1
|
Hamed M, Martyniuk CJ, Said REM, Soliman HAM, Badrey AEA, Hassan EA, Abdelhamid HN, Osman AGM, Sayed AEDH. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (Clarias gariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122074. [PMID: 37331582 DOI: 10.1016/j.envpol.2023.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Elhagag A Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Hani N Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assuit University, Assuit, 71515, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
2
|
The Impact of Sedentary Lifestyle, High-fat Diet, Tobacco Smoke, and Alcohol Intake on the Hematopoietic Stem Cell Niches. Hemasphere 2021; 5:e615. [PMID: 34291194 PMCID: PMC8288907 DOI: 10.1097/hs9.0000000000000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
Hematopoietic stem and progenitor cells maintain hematopoiesis throughout life by generating all major blood cell lineages through the process of self-renewal and differentiation. In adult mammals, hematopoietic stem cells (HSCs) primarily reside in the bone marrow (BM) at special microenvironments called “niches.” Niches are thought to extrinsically orchestrate the HSC fate including their quiescence and proliferation. Insight into the HSC niches mainly comes from studies in mice using surface marker identification and imaging to visualize HSC localization and association with niche cells. The advantage of mouse models is the possibility to study the 3-dimensional BM architecture and cell interactions in an intact traceable system. However, this may not be directly translational to human BM. Sedentary lifestyle, unhealthy diet, excessive alcohol intake, and smoking are all known risk factors for various diseases including hematological disorders and cancer, but how do lifestyle factors impact hematopoiesis and the associated niches? Here, we review current knowledge about the HSC niches and how unhealthy lifestyle may affect it. In addition, we summarize epidemiological data concerning the influence of lifestyle factors on hematological disorders and malignancies.
Collapse
|
3
|
Bukowska B, Wieteska P, Kwiatkowska M, Sicińska P, Michalowicz J. Evaluation of the effect of 2,4-dichlorophenol on oxidative parameters and viability of human blood mononuclear cells (in vitro). Hum Exp Toxicol 2015; 35:775-84. [DOI: 10.1177/0960327115606789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
2,4-Dichlorophenol (2,4-DCP) is formed in drinking water as a result of its chlorination, and it is created in the environment during transformation of various xenobiotics such as triclosan or herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The molecular mechanism depicting the action of phenolic compounds on nucleated blood cells has been insufficiently studied, and therefore, we have assessed the effect of 2,4-DCP on the structure and viability of human peripheral blood mononuclear cells (PBMCs). We have evaluated necrotic, apoptotic, and morphological changes (alterations in the size and granulation) in PBMCs incubated with 2,4-DCP in the concentration ranging from 10 to 500 µg mL−1 for 4 h at 37°C. Moreover, we have estimated changes in reactive oxygen species (ROS) formation, lipid peroxidation, and protein carbonylation in the incubated cells. We have noted that 2,4-DCP increased ROS formation and lipid peroxidation (from 10 µg mL−1) and oxidized proteins (from 50 µg mL−1) in PBMCs. The compound studied also provoked apoptotic (from 50 µg mL−1), necrotic (from 100 µg mL−1) and alterations in the size and granulation (from 50 µg mL−1) in the incubated cells. The analysis of quinolinium 4-[(3-methyl-2(3 H)-benzoxazolylidene)methyl]-1-[3-(trimethyl-ammonio)-propyl]-diiodide/propidium iodide staining revealed that 2,4-DCP (50–250 µg mL−1) more strongly increased the number of apoptotic than necrotic cells, which suggests that this cell death type is mainly provoked by this compound in PBMCs. The observed changes were caused by relatively high concentrations of 2,4-DCP, which cannot influence human organism during environmental exposure and thus may only occur as a result of acute or subacute poisoning with this compound.
