1
|
Ferrara F, Yan X, Pecorelli A, Guiotto A, Colella S, Pasqui A, Lynch S, Ivarsson J, Anderias S, Choudhary H, White S, Valacchi G. Combined exposure to UV and PM affect skin oxinflammatory responses and it is prevented by antioxidant mix topical application: Evidences from clinical study. J Cosmet Dermatol 2024; 23:2644-2656. [PMID: 38590207 DOI: 10.1111/jocd.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Exposure to environmental stressors like particulate matter (PM) and ultraviolet radiation (UV) induces cutaneous oxidative stress and inflammation and leads to skin barrier dysfunction and premature aging. Metals like iron or copper are abundant in PM and are known to contribute to reactive oxygen species (ROS) production. AIMS Although it has been suggested that topical antioxidants may be able to help in preventing and/or reducing outdoor skin damage, limited clinical evidence under real-life exposure conditions have been reported. The aim of the present study was to evaluate the ability of a topical serum containing 15% ascorbic acid, 0.5% ferulic acid, and 1% tocopherol (CF Mix) to prevent oxinflammatory skin damage and premature aging induced by PM + UV in a human clinical trial. METHODS A 4-day single-blinded, clinical study was conducted on the back of 15 females (18-40 years old). During the 4 consecutive days, the back test zones were treated daily with or without the CF Mix, followed by with/without 2 h of PM and 5 min of UV daily exposure. RESULTS Application of the CF Mix prevented PM + UV-induced skin barrier perturbation (Involucrin and Loricrin), lipid peroxidation (4HNE), inflammatory markers (COX2, NLRP1, and AhR), and MMP9 activation. In addition, CF Mix was able to prevent Type I Collagen loss. CONCLUSION This is the first human study confirming multipollutant cutaneous damage and suggesting the utility of a daily antioxidant topical application to prevent pollution induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Xi Yan
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | | | - Stephen Lynch
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | - John Ivarsson
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sara Anderias
- L'Oréal Research and Innovation, Clark, New Jersey, USA
| | | | | | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
3
|
He H, Huang Y, Lu Y, Wang X, Ni H, Wu Y, Xia D, Ye D, Ding J, Mao Y, Teng Y. Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. ENVIRONMENTAL TOXICOLOGY 2022; 37:2589-2604. [PMID: 35870112 DOI: 10.1002/tox.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon compound, is a carcinogen that causes head and neck cancers. Despite intensive research, the molecular mechanism of BaP in the development of oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the SCC-9 human OSCC cell line was cultured in vitro, separated into treatment groups, and treated with dimethyl sulfoxide or BaP at various concentrations. The malignant behavior ascribed to the BaP treatment was investigated by cell proliferation, clony formation assay, and Transwell assays. Furthermore, transcriptome sequencing was performed to detect the differentially expressed genes, followed by quantitative real-time PCR to measure the expression levels of nine of these genes. Moreover, the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the biological processes and signaling pathways in which the target genes were involved. Significant effects on SCC-9 cell proliferation, tumorigenicity, cell migration, and invasion were observed after exposure to 8 μM BaP. Additional results revealed that BaP inhibited apoptosis in a dose-dependent manner. The transcriptome sequencing results showed 137 upregulated genes and 135 downregulated genes induced by BaP, associated with tumor-related biological processes and signaling pathways, mainly including transcriptional dysregulation in cancer, the tumor necrosis factor signaling pathway, metabolism of xenobiotics by cytochrome P450, mitogen-activated protein kinase signaling pathway, and so forth. Our study demonstrates that BaP may regulate the expression of certain genes involved in tumor-associated signaling pathways, thereby promoting the proliferative, tumorigenic, and metastatic behaviors of OSCC cells while suppressing their apoptosis.
