1
|
Dingová D, Kučera M, Hodbod T, Fischmeister R, Krejci E, Hrabovská A. Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function. Am J Physiol Heart Circ Physiol 2025; 328:H526-H542. [PMID: 39836467 DOI: 10.1152/ajpheart.00672.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Cholinesterase (ChE) inhibitors are under consideration for use in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions. A battery of biochemical, microscopic, and physiological experiments was used to analyze two known ChE, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), in hearts of mutant mice lacking different ChE molecular forms. Overall, AChE activity was exceeded by BChE, while it was localized mainly in the atria and the ventricular epicardium of the heart base. AChE was anchored by collagen Q (ColQ) in the basal lamina or by PRiMA at the plasma membrane and co-localized with the neuronal marker TUJ1. In the absence of anchored AChE, the heart rate was unresponsive to a ChE inhibitor. BChE, the major ChE in the heart, was detected predominantly in ventricles, presumably as a precursor (soluble monomers/dimers). Mice lacking BChE were more sensitive to a ChE inhibitor. Nevertheless, the overall impact on heart physiology was subtle, showing mainly a role in cholinergic antagonism to the positive inotropic effect of β-adrenergic stimulation. Our results help to unravel the mechanisms of ChE in cardiovascular pathologies and provide a foundation to facilitate the design of novel, more effective pharmacotherapies, which may reduce morbidity and mortality of patients with various heart diseases.NEW & NOTEWORTHY Inhibition of cholinesterases has therapeutic potential in cardiovascular pathologies. Both acetylcholinesterase and butyrylcholinesterase are present in the heart. Each cholinesterase has distinct localization patterns in the heart and functions in cardiac physiology. Selective inhibition of acetylcholinesterase or butyrylcholinesterase may be used to alter specific cardiac functions. Butyrylcholinesterase polymorphism may have an impact on the outcome of the cholinesterase inhibitor treatment.
Collapse
Affiliation(s)
- Dominika Dingová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Matej Kučera
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- UMR-S 1180, Inserm, Université Paris-Saclay, Orsay, France
| | - Tibor Hodbod
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
| | | | - Eric Krejci
- Centre Borelli, CNRS, ENS Paris Saclay, Université Paris Cité, Paris, France
| | - Anna Hrabovská
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Campanari ML, García-Ayllón MS, Ciura S, Sáez-Valero J, Kabashi E. Neuromuscular Junction Impairment in Amyotrophic Lateral Sclerosis: Reassessing the Role of Acetylcholinesterase. Front Mol Neurosci 2016; 9:160. [PMID: 28082868 PMCID: PMC5187284 DOI: 10.3389/fnmol.2016.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a highly debilitating disease caused by progressive degeneration of motorneurons (MNs). Due to the wide variety of genes and mutations identified in ALS, a highly varied etiology could ultimately converge to produce similar clinical symptoms. A major hypothesis in ALS research is the “distal axonopathy” with pathological changes occurring at the neuromuscular junction (NMJ), at very early stages of the disease, prior to MNs degeneration and onset of clinical symptoms. The NMJ is a highly specialized cholinergic synapse, allowing signaling between muscle and nerve necessary for skeletal muscle function. This nerve-muscle contact is characterized by the clustering of the collagen-tailed form of acetylcholinesterase (ColQ-AChE), together with other components of the extracellular matrix (ECM) and specific key molecules in the NMJ formation. Interestingly, in addition to their cholinergic role AChE is thought to play several “non-classical” roles that do not require catalytic function, most prominent among these is the facilitation of neurite growth, NMJ formation and survival. In all this context, abnormalities of AChE content have been found in plasma of ALS patients, in which AChE changes may reflect the neuromuscular disruption. We review these findings and particularly the evidences of changes of AChE at neuromuscular synapse in the pre-symptomatic stages of ALS.
