1
|
Chen S, Chang B, Cheng C, Ye S, Qu X, Wang QN, Li C. Reduction of nitrobenzene to phenylhydroxylamine with anthraquinone-2-sulfonic sodium as an electron mediator. Chem Commun (Camb) 2025. [PMID: 40421984 DOI: 10.1039/d5cc02053k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Phenylhydroxylamine (PHA) is a key intermediate for the synthesis of drugs and fine chemicals. However, it is challenging to synthesize PHA with a high selectivity because of the highly unstable nature of the PHA. In this study, we used anthraquinone-2-sulfonic sodium as an electron mediator with the "off-field electrocatalysis" strategy for the reduction of nitrobenzene (NB) and achieved a selectivity as high as 97% at a conversion over 99% of NB to phenylhydroxylamine (PHA).
Collapse
Affiliation(s)
- Shengqi Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Chang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Chuchu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Shihua Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Xiaolei Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Qing-Nan Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Chang J, Wang S, Hülsey MJ, Zhang S, Nee Lou S, Ma X, Yan N. Electrothermal Conversion of Methane to Methanol at Room Temperature with Phosphotungstic Acid. Angew Chem Int Ed Engl 2025; 64:e202417251. [PMID: 39460653 DOI: 10.1002/anie.202417251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45μ m o l g P T A - 1 h - 1 ${\mu mol\ {g}_{PTA}^{-1}{h}^{-1}}$ with approximately 20.3 % overall electron yield. Under continuous operation, we achieved 19.90μ m o l g P T A - 1 h - 1 ${\mu mol\ {g}_{PTA}^{-1}{h}^{-1}}$ catalytic activity, over 74.3 % methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.
Collapse
Affiliation(s)
- Jinquan Chang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sikai Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin University, Tianjin, 300192, China
| | - Shi Nee Lou
- School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
| | - Xinbin Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering School of Chemical Engineering and Technology Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin University, Tianjin, 300192, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
3
|
Yu J, Musgrave CB, Chen Q, Yang Y, Tian C, Hu X, Su G, Shin H, Ni W, Chen X, Ou P, Liu Y, Schweitzer NM, Meira DM, Dravid VP, Goddard WA, Xie K, Sargent EH. Ruthenium-Substituted Polyoxoanion Serves as Redox Shuttle and Intermediate Stabilizer in Selective Electrooxidation of Ethylene to Ethylene Glycol. J Am Chem Soc 2024; 146:32660-32669. [PMID: 39537145 DOI: 10.1021/jacs.4c11891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(H2O)W11O39]}5-) achieves 82% faradaic efficiency in EG production at 100 mA/cm2 under ambient conditions. Via the union of in situ spectroscopic techniques, electrochemical studies, and density functional theory calculations, we find evidence of a two-step oxidation mechanism: Ru-POM first undergoes electrochemical oxidation to the high valent state, activating ethylene via partial oxidation and forming an intermediate complex; this intermediate complex then migrates to the anode where it undergoes further oxidation to produce EG. The Ru-POM-mediated electrocatalytic system reduces the projected energy consumption required in EG production, requiring 9 GJ per ton of EG (and accompanied by 0.04 ton H2 coproduction), compared to 20-30 GJ/ton in typical prior processes.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles Bruce Musgrave
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiucheng Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangcan Su
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heejong Shin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiyan Ni
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinqi Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Debora Motta Meira
- CLS@APS, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Ke Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Segado-Centellas M, Falaise C, Leclerc N, Mpacko Priso G, Haouas M, Cadot E, Bo C. Nanoconfinement of polyoxometalates in cyclodextrin: computational inspections of the binding affinity and experimental demonstrations of reactivity modulation. Chem Sci 2024:d4sc01949k. [PMID: 39282647 PMCID: PMC11391412 DOI: 10.1039/d4sc01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Chaotropic polyoxometalates (POMs) form robust host-guest complexes with γ-cyclodextrin (γ-CD), offering promising applications in catalysis, electrochemical energy storage, and nanotechnology. In this article, we provide the first computational insights on the supramolecular binding mechanisms using density-functional theory and classical molecular dynamics simulations. Focusing on the encapsulation of archetypal Keggin-type POMs (PW12O40 3-, SiW12O40 4- and BW12O40 5-), our findings reveal that the lowest-charged POM, namely PW12O40 3- spontaneously confines within the wider rim of γ-CD, but BW12O40 5- does not exhibit this behaviour. This striking affinity for the hydrophobic pocket of γ-CD originates from the structural characteristics of water molecules surrounding PW12O40 3-. Moreover, through validation using 31P NMR spectroscopy, we demonstrate that this nanoconfinement regulates drastically the POM reactivity, including its capability to undergo electron transfer and intermolecular metalate Mo/W exchanges. Finally, we exploit this nanoconfinement strategy to isolate the elusive mixed addenda POM PW11MoO40 3-.
