1
|
Dai H, Wang L, Li L, Huang Z, Ye L. Metallothionein 1: A New Spotlight on Inflammatory Diseases. Front Immunol 2021; 12:739918. [PMID: 34804020 PMCID: PMC8602684 DOI: 10.3389/fimmu.2021.739918] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
MT1 has been demonstrated to be an essential stress protein in maintaining physiological balance and regulating immune homeostasis. While the immunological involvement of MT1 in central nervous system disorders and cancer has been extensively investigated, mounting evidence suggests that MT1 has a broader role in inflammatory diseases and can shape innate and adaptive immunity. In this review, we will first summarize the biological features of MT1 and the regulators that influence MT1 expression, emphasizing metal, inflammation, and immunosuppressive factors. We will then focus on the immunoregulatory function of MT1 on diverse immune cells and the signaling pathways regulated by MT1. Finally, we will discuss recent advances in our knowledge of the biological role of MT1 in several inflammatory diseases to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanying Dai
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Lu Wang
- Respiratory Medicine Department, Shenzhen University General Hospital, Shenzhen, China
| | - Lingyun Li
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Tolerogenic Immunoregulation towards Salmonella Enteritidis Contributes to Colonization Persistence in Young Chicks. Infect Immun 2021; 89:e0073620. [PMID: 34031125 PMCID: PMC8281283 DOI: 10.1128/iai.00736-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Long-term survival and the persistence of bacteria in the host suggest either host unresponsiveness or induction of an immunological tolerant response to the pathogen. The role of the host immunological response to persistent colonization of Salmonella Enteritidis (SE) in chickens remains poorly understood. In the current study, we performed a cecal tonsil transcriptome analysis in a model of SE persistent infection in 2-week-old chickens to comprehensively examine the dynamics of host immunological responses in the chicken gastrointestinal tract. Our results revealed overall host tolerogenic adaptive immune regulation in a major gut-associated lymphoid tissue, the cecal tonsil, during SE infection. Specifically, we observed consistent downregulation of the metallothionein 4 gene at all four postinfection time points (3, 7, 14, and 21 days postinfection [dpi]), which suggested potential pathogen-associated manipulation of the host zinc regulation as well as a possible immune modulatory effect. Furthermore, delayed activation in the B cell receptor signaling pathway and failure to sustain its active state during the lag phase of infection were further supported by an insignificant production of both intestinal and circulatory antibodies. Tug-of-war for interleukin 2 (IL-2) regulation between effector T cells and regulatory T cells appears to have consequences for upregulation in the transducer of ERBB2 (TOB) pathway, a negative regulator of T cell proliferation. In conclusion, this work highlights the overall host tolerogenic immune response that promotes persistent colonization by SE in young layer chicks.
Collapse
|
3
|
Metallothioneins: Emerging Modulators in Immunity and Infection. Int J Mol Sci 2017; 18:ijms18102197. [PMID: 29065550 PMCID: PMC5666878 DOI: 10.3390/ijms18102197] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Metallothioneins (MTs) are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn) and copper (Cu), mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.
Collapse
|
4
|
Rice JM, Zweifach A, Lynes MA. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation. BMC Immunol 2016; 17:13. [PMID: 27251638 PMCID: PMC4890327 DOI: 10.1186/s12865-016-0151-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The ultra-low redox potential and zinc binding properties of the intracellular pool of mammalian metallothioneins (MT) suggest a role for MT in the transduction of redox signals into intracellular zinc signals. Increased expression of MT after exposure to heavy metals, oxidative stress, or inflammatory cytokines leads to an increased intracellular redox-mobilizable zinc pool that can affect downstream zinc-sensitive signaling pathways. CD4(+) T helper cells are poised to be influenced by MT transduced zinc signaling because they produce intracellular reactive oxygen species following activation through the T cell receptor and are sensitive to small changes in intracellular [Zn(2+)]. RESULTS MT expression and intracellular [Zn(2+)] are both increased during primary activation and expansion of naïve CD4(+) T cells into the Tr1 phenotype in vitro. When Tr1 cells from wildtype mice are compared with congenic mice lacking functional Mt1 and Mt2 genes, the expression of intracellular MT is associated with a greater increase in intracellular [Zn(2+)] immediately following exposure to reactive oxygen species or upon restimulation through the T cell receptor. The release of Zn(2+) from MT is associated with a greater increase in p38 MAPK activation following restimulation and decreased p38 MAPK activation in MT knockout Tr1 cells can be rescued by increasing intracellular [Zn(2+)]. Additionally, IL-10 secretion is increased in MT knockout Tr1 cells compared with wildtype controls and this increase is prevented when the intracellular [Zn(2+)] is increased experimentally. CONCLUSIONS Differences in zinc signaling associated with MT expression appear to be a result of preferential oxidation of MT and concomitant release of Zn(2+). Although zinc is released from many proteins following oxidation, release is greater when the cell contains an intracellular pool of MT. By expressing MT in response to certain environmental conditions, CD4(+) T cells are able to more efficiently release intracellular zinc and regulate signaling pathways following stimulation. The link between MT expression and increased zinc signaling following activation represents an important immunomodulatory mechanism of MT and illuminates the complex role MT plays in shaping immune responses.