Collapse
Affiliation(s)
- Hanyi He
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixing Huang
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyue Lu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinlu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haifeng Ni
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yanjiao Mao
- Department of Oncology Radiotherapy, Hangzhou Cancer Hospital, Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel) 2022; 11:1484. [PMID: 36009203 PMCID: PMC9405175 DOI: 10.3390/antiox11081484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Our current understanding of the pathogenesis of skin aging includes the role of ultraviolet light, visible light, infrared, pollution, cigarette smoke and other environmental exposures. The mechanism of action common to these exposures is the disruption of the cellular redox balance by the directly or indirectly increased formation of reactive oxygen species that overwhelm the intrinsic antioxidant defense system, resulting in an oxidative stress condition. Altered redox homeostasis triggers downstream pathways that contribute to tissue oxinflammation (cross-talk between inflammation and altered redox status) and accelerate skin aging. In addition, both ultraviolet light and pollution increase intracellular free iron that catalyzes reactive oxygen species generation via the Fenton reaction. This disruption of iron homeostasis within the cell further promotes oxidative stress and contributes to extrinsic skin aging. More recent studies have demonstrated that iron chelators can be used topically and can enhance the benefits of topically applied antioxidants. Thus, an updated, more comprehensive approach to environmental or atmospheric aging protection should include sun protective measures, broad spectrum sunscreens, antioxidants, chelating agents, and DNA repair enzymes.
Collapse
Affiliation(s)
- Patricia K. Farris
- Department of Dermatology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
5
|
He J, Pang Q, Huang C, Xie J, Hu J, Wang L, Wang C, Meng L, Fan R. Environmental dose of 16 priority-controlled PAHs mixture induce damages of vascular endothelial cells involved in oxidative stress and inflammation. Toxicol In Vitro 2021; 79:105296. [PMID: 34896602 DOI: 10.1016/j.tiv.2021.105296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have shown that cardiovascular diseases caused by PM2.5 pollution account for the second death rate in China. Polycyclic aromatic hydrocarbons (PAHs) are one important group of persistent organic pollutants absorbed on PM2.5. Though individual PAH is related to vascular disease, the relationship between environmental PAHs exposure and vascular damages is still unclear. To explore the effect of PAHs on blood vessel, human umbilical vein endothelial cells (HUVECs) are treated with 16 priority-controlled PAHs at various concentrations to study their cytotoxicity and morphological alteration. Results showed that, after 48 h treatment, PAHs mixture generally attenuated the ability of wound healing, transwell migration and tube formation of HUVECs (p < 0.01) except for 1 × PAHs in transwell migration. Moreover, PAHs increased the levels of ROS and 8-hydroxy-2'-deoxyguanosine (p < 0.05), indicating that it exceeded the scavenging ability of superoxide dismutase activity. However, PAHs mixture did not increase apoptosis rate, which may be attribute to the difference of PAH concentration and composition between this study and previous reports. Downstream signaling cascades significantly and generally upregulated the relative expression of proteins in Nrf2/HO-1 and NF-ƙB/TNF-α pathway with the activation of oxidative stress, including HO-, TNF-α and Nrf2. In summary, this study suggests that environmental mixture of 16 priority-controlled PAHs can induce the damages of vascular endothelial cells involved in cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaqi Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jindian Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Mokrzyński K, Krzysztyńska-Kuleta O, Zawrotniak M, Sarna M, Sarna T. Fine Particulate Matter-Induced Oxidative Stress Mediated by UVA-Visible Light Leads to Keratinocyte Damage. Int J Mol Sci 2021; 22:10645. [PMID: 34638985 PMCID: PMC8509012 DOI: 10.3390/ijms221910645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The human skin is exposed to various environmental factors including solar radiation and ambient air pollutants. Although, due to its physical and biological properties, the skin efficiently protects the body against the harm of environmental factors, their excessive levels and possible synergistic action may lead to harmful effects. Among particulate matter present in ambient air pollutants, PM2.5 is of particular importance for it can penetrate both disrupted and intact skin, causing adverse effects to skin tissue. Although certain components of PM2.5 can exhibit photochemical activity, only a limited amount of data regarding the interaction of PM2.5 with light and its effect on skin tissue are available. This study focused on light-induced toxicity in cultured human keratinocytes, which was mediated by PM2.5 obtained in different seasons. Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM) were employed to determine sizes of the particles. The ability of PM2.5 to photogenerate free radicals and singlet oxygen was studied using EPR spin-trapping and time-resolved singlet oxygen phosphorescence, respectively. Solar simulator with selected filters was used as light source for cell treatment to model environmental lightning conditions. Cytotoxicity of photoexcited PM2.5 was analyzed using MTT assay, PI staining and flow cytometry, and the apoptotic pathway was further examined using Caspase-3/7 assay and RT-PCR. Iodometric assay and JC-10 assay were used to investigate damage to cell lipids and mitochondria. Light-excited PM2.5 were found to generate free radicals and singlet oxygen in season-dependent manner. HaCaT cells containing PM2.5 and irradiated with UV-Vis exhibited oxidative stress features-increased peroxidation of intracellular lipids, decrease of mitochondrial membrane potential, enhanced expression of oxidative stress related genes and apoptotic cell death. The data indicate that sunlight can significantly increase PM2.5-mediated toxicity in skin cells.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Olga Krzysztyńska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland;
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (K.M.); (O.K.-K.); (M.S.)
