1
|
Zelko IN, Hussain A, Malovichko MV, Wickramasinghe N, Srivastava S. Benzene metabolites increase vascular permeability by activating heat shock proteins and Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626801. [PMID: 39677674 PMCID: PMC11643022 DOI: 10.1101/2024.12.04.626801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Benzene is a ubiquitous environmental and occupational pollutant abundant in household products, petrochemicals, and cigarette smoke. It is also a well-known carcinogen and hematopoietic toxin. Population-based studies indicate an increased risk of heart failure in subjects exposed to inhaled benzene, which coincides with the infiltration of immune cells into the myocardium. However, the mechanisms of benzene-induced cardiovascular disease remain unknown. Our data suggests that benzene metabolites trans,trans-muconaldehyde (MA), and hydroquinone (HQ) propagate endothelial activation and apoptosis analyzed by endothelial-specific microparticles in C57BL/6J mice plasma. Subcutaneous injections of MA and HQ increased vascular permeability by 1.54 fold and 1.27 fold correspondingly. In addition, the exposure of primary cardiac microvascular endothelial cells to MA increased vascular permeability detected by transendothelial monolayer resistance and by fluorescently labeled dextrans diffusion. The bulk RNA sequencing of endothelial cells exposed to MA for 2, 6, and 24 hours showed MA-dependent upregulation of heat shock-related pathways at 2 and 6 hours, dysregulation of GTPases at 6 hours, and altered cytoskeleton organization at 24 hours of exposure. We found that the HSP70 protein induced by MA in endothelial cells is colocalized with F-actin foci. HSP70 inhibitor 17AAG and HSP90 inhibitor JG98 attenuated MA-induced endothelial permeability, while HSP activator TRC enhanced endothelial leakage. Moreover, MA induced Rac1 GTPase activity, while Rho GTPase inhibitor Y-27632 attenuated MA-induced endothelial permeability. We showed that benzene metabolites compromised the endothelial barrier by altering HSP- and GTPase-related signaling pathways.
Collapse
Affiliation(s)
- Igor N. Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Ahtesham Hussain
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V. Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Nalinie Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
2
|
Han L, Wang J, Zhang L, Jing J, Zhang W, Liu Z, Gao A. The role of N 6-methyladenosine modification in benzene-induced testicular damage and the protective effect of melatonin. CHEMOSPHERE 2023; 319:138035. [PMID: 36736484 DOI: 10.1016/j.chemosphere.2023.138035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Benzene is a universal ambient pollutant. Population-based studies have shown that benzene exposure affects male fertility. However, the mechanism of benzene-induced reproductive toxicity is unknown. Here, we established a dynamic inhalation model and exposed C57BL/6J mice to 0, 10, and 50 ppm benzene (6 h/day, 6 days/week, 7 weeks). Our study revealed that benzene exposure caused testicular injury, including structural damage to spermatogenic tubules, reduced semen quality, and decreased testosterone levels. In addition, the decrease in the global level of N6-Methyladenosine (m6A) and the change of m6A important regulatory enzymes in mice testes suggested that m6A was involved in the benzene-induced testicular injury. Further genome-wide m6A methylation analysis showed that 1469 differential m6A peaks were present in the testes of control and benzene groups, indicating that benzene exposure modulated m6A methylation in testes. Furthermore, the comprehensive analysis of m6A-sequencing and transcriptome revealed that hypermethylated Rara and its consequent reduced expression impaired the sperm production process. In particular, melatonin alleviated benzene-induced testicular injury by modulating m6A-related genes. Overall, our research provides a new idea and fundamental knowledge into the possible mechanisms of m6A modifications in benzene-induced testicular impairment, as well as a new experimental basis for benzene-induced male fertility therapy.