Collapse
Affiliation(s)
- James M Rice
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA. .,Present address: Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave., Boston, 02115, MA, USA.
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit 3125, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Emeny RT, Kasten-Jolly J, Mondal T, Lynes MA, Lawrence DA. Metallothionein differentially affects the host response to Listeria infection both with and without an additional stress from cold-restraint. Cell Stress Chaperones 2015; 20:1013-22. [PMID: 26267326 PMCID: PMC4595426 DOI: 10.1007/s12192-015-0630-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023] Open
Abstract
Acute stress alters anti-bacterial defenses, but the neuroimmunological mechanisms underlying this association are not yet well understood. Metallothionein (MT), a cysteine-rich protein, is a stress response protein that is induced by a variety of chemical, biological, and psychological stressors, and MT has been shown to influence immune activities. We investigated MT's role in the management of anti-bacterial responses that occur during stress, using a C57BL/6 (B6) strain that has targeted disruptions of the Mt1 and Mt2 genes (B6-MTKO), and a B6 strain that has additional copies of Mt (B6-MTTGN). The well-characterized listeriosis model was used to examine immune mechanisms that are altered by a 1-h stress treatment (cold-restraint, CR) administered just prior to bacterial infection. Intriguingly, MT gene doses both greater and lower than that of wild-type (WT) B6 mice were associated with improved host defenses against Listeria monocytogenes (LM). This augmented protection was diminished by CR stress in the MTKO mice, but transgenic mice with additional MT copies had no CR stress-induced increase in their listerial burden. During the transition from innate to adaptive immunity, on day 3 after infection, oxidative burst and apoptosis were assessed by flow cytometric methods, and cytokine transcription was measured by real-time quantitative PCR. MT gene expression and CR-stress affected the expression of IL-6 and TNFα. Additionally, these genetic and environmental modulations altered the generation of ROS responses as well as the number of apoptotic cells in livers and spleens. Although the level of MT altered the listerial response, MT expression was equally elevated by listerial infection with or without CR stress. These results indicate the ability of MT to regulate immune response mechanisms and demonstrate that increased amounts of MT can eliminate the immunosuppression induced by CR.
Collapse
Affiliation(s)
- Rebecca T Emeny
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jane Kasten-Jolly
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
| | - Tapan Mondal
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David A Lawrence
- Laboratory of Immunology, Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY, 12201, USA.
| |
Collapse
|
6
|
Lynes MA, Hidalgo J, Manso Y, Devisscher L, Laukens D, Lawrence DA. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 2014; 19:605-11. [PMID: 24584987 PMCID: PMC4147071 DOI: 10.1007/s12192-014-0501-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 12/16/2022] Open
Abstract
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that have a wide range of functions in cellular homeostasis and immunity. MTs can be induced by a variety of conditions including metals, glucocorticoids, endotoxin, acute phase cytokines, stress, and irradiation. In addition to their important immunomodulatory functions, MTs can protect essential cellular compartments from toxicants, serve as a reservoir of essential heavy metals, and regulate cellular redox potential. Many of the roles of MTs in the neuroinflammation, intestinal inflammation, and stress response have been investigated and were the subject of a session at the 6th International Congress on Stress Proteins in Biology and Medicine in Sheffield, UK. Like the rest of the cell stress response, there are therapeutic opportunities that arise from an understanding of MTs, and these proteins also provide potential insights into the world of the heat shock protein.