| |
Collapse
|
7
|
Yang X, Wang J, Wang H, Li X, He C, Liu L. Metabolomics study of fibroblasts damaged by UVB and BaP. Sci Rep 2021; 11:11176. [PMID: 34045475 PMCID: PMC8160258 DOI: 10.1038/s41598-021-90186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022] Open
Abstract
We have recently shown that both UVB and BaP can induce the production of ROS, apoptosis and even cancer. However, the differences in the metabolic profiles of skin damaged by UVB, BaP or UVB combined with BaP have not been studied. Therefore, we examined the metabolic changes in the human foreskin fibroblast injured by UVB or BaP or the combination of the two, using ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (qTOF-MS). 24 metabolites were altered in the UVB damage group, 25 in the BaP damage group, and 33 in the UVB combined with BaP group. These alterations indicated that the metabolic mechanisms of HFF-1 cells treated with UVB or BaP are related to multiple main metabolites including glycerophosphocholine (PC), lactosylceramide (LacCer), guanidinosuccinic acid (GSA), glutathione(GSH), and lysophosphatidylcholine (LysoPC) and the main mechanisms involved glycerophospholipid and glutathione metabolism. Thus, our report provided useful insight into the underlying mechanisms of UVB and BaP damage to skin cells.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiateng Wang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Hecong Wang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xueying Li
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Meterials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
8
|
Yang M, Zhang H, Chang F, Hu X. Self-sensitized photochlorination of benzo[a]pyrene in saline water under simulated solar light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124445. [PMID: 33221076 DOI: 10.1016/j.jhazmat.2020.124445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated organic compounds are ubiquitously detected in saline waters. The photochlorination of organic compounds is one possible source, and chlorine radicals originating from other photosensitive substances have been reported to be responsible for organic compounds chlorination in previous reports. In this study, benzo[a]pyrene (BaP) chlorination in 10% acetonitrile/NaCl aqueous solution was initiated by self-sensitization of BaP, while chlorine radicals were not involved in the reaction. After 45 min of photoreaction in four seawater samples, chlorinated product (6-ClBaP) accounted for 10-17% of the fraction of transformed BaP, which was higher than that previously reported. The influences of Cl-, pH, humic acid, electron donors, and particulate matter on the formation of chlorobenzo[a]pyrene were systematically investigated. A self-sensitized photochlorination reaction mechanism was proposed as follow: photoexited BaP was activated to singlet state and then transformed to triplet state through inter-system crossing. Then the excited triplet state and oxygen formed [3BaP*-3O2] or [BaP-1O2] complex, which further reacted with Cl- to produce 6-ClBaP.
Collapse
Affiliation(s)
- Mina Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Haijing Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong, PR China
| | - Fei Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong, PR China.
| |
Collapse
|
9
|
Ferrara F, Pambianchi E, Woodby B, Messano N, Therrien JP, Pecorelli A, Canella R, Valacchi G. Evaluating the effect of ozone in UV induced skin damage. Toxicol Lett 2020; 338:40-50. [PMID: 33279629 DOI: 10.1016/j.toxlet.2020.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Air pollution represents one of the main risks for both environment and human health. The rapid urbanization has been leading to a continuous release of harmful manmade substances into the atmosphere which are associated to the exacerbation of several pathologies. The skin is the main barrier of our body against the external environment and it is the main target for the outdoor stressors. Among the pollutants, Ozone (O3) is one of the most toxic, able to initiate oxidative reactions and activate inflammatory response, leading to the onset of several skin conditions. Moreover, skin is daily subjected to the activity of Ultraviolet Radiation which are well known to induce harmful cutaneous effects including skin aging and sunburn. Even though both UV and O3 are able to affect the skin homeostasis, very few studies have investigated their possible additive effect. Therefore, in this study we evaluated the effect of the combined exposure of O3 and UV in inducing skin damage, by exposing human skin explants to UV alone or in combination with O3 for 4-days. Markers related to inflammation, redox homeostasis and tissue structure were analyzed. Our results demonstrated that O3 is able to amplify the UV induced skin oxinflammation markers.