Collapse
Affiliation(s)
- Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Gabrielle Mpacko Priso
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
5
|
Priso GM, Haouas M, Leclerc N, Falaise C, Cadot E. Clustering Six Electrons within "Dawson-Like" Polyoxometalate: An Open Route toward Its Post-functionalization. Angew Chem Int Ed Engl 2023; 62:e202312457. [PMID: 37831589 DOI: 10.1002/anie.202312457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Super-reduction of polyoxometalates (POMs) in solution is of fundamental interest for designing innovative energy storage systems. In this article, we show that the "Dawson-like" POM can undergo a disproportionation process during its massive electron uptake, leading to species containing three metal-metal bonds as evidenced by X-ray diffraction, multi-nuclear magnetic resonance spectroscopy (1 H and 183 W NMR), extended X-ray absorption fine structure (EXAFS), UV/Vis, and voltammetry techniques. This result indicates that electron storing within metal-metal bonds is not a unique property of Keggin-type POM as postulated since the 70s. Besides, we demonstrate that the presence of an electron-rich triad in the "Dawson-like" POM allows its post-functionalization with additional tungstate ions, generating a chiral molecule that is also the largest WIV -containing POMs known to date.
Collapse
Affiliation(s)
- Gabrielle Mpacko Priso
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| |
Collapse
|
6
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Chang J, Hülsey MJ, Wang S, Li M, Ma X, Yan N. Electrothermal Water-Gas Shift Reaction at Room Temperature with a Silicomolybdate-Based Palladium Single-Atom Catalyst. Angew Chem Int Ed Engl 2023; 62:e202218265. [PMID: 36700387 DOI: 10.1002/anie.202218265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The water-gas shift (WGS) reaction is often conducted at elevated temperature and requires energy-intensive separation of hydrogen (H2 ) from methane (CH4 ), carbon dioxide (CO2 ), and residual carbon monoxide (CO). Designing processes to decouple CO oxidation and H2 production provides an alternative strategy to obtain high-purity H2 streams. We report an electrothermal WGS process combining thermal oxidation of CO on a silicomolybdic acid (SMA)-supported Pd single-atom catalyst (Pd1 /CsSMA) and electrocatalytic H2 evolution. The two half-reactions are coupled through phosphomolybdic acid (PMA) as a redox mediator at a moderate anodic potential of 0.6 V (versus Ag/AgCl). Under optimized conditions, our catalyst exhibited a TOF of 1.2 s-1 with turnover numbers above 40 000 mol CO 2 ${{_{{\rm CO}{_{2}}}}}$ molPd -1 achieving stable H2 production with a purity consistently exceeding 99.99 %.