Collapse
Affiliation(s)
- Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA,
| | | | | | | | | | | |
Collapse
|
7
|
Devisscher L, Hindryckx P, Lynes MA, Waeytens A, Cuvelier C, De Vos F, Vanhove C, Vos MD, Laukens D. Role of metallothioneins as danger signals in the pathogenesis of colitis. J Pathol 2014; 233:89-100. [PMID: 24452846 DOI: 10.1002/path.4330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/28/2013] [Accepted: 01/11/2014] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel diseases (IBDs) are recurrent intestinal pathologies characterized by a compromised epithelial barrier and an exaggerated immune activation. Mediators of immune cell infiltration may represent new therapeutic opportunities. Metallothioneins (MTs) are stress-responsive proteins with immune-modulating functions. Metallothioneins have been linked to IBDs, but their role in intestinal inflammation is inconclusive. We investigated MT expression in colonic biopsies from IBDs and acute infectious colitis patients and healthy controls and evaluated MT's role in experimental colitis using MT knockout mice and anti-MT antibodies. Antibody potential to target extracellular MT and its mechanism was tested in vitro. Biopsies of patients with active colitis showed infiltration of MT-positive cells in a pattern that correlated with the grade of inflammation. MT knockout mice displayed less severe acute dextran sulphate sodium (DSS)-induced colitis compared to congenic wild-type mice based on survival, weight loss, colon length, histological inflammation and leukocyte infiltration. Chronic DSS-colitis confirmed that Mt1 and Mt2 gene disruption enhances clinical outcome. Blockade of extracellular MT with antibodies reduced F4/80-positive macrophage infiltration in DSS- and trinitrobenzene sulphonic acid-colitis, with a tendency towards a better outcome. Whole-body single-photon emission computer tomography of mice injected with radioactive anti-MT antibodies showed antibody accumulation in the colon during colitis and clearance during recovery. Necrotic and not apoptotic cell death resulted in western blot MT detection in HT29 cell supernatant. In a Boyden chamber migration assay, leukocyte attraction towards the necrotic cell supernatant could be abolished with anti-MT antibody, indicating the chemotactic potential of endogenous released MT. Our results show that human colitis is associated with infiltration of MT-positive inflammatory cells. Since antibody blockade of extracellular MT can reduce colitis in mice, MT may act as a danger signal and may represent a novel target for reducing leukocyte infiltration and inflammation in IBD patients.
Collapse
|
8
|
Gao D, Mendoza A, Lu S, Lawrence DA. Immunomodulatory Effects of Danshen (Salvia miltiorrhiza) in BALB/c Mice. ISRN INFLAMMATION 2012; 2012:954032. [PMID: 24049654 PMCID: PMC3765791 DOI: 10.5402/2012/954032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/23/2012] [Indexed: 11/23/2022]
Abstract
Danshen, the root and rhizome of Salvia miltiorrhiza Bge, a Traditional Chinese Medicine, especially for cardiovascular and cerebrovascular diseases, has unique immunomodulatory effects. Danshen is capable of anti-inflammation and antiallergy, which are immunosuppressive activities, whereas it is also able to promote immunity against cancer, viruses, and bacteria. Most previous reports were performed with use of a purified compound or compounds of Danshen. Since there are more than twenty active compounds in Danshen, it is very difficult to predict that one compound will act the same way when it is combined with other compounds. In order to overcome this limitation, we used the crude form of Danshen to study its immunomodulatory effects in a mouse model. The mice were fed daily diet supplements of Danshen for three months and then tested for their immunity, including leukocyte subsets in peripheral blood, humoral and cell-mediated immune responses, and host defenses against a Listeria monocytogenes (LM) infection. Different doses of Danshen caused different immunomodulatory effects. Danshen at 0.5% decreased serum IgE production in BALB/c mice; 1% Danshen promoted cell-mediated immunity; Danshen at 0.5 and 1% inhibited the production of oxygen free radicals in liver and spleen and NO production in liver; 2% Danshen enhanced the host resistance against LM with increased numbers of peripheral monocytes and natural killer (NK) cells and decreased production of IL-1 β and NO.