Collapse
Affiliation(s)
- Francesca Ferrara
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Brittany Woodby
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Nicolo' Messano
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, South Korea.
| |
Collapse
|
10
|
Weitekamp CA, Stevens T, Stewart MJ, Bhave P, Gilmour MI. Health effects from freshly emitted versus oxidatively or photochemically aged air pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135772. [PMID: 31838301 PMCID: PMC9186024 DOI: 10.1016/j.scitotenv.2019.135772] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/03/2023]
Abstract
Epidemiology studies over the past five decades have provided convincing evidence that exposure to air pollution is associated with multiple adverse health outcomes, including increased mortality. Air pollution is a complex mixture of particles, vapors and gases emitted from natural and anthropogenic sources as well as formed through photochemical transformation processes. In metropolitan areas, air pollutants from combustion emissions feature a blend of emitted particles, oxides of carbon, sulfur and nitrogen, volatile organic compounds, and secondary reaction products, such as ozone, nitrogen dioxide, and secondary organic aerosols. Because many of the primary and transformed pollutants track together, their relative contributions to health outcomes are difficult to disentangle. Aside from the criteria pollutants ozone and nitrogen dioxide and some of the simpler aldehydes (e.g. formaldehyde and acrolein), other products from photochemical processes are a particularly vexing class of chemicals to investigate since they comprise a dynamic ill-defined complex mixture in both particulate and gas phases. The purpose of this review was to describe and compare health effects of freshly emitted versus oxidatively or photochemically aged air pollutants. In some cases, (e.g. single volatile organic compounds) photochemical transformation resulted in marked enhancements in toxicity through formation of both known and unidentified reaction products, while in other examples (e.g. aging of automobile emissions) the potentiation of effect was variable. The variation in experimental design, aging system employed, concentration and type of starting agent, and toxicity endpoints make comparisons between different studies exceedingly difficult. A more systematic approach with a greater emphasis on higher throughput screening and computational toxicology is needed to fully answer under what conditions oxidatively- or photochemically-transformed pollutants elicit greater health effects than primary emissions.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Tina Stevens
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael J Stewart
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prakash Bhave
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - M Ian Gilmour
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
11
|
Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM. Deciphering the Code between Air Pollution and Disease: The Effect of Particulate Matter on Cancer Hallmarks. Int J Mol Sci 2019; 21:ijms21010136. [PMID: 31878205 PMCID: PMC6982149 DOI: 10.3390/ijms21010136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Air pollution has been recognized as a global health problem, causing around 7 million deaths worldwide and representing one of the highest environmental crises that we are now facing. Close to 30% of new lung cancer cases are associated with air pollution, and the impact is more evident in major cities. In this review, we summarize and discuss the evidence regarding the effect of particulate matter (PM) and its impact in carcinogenesis, considering the “hallmarks of cancer” described by Hanahan and Weinberg in 2000 and 2011 as a guide to describing the findings that support the impact of particulate matter during the cancer continuum.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México CP 14080, DF, Mexico; (M.S.-A.); (I.G.-R.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Estado de México, Mexico;
| | - Imelda González-Ramírez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México CP 14080, DF, Mexico; (M.S.-A.); (I.G.-R.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México CP 14080, DF, Mexico; (M.S.-A.); (I.G.-R.)
- Correspondence: (Y.S.-P.); (C.M.G.-C.); Tel.: +52-(55)-3693-5200 (Y.S.-P. & C.M.G.-C.)
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México CP 14080, DF, Mexico; (M.S.-A.); (I.G.-R.)
- Correspondence: (Y.S.-P.); (C.M.G.-C.); Tel.: +52-(55)-3693-5200 (Y.S.-P. & C.M.G.-C.)
| |
Collapse
|
12
|
Metabolism and genotoxicity of polycyclic aromatic hydrocarbons in human skin explants: mixture effects and modulation by sunlight. Arch Toxicol 2019; 94:495-507. [PMID: 31848665 DOI: 10.1007/s00204-019-02650-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Cutaneous exposure to carcinogenic polycyclic aromatic hydrocarbons (PAH) occurs frequently in the industrialized workplace. In the present study, we addressed this topic in a series of experiments using human skin explants and organic extracts of relevant industrial products. PAH mixtures were applied topically in volumes containing either 10 or 1 nmol B[a]P. We first observed that although mixtures were very efficient at inducing expression of CYP450 1A1, 1A2, and 1B1, formation of adducts of PAH metabolites to DNA, like those of benzo[a]pyrene diol epoxide (BPDE), was drastically reduced as the complexity of the surrounding matrix increased. Interestingly, observation of a nonlinear, dose-dependent response with the least complex mixture suggested the existence of a threshold for this inhibitory effect. We then investigated the impact of simulated sunlight (SSL) on the effects of PAH in skin. SSL was found to decrease the expression of CYP450 genes when applied either after or more efficiently before PAH treatment. Accordingly, the level of DNA-BPDE adducts was reduced in skin samples exposed to both PAH and SSL. The main conclusion of our work is that both increasing chemical complexity of the mixtures and co-exposure to UV radiation decreased the production of adducts between DNA and PAH metabolites. Such results must be taken into account in risk management.