Collapse
Affiliation(s)
- Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
3
|
Sun Q, Wang B, Xu S, Cong X, Pu Y, Zhang J. Research development and trends of benzene-induced leukemia from 1990 to 2019-A bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9626-9639. [PMID: 34997503 DOI: 10.1007/s11356-021-17432-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Benzene is an occupational and environmental toxicant, causing hematopoietic damage. Our study is aimed to extract the trend of benzene-induced leukemia (BIL) and qualitatively and quantitatively estimate research on it. Publications on BIL were identified from the Web of Science Core Collection (WoSCC). Microsoft Excel 2019 (Redmond, WA) and The CiteSpace 5.6.R5 software (Drexel University, Philadelphia, PA) were used to analyze the publication outcomes, countries, institutions, authors, keywords, and research frontiers. The overall 1152 publications were collected from 1990 to 2019 until November 6, 2020. Environ Health Persp had the highest number of articles published. The USA were the top country in terms of BIL. The Smith MT, Yin SN, Lan Q, and Hayes RB are both listed in the top 10 of co-cited authors, high contribution authors, and the authors of co-cited references. High IF articles account for a considerable proportion, among all the publications. Chinese institutions engaged in BIL and contributed a large part of articles. Exposure population, exposure dose, and exposure risk are the research hotspots in this field. The risk of benzene exposure on childhood leukemia is at issue, and the studies on attributable risk of benzene-induced leukemia are few. More early, sensitive, and specific epigenetic biomarkers of benzolism may be the leading research fields of benzene-induced leukemia in the next few years.
Collapse
Affiliation(s)
- Qianyu Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Shouxiang Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Malovichko MV, Abplanalp WT, McFall SA, Taylor BS, Wickramasinghe NS, Sithu ID, Zelko IN, Uchida S, Hill BG, Sutaria SR, Nantz MH, Bhatnagar A, Conklin DJ, O'Toole TE, Srivastava S. Subclinical markers of cardiovascular toxicity of benzene inhalation in mice. Toxicol Appl Pharmacol 2021; 431:115742. [PMID: 34624356 PMCID: PMC8647905 DOI: 10.1016/j.taap.2021.115742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity. We examined the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation significantly increased the biomarkers of endothelial activation and injury including endothelial microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, lung endothelial microparticles, and activated lung and endothelial microparticles while having no effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we exposed human aortic endothelial cells to benzene metabolites. Of the metabolites tested, trans,trans-mucondialdehyde (10 μM, 18h) was the most toxic. It induced caspases-3, -7 and -9 (intrinsic pathway) activation and enhanced microparticle formation by 2.4-fold. Levels of platelet-leukocyte aggregates, platelet macroparticles, and a proportion of CD4+ and CD8+ T-cells were also significantly elevated in the blood of the benzene-exposed mice. We also found that benzene exposure increased the transcription of genes associated with endothelial cell and platelet activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the lungs and the liver. Together, these data suggest that benzene exposure induces endothelial injury, enhances platelet activation and inflammatory processes; and circulatory levels of endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are excellent biomarkers of cardiovascular toxicity of benzene.