Collapse
Affiliation(s)
- Donghong Gao
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
9
|
Pankhurst MW, Gell DA, Butler CW, Kirkcaldie MTK, West AK, Chung RS. Metallothionein (MT) -I and MT-II expression are induced and cause zinc sequestration in the liver after brain injury. PLoS One 2012; 7:e31185. [PMID: 22363575 PMCID: PMC3281953 DOI: 10.1371/journal.pone.0031185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/04/2012] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II(-/-)) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II(-/-) mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. CONCLUSION MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Pankhurst MW, Bennett W, Kirkcaldie MTK, West AK, Chung RS. Increased circulating leukocyte numbers and altered macrophage phenotype correlate with the altered immune response to brain injury in metallothionein (MT)-I/II null mutant mice. J Neuroinflammation 2011; 8:172. [PMID: 22152221 PMCID: PMC3251619 DOI: 10.1186/1742-2094-8-172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/07/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metallothionein-I and -II (MT-I/II) is produced by reactive astrocytes in the injured brain and has been shown to have neuroprotective effects. The neuroprotective effects of MT-I/II can be replicated in vitro which suggests that MT-I/II may act directly on injured neurons. However, MT-I/II is also known to modulate the immune system and inflammatory processes mediated by the immune system can exacerbate brain injury. The present study tests the hypothesis that MT-I/II may have an indirect neuroprotective action via modulation of the immune system. METHODS Wild type and MT-I/II(-/-) mice were administered cryolesion brain injury and the progression of brain injury was compared by immunohistochemistry and quantitative reverse-transcriptase PCR. The levels of circulating leukocytes in the two strains were compared by flow cytometry and plasma cytokines were assayed by immunoassay. RESULTS Comparison of MT-I/II(-/-) mice with wild type controls following cryolesion brain injury revealed that the MT-I/II(-/-) mice only showed increased rates of neuron death after 7 days post-injury (DPI). This coincided with increases in numbers of T cells in the injury site, increased IL-2 levels in plasma and increased circulating leukocyte numbers in MT-I/II(-/-) mice which were only significant at 7 DPI relative to wild type mice. Examination of mRNA for the marker of alternatively activated macrophages, Ym1, revealed a decreased expression level in circulating monocytes and brain of MT-I/II(-/-) mice that was independent of brain injury. CONCLUSIONS These results contribute to the evidence that MT-I/II(-/-) mice have altered immune system function and provide a new hypothesis that this alteration is partly responsible for the differences observed in MT-I/II(-/-) mice after brain injury relative to wild type mice.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
- Department of Anatomy, University of Otago, 270 Great King St, Dunedin, New Zealand
| | - William Bennett
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
| | - Matthew TK Kirkcaldie
- School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
| | - Adrian K West
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
| | - Roger S Chung
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
McGee HM, Woods GM, Bennett B, Chung RS. The two faces of metallothionein in carcinogenesis: photoprotection against UVR-induced cancer and promotion of tumour survival. Photochem Photobiol Sci 2010; 9:586-96. [PMID: 20354655 DOI: 10.1039/b9pp00155g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallothionein is a multi-functional protein that protects the host against toxic heavy metals. Under stressful situations it can protect against oxidative damage, contribute to tissue repair, modulate immune responses and limit inflammatory processes. Recently, metallothionein's role in ultraviolet radiation (UVR)-induced injury has been investigated. These studies have shown that when metallothionein is upregulated following exposure to UVR, it can protect against UVR-induced damage and the subsequent development of skin cancer. We propose that this initial protection is achieved through its anti-oxidant role resulting in reduced oxidative stress, reduced apoptosis, reduced NFkappaB activation and enhanced repair of DNA damage. However, once UVR-induced neoplasia has occurred, the cancer cells can hijack metallothionein's protective functions, resulting in increased tumour progression and malignancy. These two discordant sets of attributes are context-dependent, and represent the two faces of metallothionein.
Collapse
Affiliation(s)
- Heather M McGee
- Menzies Research Institute, University of Tasmania, Australia.
| | | | | | | |
Collapse
|