Collapse
Affiliation(s)
- B Bukowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - P Wieteska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - M Kwiatkowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - P Sicińska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - J Michalowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Moro AM, Brucker N, Charão MF, Sauer E, Freitas F, Durgante J, Bubols G, Campanharo S, Linden R, Souza AP, Bonorino C, Moresco R, Pilger D, Gioda A, Farsky S, Duschl A, Garcia SC. Early hematological and immunological alterations in gasoline station attendants exposed to benzene. ENVIRONMENTAL RESEARCH 2015; 137:349-356. [PMID: 25601738 DOI: 10.1016/j.envres.2014.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Elucidation of effective biomarkers may provide tools for the early detection of biological alterations caused by benzene exposure and may contribute to the reduction of occupational diseases. This study aimed to assess early alterations on hematological and immunological systems of workers exposed to benzene. METHODS Sixty gasoline station attendants (GSA group) and 28 control subjects were evaluated. Environmental and biological monitoring of benzene exposure was performed in blood and urine. The potential effect biomarkers evaluated were δ-aminolevulinate dehydratase (ALA-D) activity, CD80 and CD86 expression in lymphocytes and monocytes, and serum interleukin-8 (IL-8). The influence of confounding factors and toluene co-exposure were considered. RESULTS Although exposures were below ACGIH (American Conference of Governmental Industrial Hygienists) limits, reduced ALA-D activity, decreased CD80 and CD86 expression in monocytes and increased IL-8 levels were found in the GSA group compared to the control subjects. Furthermore, according to multiple linear regression analysis, benzene exposure was associated to a decrease in CD80 and CD86 expression in monocytes. CONCLUSIONS These findings suggest, for the first time, a potential effect of benzene exposure on ALA-D activity, CD80 and CD86 expression, IL-8 levels, which could be suggested as potential markers for the early detection of benzene-induced alterations.
Collapse
Affiliation(s)
- Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele F Charão
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Freitas
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliano Durgante
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sarah Campanharo
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Linden
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
| | - Ana P Souza
- Laboratory of Cellular and Molecular Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristina Bonorino
- Laboratory of Cellular and Molecular Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diogo Pilger
- Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry of Pontifical Catholic University Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sandra Farsky
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Solange C Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-Graduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Bukowska B, Michałowicz J, Marczak A. The effect of catechol on human peripheral blood mononuclear cells (in vitro study). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:187-193. [PMID: 25528409 DOI: 10.1016/j.etap.2014.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Catechol also known as pyrocatechol or 1,2-dihydroxybenzene is formed endogenously in the organism from neurotransmitters including adrenaline, noradrenaline, and dopamine. It is also a metabolite of many drugs like DOPA, isoproterenol or aspirin and it is also formed in the environment during transformation of various xenobiotics. We evaluated in vitro the effect of catechol on the structure and function of human peripheral blood mononuclear cells (PBMCs). The cells were incubated with xenobiotic at concentration range from 2 to 500μg/mL for 1h. Human blood mononuclear cells were obtained from leucocyte-platelet buffy coat taken from healthy donors in the Blood Bank of Łódź, Poland. Using flow cytometry we have evaluated necrotic, apoptotic and morphological changes in PBMCs incubated with catechol. Moreover, we have estimated changes in reactive oxygen species (ROS) formation, protein carbonylation and lipid peroxidation in the cells studied. The compound studied provoked necrotic (from 250μg/mL), apoptotic (from 100μg/mL), and morphological changes (from 250μg/mL) in the incubated cells. We have also noted that catechol decreased H2DCF oxidation at 2 and 10μg/mL but at higher concentrations of 250 and 500μg/mL it caused statistically significant increase in the oxidation of this probe. We also observed an increase in lipid peroxidation (from 250μg/mL) and protein carbonylation (from 50μg/mL) of PBMCs. It was observed that catechol only at high concentrations was capable of inducing changes in PBMCs. The obtained results clearly showed that catechol may induce change in PBMCs only in the caste of poisoning with this compound.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Michałowicz J, Sicińska P. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro). Toxicol Lett 2009; 191:246-52. [DOI: 10.1016/j.toxlet.2009.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/27/2022]
|
7
|
Ross D, Zhou H. Relationships between metabolic and non-metabolic susceptibility factors in benzene toxicity. Chem Biol Interact 2009; 184:222-8. [PMID: 19941840 DOI: 10.1016/j.cbi.2009.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 01/26/2023]
Abstract
Reactive metabolites formed from benzene include benzene oxide, trans,trans muconaldehyde, quinones, thiol adducts, phenolic metabolites and oxygen radicals. Susceptibility to the toxic effects of benzene has been suggested to occur partly because of polymorphisms in enzymes involved in benzene metabolism which include cytochrome P450 2E1, epoxide hydrolases, myeloperoxidase, glutathione-S-transferases and quinone reductases. However, susceptibility factors not directly linked to benzene metabolism have also been associated with its toxicity and include p53, proteins involved in DNA repair, genomic stability and expression of cytokines and/or cell adhesion molecules. In this work, we examine potential relationships between metabolic and non-metabolic susceptibility factors using the enzyme NAD(P)H:quinone oxidoreductase (NQO1) as an example. NQO1 may also impact pathways in addition to metabolism of quinones due to protein-protein interactions or other mechanisms related to NQO1 activity. NQO1 has been implicated in stabilizing p53 and in maintaining microtubule integrity. Inhibition or knockdown of NQO1 in bone marrow endothelial cells has been found to lead to deficiencies of E-selectin, ICAM-1 and VCAM-1 adhesion molecule expression after TNFalpha stimulation. These examples illustrate how the metabolic susceptibility factor NQO1 may influence non-metabolic susceptibility pathways for benzene toxicity.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, School of Pharmacy and Cancer Center, University of Colorado Anschutz Medical Campus, C238-P15 Research 2, 12700 East 19th Avenue, Aurora, CO 80045, United States.