Collapse
Affiliation(s)
- Marina V Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Wesley T Abplanalp
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Samantha A McFall
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Breandon S Taylor
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Nalinie S Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Israel D Sithu
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Igor N Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Shizuka Uchida
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Bradford G Hill
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Saurin R Sutaria
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Chemistry, University of Louisville, Louisville, KY 40202, United States of America
| | - Michael H Nantz
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Chemistry, University of Louisville, Louisville, KY 40202, United States of America
| | - Aruni Bhatnagar
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Daniel J Conklin
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Timothy E O'Toole
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| |
Collapse
|
5
|
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol Sci 2021; 185:64-76. [PMID: 34718823 DOI: 10.1093/toxsci/kfab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Igor N Zelko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sujith Dassanayaka
- Diabetes and Obesity Center.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V Malovichko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Caitlin M Howard
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Lauren F Garrett
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Kenneth R Brittian
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Daniel J Conklin
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Steven P Jones
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
6
|
Abplanalp WT, Wickramasinghe NS, Sithu SD, Conklin DJ, Xie Z, Bhatnagar A, Srivastava S, O'Toole TE. Benzene Exposure Induces Insulin Resistance in Mice. Toxicol Sci 2020; 167:426-437. [PMID: 30346588 DOI: 10.1093/toxsci/kfy252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benzene is a ubiquitous pollutant associated with hematotoxicity but its metabolic effects are unknown. We sought to determine if and how exposure to volatile benzene impacted glucose handling. We exposed wild type C57BL/6 mice to volatile benzene (50 ppm × 6 h/day) or HEPA-filtered air for 2 or 6 weeks and measured indices of oxidative stress, inflammation, and insulin signaling. Compared with air controls, we found that mice inhaling benzene demonstrated increased plasma glucose (p = .05), insulin (p = .03), and HOMA-IR (p = .05), establishing a state of insulin and glucose intolerance. Moreover, insulin-stimulated Akt phosphorylation was diminished in the liver (p = .001) and skeletal muscle (p = .001) of benzene-exposed mice, accompanied by increases in oxidative stress and Nf-κb phosphorylation (p = .025). Benzene-exposed mice also demonstrated elevated levels of Mip1-α transcripts and Socs1 (p = .001), but lower levels of Irs-2 tyrosine phosphorylation (p = .0001). Treatment with the superoxide dismutase mimetic, TEMPOL, reversed benzene-induced effects on oxidative stress, Nf-κb phosphorylation, Socs1 expression, Irs-2 tyrosine phosphorylation, and systemic glucose intolerance. These findings suggest that exposure to benzene induces insulin resistance and that this may be a sensitive indicator of inhaled benzene toxicity. Persistent ambient benzene exposure may be a heretofore unrecognized contributor to the global human epidemics of diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292
| | - Nalinie S Wickramasinghe
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Srinivas D Sithu
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Daniel J Conklin
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Zhengzhi Xie
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Sanjay Srivastava
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| | - Timothy E O'Toole
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40292.,Envirome Institute, University of Louisville, Louisville, Kentucky 40292.,University of Louisville Superfund Research Center, Louisville, Kentucky 40202
| |
Collapse
|
7
|
Gross SA, Paustenbach DJ. Shanghai Health Study (2001-2009): What was learned about benzene health effects? Crit Rev Toxicol 2017; 48:217-251. [PMID: 29243948 DOI: 10.1080/10408444.2017.1401581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Shanghai Health Study (SHS) was a large epidemiology study conducted as a joint effort between the University of Colorado and Fudan University in Shanghai, China. The study was funded by members of the American Petroleum Institute between 2001 and 2009 and was designed to evaluate the human health effects associated with benzene exposure. Two arms of the SHS included: an occupational-based molecular epidemiology study and several hospital-based case control studies. Consistent with historical literature, following sufficient exposure to relatively high airborne concentrations and years of exposure, the SHS concluded that exposure to benzene resulted in an increased risk of various blood and bone marrow abnormalities such as benzene poisoning, aplastic anemia (AA), myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). Non-Hodgkin lymphoma (NHL) was not significantly increased for the exposures examined in this study. Perhaps the most important contribution of the SHS was furthering our understanding of the mechanism of benzene-induced bone marrow toxicity and the importance of identifying the proper subset of MDS relevant to benzene. Investigators found that benzene-exposed workers exhibited bone marrow morphology consistent with an immune-mediated inflammatory response. Contrary to historic reports, no consistent pattern of cytogenetic abnormalities was identified in these workers. Taken together, findings from SHS provided evidence that the mechanism for benzene-induced bone marrow damage was not initiated by chromosome abnormalities. Instead, chronic inflammation, followed by an immune-mediated response, is likely to play a more significant role in benzene-induced disease initiation and progression than previously thought.