Collapse
|
13
|
von Koschembahr A, Youssef A, Béal D, Gudimard L, Giot JP, Douki T. Toxicity and DNA repair in normal human keratinocytes co-exposed to benzo[a]pyrene and sunlight. Toxicol In Vitro 2019; 63:104744. [PMID: 31836489 DOI: 10.1016/j.tiv.2019.104744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
Abstract
Skin has the potential to be exposed to both solar UV radiation and polycyclic aromatic hydrocarbons, especially in occupational environments. In the present work, we investigated how benzo[a]pyrene (B[a]P) modulates cellular phototoxicity and impacts formation and repair of pyrimidine dimers induced by simulated sunlight (SSL) in normal human keratinocytes (NHK). We were especially interested in determining whether the aryl hydrocarbon receptor (AhR) was involved since it was recently shown to negatively impact repair. Addition of 1 μM B[a]P after exposure to 2 minimal erythemal doses of SSL had little impact on NHK. The inverse protocol involving incubation with B[a]P followed by irradiation led to a strong increase in phototoxicity. Repair of DNA photoproducts was drastically impaired. Using agonists and antagonists of AhR allowed us to conclude that this factor was not involved in these results. Observation of a strong increase in the level of the oxidative marker 8-oxo-7,8-dihydroguanine in the protocol involving B[a]P treatment followed by exposure to SSL strongly suggested that a photosensitized oxidative stress was responsible for cell death and inhibition of DNA repair. Accordingly, both adverse effects were diminished with a lower concentration of B[a]P and a lower SSL dose, leading to less oxidative stress.
Collapse
Affiliation(s)
- Anne von Koschembahr
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Antonia Youssef
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Leslie Gudimard
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Jean-Philippe Giot
- Service de Chirurgie Plastique et Maxillo-faciale, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
| | - Thierry Douki
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France.
| |
Collapse
|
14
|
Solar simulated light exposure alters metabolization and genotoxicity induced by benzo[a]pyrene in human skin. Sci Rep 2018; 8:14692. [PMID: 30279536 PMCID: PMC6168490 DOI: 10.1038/s41598-018-33031-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Skin is a major barrier against external insults and is exposed to combinations of chemical and/or physical toxic agents. Co-exposure to the carcinogenic benzo[a]pyrene (B[a]P) and solar UV radiation is highly relevant in human health, especially in occupational safety. In vitro studies have suggested that UVB enhances B[a]P genotoxicity by activating the AhR pathway and overexpressing the cytochrome P450 enzymes responsible for the conversion of B[a]P into DNA damaging metabolites. Our present work involved more realistic conditions, namely ex vivo human skin explants and simulated sunlight (SSL) as a UV source. We found that topically applied B[a]P strongly induced expression of cutaneous cytochrome P450 genes and formation of DNA adducts. However, gene induction was significantly reduced when B[a]P was combined with SSL. Consequently, formation of BPDE-adducts was also reduced when B[a]P was associated with SSL. Similar results were obtained with primary cultures of human keratinocytes. These results indicate that UV significantly impairs B[a]P metabolism, and decreases rather than increases immediate toxicity. However, it cannot be ruled out that decreased metabolism leads to accumulation of B[a]P and delayed genotoxicity.
