1
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
2
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
3
|
Hartman JH, Miller GP, Caro AA, Byrum SD, Orr LM, Mackintosh SG, Tackett AJ, MacMillan-Crow LA, Hallberg LM, Ameredes BT, Boysen G. 1,3-Butadiene-induced mitochondrial dysfunction is correlated with mitochondrial CYP2E1 activity in Collaborative Cross mice. Toxicology 2017; 378:114-124. [PMID: 28082109 DOI: 10.1016/j.tox.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1) metabolizes low molecular weight hydrophobic compounds, including 1,3-butadiene, which is converted by CYP2E1 to electrophilic epoxide metabolites that covalently modify cellular proteins and DNA. Previous CYP2E1 studies have mainly focused on the enzyme localized in the endoplasmic reticulum (erCYP2E1); however, active CYP2E1 has also been found in mitochondria (mtCYP2E1) and the distribution of CYP2E1 between organelles can influence an individual's response to exposure. Relatively few studies have focused on the contribution of mtCYP2E1 to activation of chemical toxicants. We hypothesized that CYP2E1 bioactivation of 1,3-butadiene within mitochondria adversely affects mitochondrial respiratory complexes I-IV. A population of Collaborative Cross mice was exposed to air (control) or 200ppm 1,3-butadiene. Subcellular fractions (mitochondria, DNA, and microsomes) were collected from frozen livers and CYP2E1 activity was measured in microsomes and mitochondria. Individual activities of mitochondrial respiratory complexes I-IV were measured using in vitro assays and purified mitochondrial fractions. In air- and 1,3-butadiene-exposed mouse samples, mtDNA copy numbers were assessed by RT-PCR, and mtDNA integrity was assessed through a PCR-based assay. No significant changes in mtDNA copy number or integrity were observed; however, there was a decrease in overall activity of mitochondrial respiratory complexes I, II, and IV after 1,3-butadiene exposure. Additionally, higher mtCYP2E1 (but not erCYP2E1) activity was correlated with decreased mitochondrial respiratory complex activity (in complexes I-IV) in the 1,3-butadiene-exposed (not control) animals. Together, these results represent the first in vivo link between mitochondrial CYP2E1 activity and mitochondrial toxicity.
Collapse
Affiliation(s)
- Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Andres A Caro
- Department of Chemistry, Hendrix College, Conway, AR, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lisa M Orr
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lee Ann MacMillan-Crow
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lance M Hallberg
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Environmental Health and Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Bill T Ameredes
- Sealy Center for Environmental Health and Medicine, University of Texas Medical Branch, Galveston, TX, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, and Department of Pharmacology and Toxicology, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
4
|
Zhang J, Ji L, Liu W. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation. Chem Res Toxicol 2015. [DOI: 10.1021/acs.chemrestox.5b00232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jing Zhang
- College of Environmental
and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Li Ji
- College of Environmental
and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Weiping Liu
- College of Environmental
and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
5
|
Pianalto KM, Hartman JH, Boysen G, Miller GP. Differences in butadiene adduct formation between rats and mice not due to selective inhibition of CYP2E1 by butadiene metabolites. Toxicol Lett 2013; 223:221-7. [PMID: 24021170 PMCID: PMC3831829 DOI: 10.1016/j.toxlet.2013.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
CYP2E1 metabolizes 1,3-butadiene (BD) into genotoxic and possibly carcinogenic 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EB-diol). The dose response of DNA and protein adducts derived from BD metabolites increases linearly at low BD exposures and then saturates at higher exposures in rats, but not mice. It was hypothesized that differences in adduct formation between rodents reflect more efficient BD oxidation in mice than rats. Herein, we assessed whether BD-derived metabolites selectively inhibit rat but not mouse CYP2E1 activity using B6C3F1 mouse and Fisher 344 rat liver microsomes. Basal CYP2E1 activities toward 4-nitrophenol were similar between rodents. Through IC50 studies, EB was the strongest inhibitor (IC50 54μM, mouse; 98μM, rat), BD-diol considerably weaker (IC50 1200μM, mouse; 1000μM, rat), and DEB inhibition nonexistent (IC50>25mM). Kinetic studies showed that in both species EB and BD-diol inhibited 4-nitrophenol oxidation through two-site mechanisms in which inhibition constants reflected trends observed in IC50 studies. None of the reactive epoxide metabolites inactivated CYP2E1 irreversibly. Thus, there was no selective inhibition or inactivation of rat CYP2E1 by BD metabolites relative to mouse Cyp2e1, and it can be inferred that CYP2E1 activity toward BD between rodent species would similarly not be impacted by the presence of BD metabolites. Inhibition of CYP2E1 by BD metabolites is then not responsible for the reported species difference in BD metabolism, formation of BD-derived DNA and protein adducts, mutagenicity and tumorigenesis.
