1
|
Guo H, Li Y, Ge H, Sha H, Luo X, Zou G, Liang H. Competitive Bio-Accumulation Between Ammonia and Nitrite Results in Their Antagonistic Toxicity to Hypophthalmichthys molitrix: Antioxidant and Immune Responses and Metabolic Detoxification Evidence. Antioxidants (Basel) 2025; 14:453. [PMID: 40298795 PMCID: PMC12024166 DOI: 10.3390/antiox14040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Ammonia and nitrite, as major aquatic pollutants, exhibit significant toxicity toward aquatic organisms. However, their interactive effects on fish are unclear. Aiming to determine their interactive effects, silver carp (Hypophthalmichthys molitrix) were exposed to ammonia, nitrite or ammonia + nitrite for 72 h. Silver carp exhibited pathological damage in the liver and spleen and significant increases in MDA, SOD and CAT in the liver and plasma after ammonia or nitrite exposure. Thus, ammonia and nitrite caused significant histology damage through inducing oxidative stress, and the antioxidative response of SOD-CAT was initiated by silver carp to defend them. A transcriptomic analysis suggested that disruptions in immune responses and metabolism were the main toxic effects caused by ammonia and nitrite. Specifically, nitrite decreased splenic TNF-α and IL-1β but increased splenic C4. Ammonia decreased splenic TNF-α and C4 but increased splenic IL-1β. We noted significant interactions between ammonia and nitrite, and the pathological changes and IBR in the co-exposure groups were less severe than those in the single-factor exposure groups, indicating that ammonia and nitrite have an antagonistic effect. Significant decreases in plasmatic ammonia and NO2-+NO3- were induced by nitrite and ammonia, respectively. Moreover, the plasmatic glutamine, urea-N, and glutamine synthetase and glutamate dehydrogenase activities increased significantly under ammonia and nitrite exposure, while T-NOS decreased significantly. These results suggest an antagonistic interaction between ammonia and nitrite in silver carp, possibly resulting from competitive bioaccumulation. Consequently, the simultaneous monitoring and control of both ammonia and nitrite concentrations are essential to mitigate their compounded toxic effects, which might be exacerbated under isolated exposure conditions.
Collapse
Affiliation(s)
- Honghui Guo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
| | - Yiwen Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Ge
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries, Wuhan 430223, China; (H.G.); (Y.L.); (H.G.); (H.S.); (X.L.); (G.Z.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Quesada CG, Miranda LA. Effects of hypoxia on the reproductive endocrine axis of the pejerrey (Odontesthes bonariensis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2505-2517. [PMID: 39235532 DOI: 10.1007/s10695-024-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Recently, hypoxic areas have been identified in water bodies of the Pampas region due to human activity. The objective of this work was to study the effect of low concentrations of dissolved oxygen (hypoxia) on the reproductive endocrine axis of a pampas fish (Odontesthes bonariensis). Groups of 8 males and 8 females were subjected to severe hypoxia (2-3 mg l-1) and normoxia (7-9 mg l-1) in 3000 l tanks by duplicate during the reproductive season (spring). After 21 days, 4 males and 4 females from each tank were sacrificed, and blood was drawn to measure estradiol (E2) and testosterone (T). The brain, pituitary gland and a portion of the gonads were extracted and processed to measure the expression of: gnrh1, cyp19a1b, fshβ, lhβ, fshr, lhcgr and cyp19a1a. From the second experimental week, no spawning was found in the hypoxic females, while at the end of the treatment period no male released sperm. Fish under hypoxic conditions showed signs of gonadal regression, reduction of GSI and plasma levels of sex steroids. Furthermore, the expression of gnrh1 in both sexes, cyp19a1b and fshr in males and only fshβ and cyp19a1a in females decreased in comparison with normoxic fish. After 40 days under normal conditions, signs of reproductive recovery were observed in the treated fish. The results obtained demonstrated that hypoxia generated an inhibition of some components of the pejerrey's reproductive endocrine axis, but the effect was reversible.