Collapse
Affiliation(s)
- Maria-Letizia Campanari
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'AlacantSpain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain; Unidad de Investigación, Hospital General Universitario de Elche, FISABIOElche, Spain
| | - Sorana Ciura
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'AlacantSpain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Edor Kabashi
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France
| |
Collapse
|
3
|
Lin HQ, Wang Y, Chan KL, Ip TM, Wan CCD. Differential regulation of lipid metabolism genes in the brain of acetylcholinesterase knockout mice. J Mol Neurosci 2014; 53:397-408. [PMID: 24573602 DOI: 10.1007/s12031-014-0267-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
Abstract
Mice deficient in acetylcholinesterase (AChE; EC3.1.1.7) exhibited significant phenotypical and biochemical changes when compared with wild-type littermates. They showed a delay of growth in weight and size, immature external ears, and persistent body tremor, and they circled when walking. The molecular mechanisms underlying these changes have not been investigated yet. Here, we studied the profiles of both the messenger RNA (mRNA) and protein expression in the brain of AChE-deficient mice using mRNA microarray, quantitative PCR, and two-dimensional difference gel electrophoresis (2D DIGE) coupled to protein identification with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Analysis of gene expression profile was conducted by DAVID ( http://david.abcc.ncifcrf.gov ) and Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com ). Previous results implicated that there is a close relationship between lipid metabolisms which were associated with central nervous system development. Here, we demonstrated that the mRNA expressions of brain specific fatty acid protein 7 (fabp-7) and phospholipase A2 group IV (pla2g4) were significantly downregulated in AChE-deficient mice. These results suggested that AChE may play a role in neurogenesis and neurodegeneration by specifically regulating lipid metabolism in the brain.
Collapse
Affiliation(s)
- Huang-Quan Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China,
| | | | | | | | | |
Collapse
|
4
|
Reassessment of the Role of the Central Cholinergic System. J Mol Neurosci 2013; 53:352-8. [DOI: 10.1007/s12031-013-0164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022]
|
5
|
Farar V, Mohr F, Legrand M, Lamotte d'Incamps B, Cendelin J, Leroy J, Abitbol M, Bernard V, Baud F, Fournet V, Houze P, Klein J, Plaud B, Tuma J, Zimmermann M, Ascher P, Hrabovska A, Myslivecek J, Krejci E. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem 2012; 122:1065-80. [PMID: 22747514 DOI: 10.1111/j.1471-4159.2012.07856.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.
Collapse
Affiliation(s)
- Vladimir Farar
- Centre d'Etude de la Sensorimotricité, Université Paris Descartes, CNRS UMR 8194, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Siow NL, Choi RCY, Xie HQ, Kong LW, Chu GKY, Chan GKL, Simon J, Barnard EA, Tsim KWK. ATP induces synaptic gene expressions in cortical neurons: transduction and transcription control via P2Y1 receptors. Mol Pharmacol 2010; 78:1059-71. [PMID: 20847060 PMCID: PMC2993467 DOI: 10.1124/mol.110.066506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/02/2023] Open
Abstract
Studies in vertebrate neuromuscular synapses have revealed previously that ATP, via P2Y receptors, plays a critical role in regulating postsynaptic gene expressions. An equivalent regulatory role of ATP and its P2Y receptors would not necessarily be expected for the very different situation of the brain synapses, but we provide evidence here for a brain version of that role. In cultured cortical neurons, the expression of P2Y(1) receptors increased sharply during neuronal differentiation. Those receptors were found mainly colocalized with the postsynaptic scaffold postsynaptic density protein 95 (PSD-95). This arises through a direct interaction of a PDZ domain of PSD-95 with the C-terminal PDZ-binding motif, D-T-S-L of the P2Y(1) receptor, confirmed by the full suppression of the colocalization upon mutation of two amino acids therein. This interaction is effective in recruiting PSD-95 to the membrane. Specific activation of P2Y(1) (G-protein-coupled) receptors induced the elevation of intracellular Ca(2+) and activation of a mitogen-activated protein kinase/Raf-1 signaling cascade. This led to distinct up-regulation of the genes encoding acetylcholinesterase (AChE(T) variant), choline acetyltransferase, and the N-methyl-d-aspartate receptor subunit NR2A. This was confirmed, in the example of AChE, to arise from P2Y(1)-dependent stimulation of a human ACHE gene promoter. That involved activation of the transcription factor Elk-1; mutagenesis of the ACHE promoter revealed that Elk-1 binding at its specific responsive elements in that promoter was induced by P2Y(1) receptor activation. The combined findings reveal that ATP, via its P2Y(1) receptor, can act trophically in brain neurons to regulate the gene expression of direct effectors of synaptic transmission.