Collapse
Affiliation(s)
- Kaila M. Pianalto
- Department of Chemistry and Biochemistry, University of Arkansas at Fayetteville, Fayetteville, AR 72701, USA
| | - Jessica H. Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzyme Microb Technol 2013; 52:370-6. [DOI: 10.1016/j.enzmictec.2013.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
7
|
Hartman JH, Boysen G, Miller GP. Cooperative effects for CYP2E1 differ between styrene and its metabolites. Xenobiotica 2013; 43:755-64. [PMID: 23327532 DOI: 10.3109/00498254.2012.760764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity. We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes. Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 µM) and lower affinity for the cooperative site (1100 µM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity. Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds.
Collapse
Affiliation(s)
- Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
8
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
9
|
Kirman CR, Albertini RJ, Sweeney LM, Gargas ML. 1,3-Butadiene: I. Review of metabolism and the implications to human health risk assessment. Crit Rev Toxicol 2010; 40 Suppl 1:1-11. [PMID: 20868266 DOI: 10.3109/10408444.2010.507181] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1,3-Butadiene (BD) is a multisite carcinogen in laboratory rodents following lifetime exposure, with mice demonstrating greater sensitivity than rats. In epidemiology studies of men in the styrene-butadiene rubber industry, leukemia mortality is associated with butadiene exposure, and this association is most pronounced for high-intensity BD exposures. Metabolism is an important determinant of BD carcinogenicity. BD is metabolized to several electrophilic intermediates, including epoxybutene (EB), diepoxybutane (DEB), and epoxybutane diol (EBD), which differ considerably in their genotoxic potency (DEB >> EB > EBD). Important species differences exist with respect to the formation of reactive metabolites and their subsequent detoxification, which underlie observed species differences in sensitivity to the carcinogenic effects of BD. The modes of action for human leukemia and for the observed solid tumors in rodents are both likely related to the genotoxic potencies for one or more of these metabolites. A number of factors related to metabolism can also contribute to nonlinearity in the dose-response relationship, including enzyme induction and inhibition, depletion of tissue glutathione, and saturation of oxidative metabolism. A quantitative risk assessment of BD needs to reflect these species differences and sources of nonlinearity if it is to reflect the current understanding of the disposition of BD.
Collapse
|
10
|
Georgieva NI, Boysen G, Bordeerat N, Walker VE, Swenberg JA. Exposure-response of 1,2:3,4-diepoxybutane-specific N-terminal valine adducts in mice and rats after inhalation exposure to 1,3-butadiene. Toxicol Sci 2010; 115:322-9. [PMID: 20176624 PMCID: PMC2871755 DOI: 10.1093/toxsci/kfq060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/17/2010] [Indexed: 12/25/2022] Open
Abstract
1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol. The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for extensive species differences in carcinogenicity. This study presents a comprehensive exposure-response for the formation of the DEB-specific N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) in mice and rats. Using nano-ultra high pressure liquid chromatography-tandem-mass spectrometry allowed analysis of pyr-Val in mice and rats exposed to BD as low as 0.1 and 0.5 ppm BD, respectively, and demonstrated significant differences in the amounts and exposure-response of pyr-Val formation. Mice formed 10- to 60-fold more pyr-Val compared to rats at similar exposures. The formation of pyr-Val increased with exposures, and the formation was most efficient with regard to formation per parts per million BD at low exposures. While formation at higher exposures appeared linear in mice, in rats formation saturated at exposures > or = 200 ppm for 10 days. In rats, amounts of pyr-Val were lower after 20 days than after 10 days of exposure, suggesting that the lifespan of rat erythrocytes may be shortened following exposure to BD. This research supports the hypothesis that the lower susceptibility of rats to BD-induced carcinogenesis results from greatly reduced formation of DEB following exposure to BD.