Collapse
Affiliation(s)
- Carina Gisele Quesada
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| | - Leandro Andrés Miranda
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina.
| |
Collapse
|
3
|
Prestes Dos Santos S, da Silva MI, Godoy AC, De Almeida Banhara DG, Goes MD, Souza Dos Reis Goes E, Honorato CA. Respiratory and muscular effort during pre-slaughter stress affect Nile tilapia fillet quality. PLoS One 2024; 19:e0306880. [PMID: 38995936 PMCID: PMC11244840 DOI: 10.1371/journal.pone.0306880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Nile Tilapia (Oreochromis niloticus) management procedures are directly linked to the final quality of the product. The aim of this study was to evaluate the effect of pre-slaughter density and different stunning methods on biochemical, respiratory and muscle injury parameters associated with quality and sensory characteristics of Nile tilapia fillets. Fish with an average weight of 762±105 g were used, first collected called the control group. The experiment was conducted in a 2 × 2 factorial scheme, with two densities (50 and 300 kg of live weight m-3) and two stunning methods thus totaling four treatments, with 15 repetitions per treatment totaling 75 fish sampled. Blood gas analysis, evaluation of biochemical parameters, analysis of meat quality and sensory analysis were carried out. For blood gas, biochemical and enzymatic parameters, the highest values were obtained for the density of 300 kg m-3 and asphyxia method: partial pressures of CO2; glucose and lactate, the highest values presented were 268.98 and 11.33 mg dL-1 respectively. As well as enzymatic activities, Creatinine kinase (CPK); Creatinine kinase isoenzyme (CKMB) showed higher values (768.93 and 1078.98 mg dL-1 respectively) in the higher density and asphyxia method. Conversely, when evaluating the quality parameters, the highest values were observed for lower density and thermonarcosis. High depuration density (300 kg m-3), combined with the asphyxiation stunning method, promotes changes in respiratory dynamics and provides greater stress, less firm fillet texture and greater weight loss due to cooking, as well as changes in creatine kinase (CK) and its CK-MB isoenzyme, demonstrating greater muscle damage. On the other hand, the density of 50 kg m-3 during pre-slaughter, combined with the method of stunning by thermonarcosis, provide a longer period of permanence in pre rigor mortis, which will result in fillets with a better sensory profile.
Collapse
Affiliation(s)
| | - Maria Ildilene da Silva
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Antonio Cesar Godoy
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | | | - Marcio Douglas Goes
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | | | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
4
|
Chen J, Hu Z, Li P, Wang G, Wei H, Li Q, Fu B, Sun Y. Transcriptomic atlas for hypoxia and following re-oxygenation in Ancherythroculter nigrocauda heart and brain tissues: insights into gene expression, alternative splicing, and signaling pathways. Front Genet 2024; 15:1365285. [PMID: 38689653 PMCID: PMC11058841 DOI: 10.3389/fgene.2024.1365285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Hypoxia is a mounting problem that affects the world's freshwaters, with severe consequence for many species, including death and large economical loss. The hypoxia problem has increased recently due to the combined effects of water eutrophication and global warming. In this study, we investigated the transcriptome atlas for the bony fish Ancherythroculter nigrocauda under hypoxia for 1.5, 3, and 4.5 h and its recovery to normal oxygen levels in heart and brain tissues. We sequenced 21 samples for brain and heart tissues (a total of 42 samples) plus three control samples and obtained an average of 32.40 million raw reads per sample, and 95.24% mapping rate of the filtered clean reads. This robust transcriptome dataset facilitated the discovery of 52,428 new transcripts and 6,609 novel genes. In the heart tissue, the KEGG enrichment analysis showed that genes linked to the Vascular smooth muscle contraction and MAPK and VEGF signaling pathways were notably altered under hypoxia. Re-oxygenation introduced changes in genes associated with abiotic stimulus response and stress regulation. In the heart tissue, weighted gene co-expression network analysis pinpointed a module enriched in insulin receptor pathways that was correlated with hypoxia. Conversely, in the brain tissue, the response to hypoxia was characterized by alterations in the PPAR signaling pathway, and re-oxygenation influenced the mTOR and FoxO signaling pathways. Alternative splicing analysis identified an average of 27,226 and 28,290 events in the heart and brain tissues, respectively, with differential events between control and hypoxia-stressed groups. This study offers a holistic view of transcriptomic adaptations in A. nigrocauda heart and brain tissues under oxygen stress and emphasizes the role of gene expression and alternative splicing in the response mechanisms.