Collapse
Affiliation(s)
- Jinquan Chang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sikai Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xinbin Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai, New City, Fuzhou, 350207, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Stergiou AD, Broadhurst DH, Symes MD. Electrochemical reduction of nitrobenzene via redox-mediated chronoamperometry. STAR Protoc 2022; 3:101817. [DOI: 10.1016/j.xpro.2022.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Stergiou A, Broadhurst DH, Symes MD. Highly Selective Electrocatalytic Reduction of Substituted Nitrobenzenes to Their Aniline Derivatives Using a Polyoxometalate Redox Mediator. ACS ORGANIC & INORGANIC AU 2022; 3:51-58. [PMID: 36748077 PMCID: PMC9896480 DOI: 10.1021/acsorginorgau.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Anilines and substituted anilines are used on the multi-ton scale for producing polymers, pharmaceuticals, dyes, and other important compounds. Typically, these anilines are produced from their corresponding nitrobenzene precursors by reaction with hydrogen at high temperatures. However, this route suffers from a number of drawbacks, including the requirement to handle hydrogen gas, rather harsh reaction conditions that lead to a lack of selectivity and/or toleration of certain functional groups, and questionable environmental sustainability. In light of this, routes to the reduction of nitrobenzenes to their aniline derivatives that operate at room temperature, in aqueous solvent, and without the requirement to use harsh process conditions, hydrogen gas, or sacrificial reagents could be of tremendous benefit. Herein, we report on a highly selective electrocatalytic route for the reduction of nitrobenzenes to their corresponding anilines that works in aqueous solution at room temperature and which does not require the use of hydrogen gas or sacrificial reagents. The method uses a polyoxometalate redox mediator, which reversibly accepts electrons from the cathode and reacts with the nitrobenzenes in solution to reduce them to the corresponding anilines. A variety of substituted nitroarenes are explored as substrates, including those with potentially competing reducible groups and substrates that are difficult to reduce selectively by other means. In all cases, the selectivity for the redox-mediated route is higher than that for the direct reduction of the nitroarene substrates at the electrode, suggesting that redox-mediated electrochemical nitroarene reduction is a promising avenue for the more sustainable synthesis of substituted anilines.
Collapse
|
10
|
Lv J, Lang Z, Fu J, Lan Q, Liu R, Zang H, Li Y, Ye D, Streb C. Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Near‐Neutral pH. Angew Chem Int Ed Engl 2022; 61:e202202650. [PMID: 35381106 PMCID: PMC9546390 DOI: 10.1002/anie.202202650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/10/2022]
Abstract
The oxygen reduction reaction (ORR) is a key energy conversion process, which is critical for the efficient operation of fuel cells and metal–air batteries. Here, we report the significant enhancement of the ORR‐performance of commercial platinum‐on‐carbon electrocatalysts when operated in aqueous electrolyte solutions (pH 5.6), containing the polyoxoanion [Fe28(μ3‐O)8(L‐(−)‐tart)16(CH3COO)24]20−. Mechanistic studies provide initial insights into the performance‐improving role of the iron oxide cluster during ORR. Technological deployment of the system is demonstrated by incorporation into a direct formate microfluidic fuel cell (DFMFC), where major performance increases are observed when compared with reference electrolytes. The study provides the first examples of iron oxide clusters in electrochemical energy conversion and storage.
Collapse
Affiliation(s)
- Jia‐Qi Lv
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Zhong‐Ling Lang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Jia‐Qi Fu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Lan
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Rongji Liu
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Yang‐Guang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Ding‐Ding Ye
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Carsten Streb
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55131 Mainz Germany
| |
Collapse
|
11
|
Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Waldvogel SR, Streb C. Redox mediators facilitate selective electrocatalytic nitroarene-to-aniline reduction. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lv J, Lang Z, Fu J, Lan Q, Liu R, Zang H, Li Y, Ye D, Streb C. Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Near‐Neutral pH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Qi Lv
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Zhong‐Ling Lang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Jia‐Qi Fu
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Lan
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Rongji Liu
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
| | - Hong‐Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Yang‐Guang Li
- Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Ding‐Ding Ye
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University No. 174 Shazheng Street, Shapingba District Chongqing 400030 China
| | - Carsten Streb
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
- Helmholtz-Institute Ulm (HIU) Helmholtzstr. 11 89081 Ulm Germany
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55131 Mainz Germany
| |
Collapse
|