Collapse
Affiliation(s)
| | - Gunnar Boysen
- Department of Environmental Sciences and Engineering
- Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | - Vernon E. Walker
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
- Department of Pathology, University of Vermont, Burlington, Vermont 05405
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering
- Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
11
|
The formation and biological significance of N7-guanine adducts. Mutat Res 2009; 678:76-94. [PMID: 19465146 DOI: 10.1016/j.mrgentox.2009.05.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 11/24/2022]
Abstract
DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance of N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and study groups are small. Future investigations should involve human studies with larger numbers of individuals and analysis should include the corresponding ring opened FAPy derivatives.
Collapse
|
12
|
Cemeli E, Mirkova E, Chiuchiarelli G, Alexandrova E, Anderson D. Investigation on the mechanisms of genotoxicity of butadiene, styrene and their combination in human lymphocytes using the Comet assay. Mutat Res 2009; 664:69-76. [PMID: 19428383 DOI: 10.1016/j.mrfmmm.2009.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The toxicity of butadiene and styrene is exerted by their metabolites. Such metabolites have been extensively scrutinized at the in vitro level demonstrating evident genotoxic properties. In monitoring, a diverse range of outcomes has been produced. Additionally, epidemiological studies in rubber workers face difficulties of data interpretation due to the changeability and multiple exposures of the workers as well as to confounding factors inherent to the cohorts. Nevertheless, toxicity has been associated with a significant trend of increasing the risk of leukaemia in employees at the styrene-butadiene rubber industry. Thus, further effort must be made to distinguish the exposures to each chemical over time and to characterize their interrelationships. The present investigation focuses on the effects and mechanisms of damage of the mixture styrene-butadiene by examining its metabolites: styrene oxide (SO), butadiene monoepoxide (BME) and butadiene diepoxide (BDE) respectively. The in vitro Comet assay on frozen lymphocytes has been employed to ascertain the DNA damage patterns for the styrene-butadiene metabolites combined and on their own. Different patterns were observed for the mixture and each of its components. This study has also led to determining the mechanism of damage of the mixture and the compounds. With regard to the presence of reactive oxygen species (ROS), co-treatment with catalase does not modulate the genotoxicity of the mixture but it does modulate its components. The outcomes also indicate that the mixture induces cross-links and this is due to the influence of BDE in the mixture, being more evident as the concentration of BDE increases. An investigation on the sensitivity of lymphocytes from occupationally un/exposed subjects to in vitro exposure of the mixture and its components revealed that occupationally exposed subjects had a substantially higher background of DNA damage and a lower sensitivity to the metabolites of styrene, 1,3-butadiene and its mixture.
Collapse
Affiliation(s)
- Eduardo Cemeli
- University of Bradford, Division of Biomedical Sciences, Richmond Road, Bradford, West Yorkshire BD7 1DP, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Goggin M, Swenberg JA, Walker VE, Tretyakova N. Molecular dosimetry of 1,2,3,4-diepoxybutane-induced DNA-DNA cross-links in B6C3F1 mice and F344 rats exposed to 1,3-butadiene by inhalation. Cancer Res 2009; 69:2479-86. [PMID: 19276346 DOI: 10.1158/0008-5472.can-08-4152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen based on epidemiologic studies in occupationally exposed workers and animal studies in laboratory rats and mice. BD is metabolically activated to three epoxides that can react with nucleophilic sites in biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogen due to its high genotoxicity and mutagenicity attributed to its ability to form DNA-DNA cross-links. Our laboratory has developed quantitative high-performance liquid chromatography-muESI(+)-tandem mass spectrometry methods for two DEB-specific DNA-DNA cross-links, 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) and 1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol (N7G-N1A-BD). This report describes molecular dosimetry analysis of these adducts in tissues of B6C3F1 mice and F344 rats exposed to a range of BD concentrations (0-625 ppm). Much higher (4- to 10-fold) levels of DEB-DNA cross-links were observed in mice compared with rats exposed to the same BD concentrations. In both species, bis-N7G-BD levels were 1.5- to 4-fold higher in the liver than in other tissues examined. Interestingly, tissues of female animals exposed to BD contained higher concentrations of bis-N7G-BD adducts than tissues of male animals, which is in accord with previously reported differences in tumor incidence. The molecular dosimetry data presented herein suggest that species and gender differences observed in BD-induced cancer are directly related to differences in the extent of BD metabolism to DEB. Furthermore, a rat model of sensitivity to BD may be more appropriate than a mouse model for assessing human risk associated with BD exposure, because rats and humans seem to be similar with respect to DEB formation.