Collapse
Affiliation(s)
- Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhen Hu
- Hubei Provincial Fisheries Technology Extension Center, Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd, Wuhan, China
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
6
|
Tucker-Retter EK, Allender MC, Nowak RA, Suski CD. Invasive Species as Sentinels: Measuring Health Outcomes in Silver Carp (Hypophthalmichthys molitrix) during Removal. ICHTHYOLOGY & HERPETOLOGY 2023. [DOI: 10.1643/i2021072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emily K. Tucker-Retter
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Matthew C. Allender
- Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, Illinois 61802
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, Illinois 61801
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
7
|
Tandem Mass Tagging-Based Quantitative Proteomics Analysis Reveals Damage to the Liver and Brain of Hypophthalmichthys molitrix Exposed to Acute Hypoxia and Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11030589. [PMID: 35326239 PMCID: PMC8945220 DOI: 10.3390/antiox11030589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aquaculture environments frequently experience hypoxia and subsequent reoxygenation conditions, which have significant effects on hypoxia-sensitive fish populations. In this study, hepatic biochemical activity indices in serum and the content of major neurotransmitters in the brain were altered markedly after acute hypoxia and reoxygenation exposure in silver carp (Hypophthalmichthys molitrix). Proteomics analysis of the liver showed that a number of immune-related and cytoskeletal organization-related proteins were downregulated, the ferroptosis pathway was activated, and several antioxidant molecules and detoxifying enzymes were upregulated. Proteomics analysis of the brain showed that somatostatin-1A (SST1A) was upregulated, dopamine-degrading enzyme catechol O methyltransferase (COMT) and ferritin, heavy subunit (FerH) were downregulated, and the levels of proteins involved in the nervous system were changed in different ways. In conclusion, these findings highlight that hypoxia–reoxygenation has potential adverse effects on growth, locomotion, immunity, and reproduction of silver carp, and represents a serious threat to liver and brain function, possibly via ferroptosis, oxidative stress, and cytoskeleton destruction in the liver, and abnormal expression of susceptibility genes for neurodegenerative disorders in the brain. Our present findings provide clues to the mechanisms of hypoxia and reoxygenation damage in the brain and liver of hypoxia-sensitive fish. They could also be used to develop methods to reduce hypoxia or reoxygenation injury to fish.
Collapse
|
8
|
Comparative transcriptome analysis provides novel insights into the molecular mechanism of the silver carp (Hypophthalmichthys molitrix) brain in response to hypoxia stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100951. [PMID: 34923202 DOI: 10.1016/j.cbd.2021.100951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023]
Abstract
The brain of fish plays an important role in regulating growth and adapting to environmental changes. However, few studies have been performed to address the changes in gene expression profiles in fish brains under hypoxic stress. In the present study, silver carp (Hypophthalmichthys molitrix) were kept under hypoxic experimental conditions by using the method of natural oxygen consumption, which resulted in a significant decrease in malondialdehyde (MDA) and glutathione (GSH) content and superoxide dismutase (SOD) activity in the brain. In addition, RNA sequencing (RNA-Seq) was performed to analyze transcriptional regulation in the brains of silver carp under normoxia (control group), hypoxia, semi-asphyxia, and asphyxia conditions. The results of KEGG enrichment pathway analysis showed that the immune system, such as antigen processing and presentation, natural killer cell-mediated cytotoxicity, was enriched in the hypoxia group; the nervous system (e.g., "glutamatergic synapse"), signal transduction (e.g., "calcium signaling pathway"; "foxo signaling pathway"), and signaling molecules and interactions (e.g., "neuroactive ligand-receptor interaction") were enriched in the semi-asphyxia group; and signaling molecules and interactions (e.g., "neuroactive ligand-receptor interaction") were enriched in the asphyxia group. These results provide novel insights into the molecular regulatory mechanism of the fish brain coping with hypoxia stress.