Collapse
Affiliation(s)
- Nina L Siow
- Department of Biology and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Camp S, Zhang L, Krejci E, Dobbertin A, Bernard V, Girard E, Duysen EG, Lockridge O, De Jaco A, Taylor P. Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem Biol Interact 2010; 187:72-7. [PMID: 20153304 PMCID: PMC2912976 DOI: 10.1016/j.cbi.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/23/2022]
Abstract
The complete knockout of the acetylcholinesterase gene (AChE) in the mouse yielded a surprising phenotype that could not have been predicted from deletion of the cholinesterase genes in Drosophila, that of a living, but functionally compromised animal. The phenotype of this animal showed a sufficient compromise in motor function that precluded precise characterization of central and peripheral nervous functional deficits. Since AChE in mammals is encoded by a single gene with alternative splicing, additional understanding of gene expression might be garnered from selected deletions of the alternatively spliced exons. To this end, transgenic strains were generated that deleted exon 5, exon 6, and the combination of exons 5 and 6. Deletion of exon 6 reduces brain AChE by 93% and muscle AChE by 72%. Deletion of exon 5 eliminates AChE from red cells and the platelet surface. These strains, as well as knockout strains that selectively eliminate the AChE anchoring protein subunits PRiMA or ColQ (which bind to sequences specified by exon 6) enabled us to examine the role of the alternatively spliced exons responsible for the tissue disposition and function of the enzyme. In addition, a knockout mouse was made with a deletion in an upstream intron that had been identified in differentiating cultures of muscle cells to control AChE expression. We found that deletion of the intronic regulatory region in the mouse essentially eliminated AChE in muscle and surprisingly from the surface of platelets. The studies generated by these knockout mouse strains have yielded valuable insights into the function and localization of AChE in mammalian systems that cannot be approached in cell culture or in vitro.
Collapse
Affiliation(s)
- Shelley Camp
- Department Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences 0657, University of California-San Diego, La Jolla, CA 92093-0657, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Taylor P. From Split to Sibenik: the tortuous pathway in the cholinesterase field. Chem Biol Interact 2010; 187:3-9. [PMID: 20493179 PMCID: PMC3000743 DOI: 10.1016/j.cbi.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/03/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022]
Abstract
The interim between the first and tenth International Cholinesterase Meetings has seen remarkable advances associated with the applications of structural biology and recombinant DNA methodology to our field. The cloning of the cholinesterase genes led to the identification of a new super family of proteins, termed the alpha,beta-hydrolase fold; members of this family possess a four helix bundle capable of linking structural subunits to the functioning globular protein. Sequence comparisons and three-dimensional structural studies revealed unexpected cousins possessing this fold that, in turn, revealed three distinct functions for the alpha,beta-hydrolase proteins. These encompass: (1) a capacity for hydrolytic cleavage of a great variety of substrates, (2) a heterophilic adhesion function that results in trans-synaptic associations in linked neurons, (3) a chaperone function leading to stabilization of nascent protein and its trafficking to an extracellular or secretory storage location. The analysis and modification of structure may go beyond understanding mechanism, since it may be possible to convert the cholinesterases to efficient detoxifying agents of organophosphatases assisted by added oximes. Also, the study of the relationship between the alpha,beta-hydrolase fold proteins and their biosynthesis may yield means by which aberrant trafficking may be corrected, enhancing expression of mutant proteins. Those engaged in cholinesterase research should take great pride in our accomplishments punctuated by the series of ten meetings. The momentum established and initial studies with related proteins all hold great promise for the future.