Collapse
|
8
|
Chemical composition of surgical smoke formed in the abdominal cavity during laparoscopic cholecystectomy--assessment of the risk to the patient. Int J Occup Med Environ Health 2014; 27:314-25. [PMID: 24715421 DOI: 10.2478/s13382-014-0250-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess the exposure of patients to organic substances produced and identified in surgical smoke formed in the abdominal cavity during laparoscopic cholecystectomy. MATERIAL AND METHODS Identification of these substances in surgical smoke was performed by the use of gas chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM). The selected biomarkers of exposure to surgical smoke included benzene, toluene, ethylbenzene and xylene. Their concentrations in the urine samples collected from each patient before and after the surgery were determined by SPME-GC/MS. RESULTS Qualitative analysis of the smoke produced during laparoscopic procedures revealed the presence of a wide variety of potentially toxic chemicals such as benzene, toluene, xylene, dioxins and other substances. The average concentrations of benzene and toluene in the urine of the patients who underwent laparoscopic cholecystectomy, in contrast to the other determined compounds, were significantly higher after the surgery than before it, which indicates that they were absorbed. CONCLUSIONS The source of the compounds produced in the abdominal cavity during the surgery is tissue pyrolysis in the presence of carbon dioxide atmosphere. All patients undergoing laparoscopic procedures are at risk of absorbing and excreting smoke by-products. Exposure of the patient to emerging chemical compounds is usually a one-time and short-term incident, yet concentrations of benzene and toluene found in the urine were significantly higher after the surgery than before it.
Collapse
|
9
|
Bahadar H, Mostafalou S, Abdollahi M. Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol Appl Pharmacol 2014; 276:83-94. [PMID: 24589379 DOI: 10.1016/j.taap.2014.02.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/02/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. METHODOLOGY A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of "benzene toxic health effects", "environmental volatile organic compounds", "diabetes mellitus and environmental pollutants", "breast cancer and environmental pollution", "prevalence of lung cancer", and "diabetes prevalence". More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. RESULTS Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. CONCLUSION Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up.
Collapse
Affiliation(s)
- Haji Bahadar
- International Campus, Tehran University of Medical Sciences, Iran; Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Sara Mostafalou
- Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
10
|
Conesa-Zamora P, Ruiz-Cosano J, Torres-Moreno D, Español I, Gutiérrez-Meca MD, Trujillo-Santos J, Pérez-Ceballos E, González-Conejero R, Corral J, Vicente V, Pérez-Guillermo M. Polymorphisms in xenobiotic metabolizing genes (EPHX1, NQO1 and PON1) in lymphoma susceptibility: a case control study. BMC Cancer 2013; 13:228. [PMID: 23651475 PMCID: PMC3649938 DOI: 10.1186/1471-2407-13-228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/01/2013] [Indexed: 11/14/2022] Open
Abstract
Background The interplay between genetic susceptibility and carcinogenic exposure is important in the development of haematopoietic malignancies. EPHX1, NQO1 and PON1 are three genes encoding proteins directly involved in the detoxification of potential carcinogens. Methods We have studied the prevalence of three functional polymorphisms affecting these genes rs1051740 EPHX1, rs1800566 NQO1 and rs662 PON1 in 215 patients with lymphoma and 214 healthy controls. Results Genotype frequencies for EPHX and NQO1 polymorphisms did not show any correlation with disease. In contrast, the GG genotype in the PON1 polymorphism was found to be strongly associated with the disease (15.3% vs. 4.7%; OR = 3.7 CI (95%): 1.8-7.7; p < 0.001). According to the pathological diagnosis this association was related to follicular (p = 0.004) and diffuse large B-cell (p = 0.016) lymphomas. Conclusions Despite the fact that further confirmation is needed, this study shows that the PON1 GG genotype in rs662 polymorphism could be a risk factor for B-cell lymphomas.
