1
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
2
|
Laurent J, Le Berre I, Armengaud J, Kailasam S, Couteau J, Waeles M, Le Floch S, Laroche J, Pichereau V. Integration of environmental signatures and omics-based approaches on the European flounder to assist with health assessment of estuarine ecosystems in Brittany, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163195. [PMID: 37003335 DOI: 10.1016/j.scitotenv.2023.163195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
This study aimed to develop a multidisciplinary approach to assess the ecological status of six moderate-sized French estuaries. For each estuary, we gathered geographical information, hydrobiological data, chemistry of pollutants and fish biology, including integration of proteomics and transcriptomics data. This integrative study covered the entire hydrological system studied, from the watershed to the estuary, and considered all the anthropogenic factors that can impact this environment. To reach this goal, European flounder (Platichthys flesus) were collected from six estuaries in September, which ensures a minimum residence time of five months within an estuary. Geographical metrics are used to characterize land use in each watershed. The concentrations of nitrite, nitrate, organic pollutants, and trace elements were measured in water, sediments and biota. All of these environmental parameters allowed to set up a typology of estuaries. Classical fish biomarkers, coupled with molecular data from transcriptomics and shotgun proteomics, highlighted the flounder's responses to stressors in its environment. We analysed the protein abundances and gene expression levels in the liver of fish from the different estuaries. We showed clear positive deregulation of proteins associated with xenobiotic detoxification in a system characterized by a large population density and industrial activity, as well as in a predominantly agricultural catchment area (mostly cultures of vegetables and pig breeding) mainly impacted by pesticides. Fish from the latter estuary also displayed strong deregulation of the urea cycle, most probably related to high nitrogen load. Proteomic and transcriptomic data also revealed a deregulation of proteins and genes related to the response to hypoxia, and a probable endocrine disruption in some estuaries. Coupling these data allowed the precise identification of the main stressors interacting within each hydrosystem.
Collapse
Affiliation(s)
- Jennifer Laurent
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29200 Brest, France.
| | - Iwan Le Berre
- LETG-Brest GEOMER, UMR 6554 CNRS, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207 Bagnols-sur-Cèze, France
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Jérôme Couteau
- TOXEM, 12 rue des 4 saisons, 76290 Montivilliers, France
| | - Matthieu Waeles
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | | | - Jean Laroche
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Vianney Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France.
| |
Collapse
|
3
|
Tucker-Retter EK, Allender MC, Nowak RA, Suski CD. Invasive Species as Sentinels: Measuring Health Outcomes in Silver Carp (Hypophthalmichthys molitrix) during Removal. ICHTHYOLOGY & HERPETOLOGY 2023. [DOI: 10.1643/i2021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emily K. Tucker-Retter
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Matthew C. Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
4
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Curtis-Quick JA, Ulanov AV, Li Z, Bieber JF, Tucker-Retter EK, Suski CD. Why the Stall? Using metabolomics to define the lack of upstream movement of invasive bigheaded carp in the Illinois River. PLoS One 2021; 16:e0258150. [PMID: 34618833 PMCID: PMC8496817 DOI: 10.1371/journal.pone.0258150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bigheaded Carp have spread throughout the Mississippi River basin since the 1970s. Little has stopped the spread as carp have the ability to pass through locks and dams, and they are currently approaching the Great Lakes. However, the location of the leading edge in the Illinois River has stalled for over a decade, even though there is no barrier preventing further advancement towards the Great Lakes. Defining why carp are not moving towards the Great Lakes is important for predicting why they might advance in the future. The aim of this study was to test the hypothesis that anthropogenic contaminants in the Illinois River may be playing a role in preventing further upstream movement of Bigheaded Carp. Ninety three livers were collected from carp at several locations between May and October of 2018. Liver samples were analyzed using gas chromatography-mass spectrometry in a targeted metabolite profiling approach. Livers from carp at the leading edge had differences in energy use and metabolism, and suppression of protective mechanisms relative to downstream fish; differences were consistent across time. This body of work provides evidence that water quality is linked to carp movement in the Illinois River. As water quality in this region continues to improve, consideration of this impact on carp spread is essential to protect the Great Lakes.
Collapse
Affiliation(s)
- Jocelyn A. Curtis-Quick
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Alexander V. Ulanov
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhong Li
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John F. Bieber
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Emily K. Tucker-Retter
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|