Collapse
|
9
|
Molecular Characterization and Response of Prolyl Hydroxylase Domain (PHD) Genes to Hypoxia Stress in Hypophthalmichthys molitrix. Animals (Basel) 2022; 12:ani12020131. [PMID: 35049755 PMCID: PMC8772553 DOI: 10.3390/ani12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hypoxia is a common challenge for aquatic organisms, and prolyl hydroxylase domain (PHD) proteins play important roles in hypoxic adaptation by regulating the stability of the hypoxia-inducible factor 1 alpha subunit (HIF-1α). In this study, the full-length cDNAs of three PHD genes were obtained from Hypophthalmichthys molitrix, which is an important freshwater fish and sensitive to low oxygen tension. The amino acid sequence analysis and phylogenetic analysis of PHDs were performed among various species. Furthermore, the expression patterns and the transcriptional responses of H. molitrix PHD genes to acute hypoxia, continued hypoxia, and reoxygenation were explored in different tissues. Our study preliminarily explored the physiological regulation functions of PHD genes at the transcriptional level when addressing the hypoxic challenge and provided a foundation for future systematic explorations of the molecular mechanisms underlying hypoxia adaptation in silver carp. Abstract As an economically and ecologically important freshwater fish, silver carp (Hypophthalmichthys molitrix) is sensitive to low oxygen tension. Prolyl hydroxylase domain (PHD) proteins are critical regulators of adaptive responses to hypoxia for their function of regulating the hypoxia inducible factor-1 alpha subunit (HIF-1α) stability via hydroxylation reaction. In the present study, three PHD genes were cloned from H. molitrix by rapid amplification of cDNA ends (RACE). The total length of HmPHD1, HmPHD2, and HmPHD3 were 2981, 1954, and 1847 base pair (bp), and contained 1449, 1080, and 738 bp open reading frames (ORFs) that encoded 482, 359, and 245 amino acids (aa), respectively. Amino acid sequence analysis showed that HmPHD1, HmPHD2, and HmPHD3 had the conserved prolyl 4-hydroxylase alpha subunit homolog domains at their C-termini. Meanwhile, the evaluation of phylogeny revealed PHD2 and PHD3 of H. molitrix were more closely related as they belonged to sister clades, whereas the clade of PHD1 was relatively distant from these two. The transcripts of PHD genes are ubiquitously distributed in H. molitrix tissues, with the highest expressional level of HmPHD1 and HmPHD3 in liver, and HmPHD2 in muscle. After acute hypoxic treatment for 0.5 h, PHD genes of H. molitrix were induced mainly in liver and brain, and different from HmPHD1 and HmPHD2, the expression of HmPHD3 showed no overt tissue specificity. Furthermore, under continued hypoxic condition, PHD genes exhibited an obviously rapid but gradually attenuated response from 3 h to 24 h, and upon reoxygenation, the transcriptional expression of PHD genes showed a decreasing trend in most of the tissues. These results indicate that the PHD genes of H. molitrix are involved in the early response to hypoxic stress, and they show tissue-specific transcript expression when performing physiological regulation functions. This study is of great relevance for advancing our understanding of how PHD genes are regulated when addressing the hypoxic challenge and provides a reference for the subsequent research of the molecular mechanisms underlying hypoxia adaptation in silver carp.
Collapse
|