Collapse
Affiliation(s)
- Melissa Goggin
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
14
|
Boysen G, Georgieva NI, Upton PB, Walker VE, Swenberg JA. N-terminal globin adducts as biomarkers for formation of butadiene derived epoxides. Chem Biol Interact 2007; 166:84-92. [PMID: 17084829 DOI: 10.1016/j.cbi.2006.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 09/18/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022]
Abstract
The aim of this review is to summarize our recent data on butadiene (BD) derived hemoglobin adducts as biomarkers for the internal formation of the individual epoxides formed by butadiene (BD). It is well known that BD is oxidized by cytochrome P450s to several epoxides that form DNA and protein adducts. 1,2-Epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol) form N-(2-hydroxy-3-butenyl)-valine (HB-Val), N,N-(2,3-dihydroxy-1,4-butadiyl)-valine (pyr-Val) and N-(2,3,4-trihydroxybutyl)-valine (THB-Val) adducts, respectively. The analysis of HB-Val and THB-Val by the modified Edman degradation and GC-MS/MS has generated valuable insights into BD metabolism across species. In addition, a recently established method for the analysis of pyr-Val has been proven to be suitable for detection of pyr-Val in rodents exposed to BD as low as 1 ppm. These technologies have been applied to study a wide range of exposures to BD, EB, DEB, and 3-butene-1,2-diol as a precursor of EB-diol in male and female mice and rats. Altogether the data have shown that BD metabolism is species and concentration dependent, consistent with metabolism and carcinogenesis data. Mice form much more HB-Val and pyr-Val than rats, especially at low exposures. After 10 days of inhalation exposure to 3 ppm BD, mice formed 12.5-fold more pyr-Val than rats. In contrast, the amounts of THB-Val were similar in mice and rats exposed to 3 or 62.5 ppm BD. Furthermore, it appears that the formation of THB-Val is supralinear in mice and rats due to saturation of metabolic activation pathways. Gender differences in metabolism are less well established. One study with male and female rats exposed to 1000 ppm BD for 90 days demonstrated a 1.6-, 3.5- and 2.0-fold gender difference in formation of HB-Val, pyr-Val and THB-Val, respectively, with females being more efficient in epoxide formation. The analyses of BD derived protein adducts correlate well with the observed species and gender differences in BD-carcinogenesis and suggest that DEB may indeed be the most important metabolite.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Sciences and Engineering, The University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | | | | | |
Collapse
|
15
|
Himmelstein MW, Baan RA, Albertini RJ, Bird MG, Lewis RJ. International Symposium on the Evaluation of Butadiene and Chloroprene Health Risks. Chem Biol Interact 2007; 166:1-9. [PMID: 17336954 DOI: 10.1016/j.cbi.2007.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/29/2022]
Abstract
These proceedings represent nearly all the platform and poster presentations given during the International Symposium on Evaluation of Butadiene and Chloroprene Health Risks, held in Charleston, South Carolina, USA, on September 20-22, 2005. The Symposium was attended by 78 participants representing private industry (37), academia (21), government (11), not-for-profit organizations (5), and consulting (4). The program followed the format of previous symposia on butadiene, chloroprene, and isoprene in London UK (2000) and butadiene and isoprene in Blaine, Washington USA (1995). This format enabled the exchange of significant new scientific results and discussion of future research needs. Isoprene was not evaluated during the 2005 Symposium because of lack of new data. For background information, the reader is referred to the proceedings of the London 2000 meeting for a thorough historical perspective and overview of scientific and regulatory issues concerning butadiene, chloroprene, and isoprene [Chem.-Biol. Interact. (2001) 135-136:1-7]. The Symposium consisted of seven sessions: (1) Introduction and Opening Remarks, (2) Butadiene/styrene-butadiene rubber (SBR)--Process Overview, Exposure and Health Effects/Human Studies; (3) Chloroprene--Process Overview, Exposure and Health Effects/Human Studies; (4) Mode of Action/Key Events; (5) Risk Assessment; (6) Poster Presentations; and (7) Panel Discussion and Future Directions. The Symposium concluded with a discussion by all participants of issues that arose throughout the course of the Symposium. The Proceedings of the Symposium published in this Special Issue are organized according to the Sessions outlined above. The purpose of this foreword is to summarize the presentations and their key findings and recommend future research directions for each chemical.
Collapse
Affiliation(s)
- Matthew W Himmelstein
- DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, DE 19714, USA.
| | | | | | | | | |
Collapse
|