Collapse
|
15
|
Voriconazole-induced photocarcinogenesis is promoted by aryl hydrocarbon receptor-dependent COX-2 upregulation. Sci Rep 2018; 8:5050. [PMID: 29568008 PMCID: PMC5864729 DOI: 10.1038/s41598-018-23439-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Voriconazole (VRCZ) induces the development of UV-associated skin cancers. The mechanism underlying the VRCZ-induced carcinogenesis has been largely unknown. Here, we showed that VRCZ metabolites plus UVA generated reactive oxygen species and resultant DNA damage of the epidermis, but did not induce substantial apoptosis in human keratinocytes (KCs). Furthermore, VRCZ per se stimulates aryl hydrocarbon receptor (AhR) and upregulates COX-2, which is a pivotal enzyme for the promotion of UV-associated tumors, in an AhR-ARNT dependent manner of the classical (genomic) pathway. Our findings suggest that the phototoxic moieties of VRCZ metabolites may participate in the initiation phase of VRCZ skin cancer, while VRCZ per se promotes the tumor development. Therefore, during VRCZ therapy, sun exposure protection is essential to prevent photocarcinogenesis caused by VRCZ metabolites plus UV. Chemoprevention with selective COX-2 inhibitors may be helpful to repress the development of skin cancers derived from DNA-damaged KCs.
Collapse
|
16
|
Barranco A, Escudero L, Sanz Landaluze J, Rainieri S. Detection of exposure effects of mixtures of heavy polycyclic aromatic hydrocarbons in zebrafish embryos. J Appl Toxicol 2016; 37:253-264. [DOI: 10.1002/jat.3353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Alejandro Barranco
- Food Research Division; AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609; 48160 Derio Spain
| | - Laura Escudero
- Department of Analytical Chemistry, Faculty of Chemistry; Universidad Complutense de Madrid, Ciudad Universitaria; 28040 Madrid Spain
| | - Jon Sanz Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry; Universidad Complutense de Madrid, Ciudad Universitaria; 28040 Madrid Spain
| | - Sandra Rainieri
- Food Research Division; AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609; 48160 Derio Spain
| |
Collapse
|
17
|
Shang J, Chen J, Shen Z, Xiao X, Yang H, Wang Y, Ruan A. Photochemical degradation of PAHs in estuarine surface water: effects of DOM, salinity, and suspended particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12374-83. [PMID: 25903191 DOI: 10.1007/s11356-015-4543-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/13/2015] [Indexed: 05/22/2023]
Abstract
The photodegradation of several polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, benzo(a)pyrene, and benzo(e)pyrene was studied under different estuarine conditions to elucidate the effects of dissolved organic matter (DOM), salinity, and suspended particles on PAH photodegradation in the estuarine surface water. Besides the competitive light absorption effect, DOM can accelerate the photodegradation of small PAHs such as phenanthrene by enhancing the formation of reactive intermediates and inhibit the photodegradation of large PAHs such as benzo[a]pyrene (BaP) and benzo[e]pyrene (BeP) by binding the PAH molecules. High salinity would accelerate the photodegradation of PAHs; however, the magnitude and direction of the salt effect are complicated in the presence of DOM due to the "salting-out" effect on the binding of PAHs with DOM. Suspended particulate matter in the estuary provides an alternative solid-phase photodegradation pathway for PAHs, which proceeds faster than the aqueous phase. Particulates apparently exert different effects on the photodegradation of phenanthrene (Phe) and BaP as a result of the combined effects of light absorption, particulate organic matter, PAH surface sorption, and concentration dilution in the presence of suspended particulate matter.
Collapse
Affiliation(s)
- Jing Shang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Ibuki Y. Histone Modifications Induced by Chemicals and Photogenotoxicity. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
20
|
Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. JOURNAL OF ONCOLOGY 2011; 2011:654931. [PMID: 21559255 PMCID: PMC3087891 DOI: 10.1155/2011/654931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic) effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1) receptors, (2) cell cycle regulators, (3) signaling pathways, (4) apoptosis mediators, (5) angiogenic factors, and (6) invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.
Collapse
|
21
|
Ohnuki G, Toyooka T, Ibuki Y. UVB in solar-simulated light causes formation of BaP-photoproducts capable of generating phosphorylated histone H2AX. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 702:70-7. [DOI: 10.1016/j.mrgentox.2010.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/31/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023]
|
22
|
Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 2010; 7:18. [PMID: 20663163 PMCID: PMC2914693 DOI: 10.1186/1743-8977-7-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/21/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nowadays, effects of fine particulate matter (PM2.5) are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. RESULTS In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin) by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies). The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH) could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR) showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. CONCLUSIONS The PM2.5-antiapoptotic effect in addition to the well-documented inflammatory response might explain the maintenance of a prolonged inflammation state induced after pollution exposure and might delay repair processes of injured tissues.
Collapse
|