Collapse
Affiliation(s)
- Pablo Conesa-Zamora
- Pathology Department, Santa Lucía General University Hospital (HGUSL), 30202, Cartagena, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruiz-Cosano J, Conesa-Zamora P, González-Conejero R, Pérez-Ceballos E, Martínez-Francés A, Vicente V, Pérez-Guillermo M. Role of GSTT1 and M1 null genotypes as risk factors for B-cell lymphoma: Influence of geographical factors and occupational exposure. Mol Carcinog 2011; 51:508-13. [DOI: 10.1002/mc.20814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 01/04/2023]
|
12
|
Vlaanderen J, Lan Q, Kromhout H, Rothman N, Vermeulen R. Occupational benzene exposure and the risk of lymphoma subtypes: a meta-analysis of cohort studies incorporating three study quality dimensions. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:159-67. [PMID: 20880796 PMCID: PMC3040601 DOI: 10.1289/ehp.1002318] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/29/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND The use of occupational cohort studies to assess the association of benzene and lymphoma is complicated by problems with exposure misclassification, outcome classification, and low statistical power. OBJECTIVE We performed meta-analyses of occupational cohort studies for five different lymphoma categories: Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), multiple myeloma (MM), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). DATA EXTRACTION We assessed three study quality dimensions to evaluate the impact of study quality variations on meta-relative risks (mRRs): stratification by the year of start of follow-up, stratification by the strength of the reported acute myelogenous leukemia association, and stratification by the quality of benzene exposure assessment. DATA SYNTHESIS mRRs for MM, ALL, and CLL increased with increasing study quality, regardless of the study quality dimension. mRRs for NHL also increased with increasing study quality, although this effect was less pronounced. We observed no association between occupational benzene exposure and HL. CONCLUSIONS Our meta-analysis provides support for an association between occupational benzene exposure and risk of MM, ALL, and CLL. The evidence for an association with NHL is less clear, but this is likely complicated by the etiologic heterogeneity of this group of diseases. Further consideration of the association between benzene and NHL will require delineation of risks by NHL subtype.
Collapse
Affiliation(s)
- Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- Address correspondence to R. Vermeulen, Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Jenalaan 18d, 3584 CK, Utrecht, the Netherlands. Telephone: 31-30-2539448. Fax: 31-30-2539499. E-mail:
| |
Collapse
|
13
|
Risk factors of thyroid tumors: role of environmental and occupational exposures to chemical pollutants. Rev Epidemiol Sante Publique 2010; 58:359-67. [PMID: 20980113 DOI: 10.1016/j.respe.2010.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/10/2010] [Accepted: 05/17/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The rising incidence of thyroid cancer observed during the last few decades in most western countries is explained in large part by increasing numbers of diagnoses due to changes in medical screening practices. However, beside radiation exposure, exposure to environmental chemicals may also play a role in thyroid cancer etiology and in the increased incidence. This paper presents the main chemicals suspected to induce thyroid tumorigenesis, and epidemiological results on the association between chemical exposure and thyroid tumors. METHODS We reviewed experimental studies to identify the main chemicals possibly involved in thyroid tumorigenesis. We also reviewed the main epidemiological studies investigating the association between environmental chemical exposure and thyroid neoplasm in humans. RESULTS Environmentally abundant chemicals may disrupt thyroid function and/or play a role in tumorigenesis through a variety of mechanisms. Epidemiological results provide insufficient evidence of a causal link between exposure to environmental chemicals and thyroid tumors, but raise the hypothesis of an increased risk of thyroid neoplasm for workers in the leather, wood, and paper industries, and those exposed to certain solvents and pesticides. CONCLUSION This paper highlights the need for large epidemiological studies evaluating the exposure to various groups of environmental chemicals and its impact on the thyroid gland.
