1
|
Ratnawati R, Aswad M, Jumriani J, Nurhidayah A, Azmin MR, Filmaharani F, Roosevelt A, Hardiyanti W, Latada NP, Mudjahid M, Nainu F. In Silico and In Vivo Investigation of the Anti-Hyperglycemic Effects of Caffeic Acid. ACS OMEGA 2025; 10:14052-14062. [PMID: 40256540 PMCID: PMC12004181 DOI: 10.1021/acsomega.4c11062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Hyperglycemia, characterized by elevated blood glucose levels, is a major risk factor for diabetes mellitus and its complications. While conventional therapies are effective, they are often associated with side effects and high costs, necessitating alternative strategies. This study evaluates the potential of caffeic acid (CA), a phenolic compound with reported antihyperglycemic properties, using both in silico and in vivo approaches. Molecular docking simulations revealed that CA demonstrates a strong binding affinity to protein tyrosine phosphatase 1B (PTP1B), a critical enzyme in glucose metabolism, with superior interaction profiles compared to the reference drug, ertiprotafib. In the in vivo studies, a Drosophila melanogaster model was used to investigate the effects of CA under hyperglycemic conditions induced by a high-sugar diet. Treatment with CA, particularly at a concentration of 500 μM, significantly reduced hemolymph glucose levels and improved several physiological and behavioral parameters, including survival rates, body size, body weight, and larval movement. Furthermore, gene expression analysis demonstrated that CA modulates key metabolic and stress-related pathways, enhancing glucose homeostasis and reducing metabolic stress. These findings highlight the dual utility of in silico and in vivo methodologies in elucidating the antihyperglycemic potential of CA. The results support the development of CA as a cost-effective and ethically viable therapeutic candidate with implications for diabetes management in resource-limited settings.
Collapse
Affiliation(s)
- Ratnawati Ratnawati
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Muhammad Aswad
- Department
of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Jumriani Jumriani
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Anggun Nurhidayah
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Muhammad Rayza Azmin
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Filmaharani Filmaharani
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Alfreds Roosevelt
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Widya Hardiyanti
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Nadila Pratiwi Latada
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Mukarram Mudjahid
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| | - Firzan Nainu
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| |
Collapse
|
2
|
Sharma K, Rai P, Tapadia MG. Impaired insulin signaling and diet-induced type 3 diabetes pathophysiology increase amyloid β expression in the Drosophila model of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119875. [PMID: 39515664 DOI: 10.1016/j.bbamcr.2024.119875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Compelling evidence has strongly linked unregulated sugar levels to developing Alzheimer's disease, suggesting Alzheimer's to be 'diabetes of the brain or 'type 3 diabetes. Insulin resistance contributes to the pathogenesis of Alzheimer's disease due to uncontrolled and unchecked blood glucose, though the interrelatedness between Alzheimer's disease and type 2 diabetes is debatable. Here we describe the consequences of inducing type 3 diabetes by feeding Drosophila on a high sucrose diet, which effectively mimics the pathophysiology of diabetes. A high sucrose diet increases glycogen and lipid accumulation. Inducing type 3 diabetes worsened neurodegeneration and accelerated disease progression in Drosophila expressing the Alzheimer's Familial Arctic mutation. High sucrose milieu also negatively affected locomotor ability and reduced the lifespan in the Alzheimer's disease model of Drosophila. The results showed that creating diabetic conditions by using insulin receptor (InR) knockdown in the eyes of Drosophila led to a degenerative phenotype, indicating a genetic interaction between the insulin signaling pathway and Alzheimer's disease. The expression of PERK reflects disruption in the endoplasmic reticulum homeostasis due to amyloid-β (Aβ) under a high sucrose diet. These observations demonstrated an association between type 3 diabetes and Alzheimer's disease, and that a high sucrose environment has a degenerating effect on Alzheimer's disease condition.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pooja Rai
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India; Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, MA 01605, USA
| | - Madhu G Tapadia
- Cytogenetics lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
3
|
Singh A, Abhilasha KV, Acharya KR, Liu H, Nirala NK, Parthibane V, Kunduri G, Abimannan T, Tantalla J, Zhu LJ, Acharya JK, Acharya UR. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila. Nat Commun 2024; 15:4410. [PMID: 38782979 PMCID: PMC11116528 DOI: 10.1038/s41467-024-48851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic β cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.
Collapse
Affiliation(s)
- Alka Singh
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Kathya R Acharya
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thiruvaimozhi Abimannan
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jacob Tantalla
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Usha R Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Loreto JS, Ferreira SA, de Almeida P, da Rocha JBT, Barbosa NV. Screening for Differentially Expressed Memory Genes on a Diabetes Model Induced by High-Sugar Diet in Drosophila melanogaster: Potential Markers for Memory Deficits. Mol Neurobiol 2024; 61:1225-1236. [PMID: 37698834 DOI: 10.1007/s12035-023-03598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we used Drosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher than two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies: Abl tyrosine kinase (Abl), bruchpilot (Brp), minibrain (Mnb), shaker (Sh), and gilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work, we present promising biomarkers to investigate molecular networks shared between T2DM and AD.
Collapse
Affiliation(s)
- Julia Sepel Loreto
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Sabrina Antunes Ferreira
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Pâmela de Almeida
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - João Batista Teixeira da Rocha
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Centro de Ciências Naturais E Exatas, Programa de Pós-Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, Santa Maria, RS, 1000, 97105-900, Brazil.
| |
Collapse
|
5
|
Wang M, Mao H, Chen J, Qi L, Wang J. Ameliorative effect of bayberry leaves proanthocyanidins on high sugar diet induced Drosophila melanogaster. Front Pharmacol 2022; 13:1008580. [PMID: 36188544 PMCID: PMC9521571 DOI: 10.3389/fphar.2022.1008580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bayberry leaves proanthocyanidins (BLPs) were distributed in natural plant food, considered to have the potential for metabolic syndrome. In this study, we raised Drosophila melanogaster on high sugar diet (HSD) from the egg stage to induce hyperglycemia, and the ameliorative effect of BLPs was assessed based on this model. Phenotypical, biochemical, and molecular analyses related to diabetes mellitus pathogenesis were measured. Flies exposed to BLPs were found to suppress the HSD-induced high glucose and high triglycerides levels. Moreover, BLPs showed an inhibitory effect on carbohydrate digestive enzymes (α-amylase and α-glucosidase) activity and mRNA expression, exhibiting the potential for carbohydrate digestion retardation. Transcriptional levels of key genes associated with glycolipid metabolism were further evaluated, including dilp, InR, and downstream dAKT-dFOXO-PEPCK, together with E78, SREBP, FAS, and LSD genes, were all downregulated after BLPs-exposure, suggesting the ameliorative effect of BLPs on dysbiosis associated with the insulin signaling pathway. This study provided a new functional compound, which is beneficial to further antidiabetic therapy studies.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
- *Correspondence: Lili Qi, ; Jinbo Wang,
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
- *Correspondence: Lili Qi, ; Jinbo Wang,
| |
Collapse
|
6
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|