| | | |
Collapse
|
8
|
Antimicrobial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus. Mar Drugs 2008; 6:1-11. [PMID: 18648669 PMCID: PMC2474953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/14/2008] [Indexed: 11/04/2022] Open
Abstract
Aqueous extracts and organic solvent extracts of isolated marine cyanobacteria strains were tested for antimicrobial activity against a fungus, Gram-positive and Gram-negative bacteria and for cytotoxic activity against primary rat hepatocytes and HL-60 cells. Antimicrobial activity was based on the agar diffusion assay. Cytotoxic activity was measured by apoptotic cell death scored by cell surface evaluation and nuclear morphology. A high percentage of apoptotic cells were observed for HL-60 cells when treated with cyanobacterial organic extracts. Slight apoptotic effects were observed in primary rat hepatocytes when exposed to aqueous cyanobacterial extracts. Nine cyanobacteria strains were found to have antibiotic activity against two Gram-positive bacteria, Clavibacter michiganensis subsp. insidiosum and Cellulomonas uda. No inhibitory effects were found against the fungus Candida albicans and Gram-negative bacteria. Marine Synechocystis and Synechococcus extracts induce apoptosis in eukaryotic cells and cause inhibition of Gram-positive bacteria. The different activity in different extracts suggests different compounds with different polarities.
Collapse
|
9
|
Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. Mar Drugs 2008. [DOI: 10.3390/md6010001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Ross D. Functions and distribution of NQO1 in human bone marrow: Potential clues to benzene toxicity. Chem Biol Interact 2005; 153-154:137-46. [PMID: 15935810 DOI: 10.1016/j.cbi.2005.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NADPH:quinone oxidoreductase 1 (NQO1) may perform multiple functions within the cell. It is known to detoxify benzene-derived quinones and generate antioxidant forms of ubiquinone and Vitamin E. Recently suggested roles for NQO1 which may have relevance for mechanisms underlying benzene toxicity include modulation of cellular redox balance, direct scavenging of superoxide, stabilization of p53 and stabilization of microtubules. The NQO1*2 polymorphism is a single nucleotide polymorphism, a C to T change at position 609 of the NQO1 cDNA coding for a proline to serine change at position 187 of the amino acid structure of the protein. The mutant NQO1*2 protein is rapidly degraded by the ubiquitin proteasomal system resulting in a lack of NQO1 protein in individuals carrying the NQO1*2/*2 genotype. The NQO1*2 polymorphism predisposes to benzene toxicity and to various forms of leukemias. NQO1-knockout animals demonstrate myeloid hyperplasia and increased benzene-induced hematotoxicity. NQO1 is not present in freshly isolated human bone marrow hematopoietic cells but can be induced by benzene metabolites. Increases in NQO1 were not observed in NQO1*2/*2 hematopoietic cells, presumably because of the instability of the NQO1*2 protein, suggesting that cells with this genotype would not benefit from any protective effects of NQO1. NQO1 is present in human bone marrow stroma and particularly in endothelial cells. Studies of the functions and distribution of NQO1 in human bone marrow may provide clues to mechanisms underlying benzene toxicity.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Campus Box C238, Denver, CO 80262, USA.
| |
Collapse
|