Collapse
Affiliation(s)
- Palmer Taylor
- Department of Pharmacology 0636, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0650, USA.
| |
Collapse
|
9
|
Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 2010; 187:27-33. [DOI: 10.1016/j.cbi.2010.03.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
|
10
|
Dobbertin A, Hrabovska A, Dembele K, Camp S, Taylor P, Krejci E, Bernard V. Targeting of acetylcholinesterase in neurons in vivo: a dual processing function for the proline-rich membrane anchor subunit and the attachment domain on the catalytic subunit. J Neurosci 2009; 29:4519-30. [PMID: 19357277 PMCID: PMC2695489 DOI: 10.1523/jneurosci.3863-08.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/15/2009] [Accepted: 01/19/2009] [Indexed: 01/29/2023] Open
Abstract
Acetylcholinesterase (AChE) accumulates on axonal varicosities and is primarily found as tetramers associated with a proline-rich membrane anchor (PRiMA). PRiMA is a small transmembrane protein that efficiently transforms secreted AChE to an enzyme anchored on the outer cell surface. Surprisingly, in the striatum of the PRiMA knock-out mouse, despite a normal level of AChE mRNA, we find only 2-3% of wild type AChE activity, with the residual AChE localized in the endoplasmic reticulum, demonstrating that PRiMA in vivo is necessary for intracellular processing of AChE in neurons. Moreover, deletion of the retention signal of the AChE catalytic subunit in mice, which is the domain of interaction with PRiMA, does not restore AChE activity in the striatum, establishing that PRiMA is necessary to target and/or to stabilize nascent AChE in neurons. These unexpected findings open new avenues to modulating AChE activity and its distribution in CNS disorders.
Collapse
Affiliation(s)
| | - Anna Hrabovska
- Université Paris Descartes, 75006 Paris, France
- Inserm U686, Paris, France
| | - Korami Dembele
- Ecole Normale supérieure, Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 8544, 75006 Paris, France
| | - Shelley Camp
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0657, and
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0657, and
| | - Eric Krejci
- Université Paris Descartes, 75006 Paris, France
- Inserm U686, Paris, France
| | - Véronique Bernard
- Université Paris Descartes, 75006 Paris, France
- Inserm U686, Paris, France
| |
Collapse
|
11
|
Old and new questions about cholinesterases. Chem Biol Interact 2008; 175:30-44. [DOI: 10.1016/j.cbi.2008.04.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 01/21/2023]
|
12
|
Camp S, De Jaco A, Zhang L, Marquez M, De La Torre B, Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J Neurosci 2008; 28:2459-70. [PMID: 18322091 PMCID: PMC2692871 DOI: 10.1523/jneurosci.4600-07.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 01/09/2008] [Accepted: 01/17/2008] [Indexed: 11/21/2022] Open
Abstract
Mammalian acetylcholinesterase (AChE) gene expression is exquisitely regulated in target tissues and cells during differentiation. An intron located between the first and second exons governs a approximately 100-fold increase in AChE expression during myoblast to myotube differentiation in C2C12 cells. Regulation is confined to 255 bp of evolutionarily conserved sequence containing functional transcription factor consensus motifs that indirectly interact with the endogenous promoter. To examine control in vivo, this region was deleted by homologous recombination. The knock-out mouse is virtually devoid of AChE activity and its encoding mRNA in skeletal muscle, yet activities in brain and spinal cord innervating skeletal muscle are unaltered. The transcription factors MyoD and myocyte enhancer factor-2 appear to be responsible for muscle regulation. Selective control of AChE expression by this region is also found in hematopoietic lineages. Expression patterns in muscle and CNS neurons establish that virtually all AChE activity at the mammalian neuromuscular junction arises from skeletal muscle rather than from biosynthesis in the motoneuron cell body and axoplasmic transport.
Collapse
Affiliation(s)
- Shelley Camp
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Antonella De Jaco
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Limin Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Michael Marquez
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Brian De La Torre
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| |
Collapse
|