared by impregnation and coprecipitation exhibited comparable DME productivity, whereas the physically mixed sample showed a high activity in CO2 hydrogenation but a low selectivity toward methanol and DME, ascribed to a minor synergy between the metal-oxide sites and the acid sites of the zeolite. Durability tests highlighted a progressive loss in activity with time on stream, mainly associated to the detrimental modifications under the adopted experimental conditions.
Collapse
Affiliation(s)
- Fabio Salomone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giuseppe Bonura
- Consiglio Nazionale delle Ricerche-Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (CNR-ITAE), Via Santa Lucia Sopra Contesse 5, 98126 Messina, Italy
| | - Francesco Frusteri
- Consiglio Nazionale delle Ricerche-Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (CNR-ITAE), Via Santa Lucia Sopra Contesse 5, 98126 Messina, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Fontana
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | | | - Nunzio Russo
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Raffaele Pirone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
8
|
Fischer–Tropsch synthetic wastewater treatment with Fe/Mn@CH: Catalytic ozonation and process evaluation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Su H, Li T, Zhu L, Wang S. Catalytic Reforming of the Aqueous Phase Derived from Diluted Hydrogen Peroxide Oxidation of Waste Polyethylene for Hydrogen Production. CHEMSUSCHEM 2021; 14:4270-4279. [PMID: 34101995 DOI: 10.1002/cssc.202100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The thermal degradation and conversion of waste polyethylene (PE) using a two-step process including hydrothermal oxidation (HO) and aqueous phase reforming (APR) were investigated. The objective of this study was to achieve efficient disposal of waste PE and generate H2 in a mild and green way. The effects of various HO conditions on both HO and APR processes were studied. A high H2 O2 concentration caused overoxidation of PE resulting in more CO2 . Decreasing the H2 O2 concentration weakened the overoxidation. The process using diluted H2 O2 exhibited the highest selectivity for acetic acid among the produced carboxylic acids. When the HO temperature exceeded 200 °C, there was an increase in the CO2 yield during the HO process and a decrease in the H2 yield during the APR process. In addition, the effects of various monometallic and bimetallic catalysts on the reforming of the aqueous phase from the HO of PE were discussed. The highest H2 mole fraction (51.52 %) in gaseous products from the APR process was obtained with Ru/mesoporous carbon. Nevertheless, Ru-Ni exhibited a higher stability than the monometallic Ru catalyst.
Collapse
Affiliation(s)
- Hongcai Su
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, P. R. China
| | - Tian Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, P. R. China
| | - Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, P. R. China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou, 310027, P. R. China
| |
Collapse
|
10
|
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. ENERGIES 2021. [DOI: 10.3390/en14185687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biofuel, a cost-effective, safe, and environmentally benign fuel produced from renewable sources, has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification, generation, and utilization of biofuels, particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state, technology maturity, the generation of feedstock, and the generation of products. The methods of production and the advantages of the application of biogas, bioalcohol, and hydrogen in spark ignition engines, as well as biodiesel, Fischer–Tropsch fuel, and dimethyl ether in compression ignition engines, in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization, proper waste disposal, and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Collapse
|