Collapse
|
14
|
Weed DL. Meta-Analysis and Causal Inference: A Case Study of Benzene and Non-Hodgkin Lymphoma. Ann Epidemiol 2010; 20:347-55. [DOI: 10.1016/j.annepidem.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 02/01/2010] [Accepted: 02/05/2010] [Indexed: 12/20/2022]
|
15
|
A hospital-based case-control study of non-Hodgkin lymphoid neoplasms in Shanghai: analysis of personal characteristics, lifestyle, and environmental risk factors by subtypes of the WHO classification. J Occup Environ Med 2010; 52:39-53. [PMID: 20042883 DOI: 10.1097/jom.0b013e3181c5c399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate potential risk factors (personal characteristics, lifestyle, and environmental factors) of non-Hodgkin lymphoid neoplasms (NHLN), including lymphomas and lymphocytic leukemia, according to the World Health Organization classification. MATERIALS AND METHODS The investigation was a hospital-based case-control study consisting of 649 confirmed NHLN cases and 1298 individually gender-age-matched patient controls at 25 hospitals in Shanghai. A 17-page questionnaire was used to obtain information on demographics, medical history, family history, lifestyle risk factors, employment history, residential history, and occupational and non-occupational exposures. Risk estimates were calculated using conditional logistic regression models. RESULTS Potential risk factors of NHLN (all subtypes combined) or individual subtypes included low-level education, home or workplace renovation, living on a farm, planting crops, and raising livestock or animals. Some risk factors applied to all or most subtypes (such as lowlevel education, living on a farm, and raising livestock or animals), whereas others did not (such as the use of traditional Chinese medicines, which was associated with a reduced risk). Blood transfusions, hair dyes, or living near high-voltage power lines were not associated with an increased risk. CONCLUSIONS The study identified a number of risk factors for NHLN overall and specific subtypes. Some risk factors were subtype-specific. The difference in risk by subtype underscores the etiologic commonality and heterogeneity of NHLN subtypes.
Collapse
|
16
|
A hospital-based case–control study of non-Hodgkin lymphoid neoplasms in Shanghai: Analysis of environmental and occupational risk factors by subtypes of the WHO classification. Chem Biol Interact 2010; 184:129-46. [DOI: 10.1016/j.cbi.2009.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 01/08/2023]
|
17
|
A hospital-based case-control study of acute myeloid leukemia in Shanghai: Analysis of environmental and occupational risk factors by subtypes of the WHO classification. Chem Biol Interact 2010; 184:112-28. [DOI: 10.1016/j.cbi.2009.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/21/2022]
|
18
|
Exposure assessment for case–control and case–case epidemiology studies based in Shanghai China: Summary of methods and results. Chem Biol Interact 2010; 184:286-9. [DOI: 10.1016/j.cbi.2009.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Benzene Exposure and Non-Hodgkin Lymphoma: A Meta-Analysis of Epidemiologic Studies. J Occup Environ Med 2010; 52:169-89. [DOI: 10.1097/jom.0b013e3181cc9cf0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kane EV, Newton R. Benzene and the risk of non-Hodgkin lymphoma: A review and meta-analysis of the literature. Cancer Epidemiol 2010; 34:7-12. [DOI: 10.1016/j.canep.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
21
|
Atkinson TJ. A review of the role of benzene metabolites and mechanisms in malignant transformation: summative evidence for a lack of research in nonmyelogenous cancer types. Int J Hyg Environ Health 2008; 212:1-10. [PMID: 18178523 DOI: 10.1016/j.ijheh.2007.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The aromatic hydrocarbon benzene is a well-recognised haematotoxin and carcinogen associated with malignancy in occupational environments. Primary benzene metabolites phenol, catechol, and hydroquinone are implicated in the progression from cytotoxicity to carcinogenicity, and malignant transformation in myelogenous cell lineage is hypothesised to encompass a complex multistep process involving gene mutations in cell signalling and mitosis, oncogene activation, downregulated immune-mediated tumour surveillance, anti-apoptotic activities, and genetic susceptibility. Several mechanisms of carcinogenicity are proposed but none are accepted widely as causative. Involvement of covariables such as duration and frequency of benzene exposure, metabolite concentration, and degree of biological interactions provides a theoretical framework for a multiple mechanistic model to explain cytotoxic-malignant transformation. Despite significant research in myeloid leukaemias, limited biological and epidemiological studies on benzene and its metabolites in nonhaematopoietic malignancies suggests more research is needed to determine its role in contributing to other cancer types.
Collapse
|