1
|
Appell ML, Hindorf U, Almer S, Haglund S. Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes. Dig Liver Dis 2025; 57:885-892. [PMID: 39863504 DOI: 10.1016/j.dld.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs). AIMS Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH. METHODS Genotyping was performed in AIH patients (n = 131) on AZA, and in a Swedish background population (n = 283). Thiopurine metabolites in blood erythrocytes were determined by high performance liquid chromatography. RESULTS GSTM1 and GSTT1 CNV were associated with treatment response to AZA. Gene deletion of GSTM1-but not of GSTT1-was associated with the liver transaminase levels. None of the studied genetic variants were associated with the thiopurine metabolite concentrations, suggesting non-enzymatic mechanisms of GSTM1 and GSTT1 in the context of AZA efficacy in AIH. The prevalence of GSTM1 and GSTT1 CNV genotypes was similar in AIH and in the background population. CONCLUSION This study shows the effects of GSTM1 and GSTT1 CNV on AZA efficacy in AIH, not previously described. It also elaborates on the impact of the definition of treatment response, on the importance of the various GSTs studied. Furthermore, the GSTM1 and GSTT1 CNV frequencies previously reported in European populations were confirmed.
Collapse
Affiliation(s)
- Malin Lindqvist Appell
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Ulf Hindorf
- Department of Gastroenterology and Nutrition, University Hospital Lund, Lund, Sweden.
| | - Sven Almer
- Centre for Digestive Health, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Sofie Haglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
2
|
Yan Y, Wang Z, Zhou YL, Gao Z, Ning L, Zhao Y, Xuan B, Ma Y, Tong T, Huang X, Hu M, Fang JY, Cui Z, Chen H, Hong J. Commensal bacteria promote azathioprine therapy failure in inflammatory bowel disease via decreasing 6-mercaptopurine bioavailability. Cell Rep Med 2023; 4:101153. [PMID: 37586320 PMCID: PMC10439275 DOI: 10.1016/j.xcrm.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Azathioprine (AZA) therapy failure, though not the primary cause, contributes to disease relapse and progression in inflammatory bowel disease (IBD). However, the role of gut microbiota in AZA therapy failure remains poorly understood. We found a high prevalence of Blautia wexlerae in patients with IBD with AZA therapy failure, associated with shorter disease flare survival time. Colonization of B. wexlerae increased inflammatory macrophages and compromised AZA's therapeutic efficacy in mice with intestinal colitis. B. wexlerae colonization reduced 6-mercaptopurine (6-MP) bioavailability by enhancing selenium-dependent xanthine dehydrogenase (sd-XDH) activity. The enzyme sd-XDH converts 6-MP into its inactive metabolite, 6-thioxanthine (6-TX), thereby impairing its ability to inhibit inflammation in mice. Supplementation with Bacillus (B.) subtilis enriched in hypoxanthine phosphoribosyltransferase (HPRT) effectively mitigated B. wexlerae-induced AZA treatment failure in mice with intestinal colitis. These findings emphasize the need for tailored management strategies based on B. wexlerae levels in patients with IBD.
Collapse
Affiliation(s)
- Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yi-Lu Zhou
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ziyun Gao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lijun Ning
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ying Zhao
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanru Ma
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Muni Hu
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
3
|
Fujikawa Y, Terakado K, Nezu S, Noritsugu K, Maemoto Y, Ito A, Inoue H. Improving reactivity of naphthalimide-based GST probe by imparting TPP cation: Development and application for live cell imaging. Bioorg Med Chem Lett 2023; 80:129109. [PMID: 36549395 DOI: 10.1016/j.bmcl.2022.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Glutathione S-transferases (GSTs) are a superfamily of multifunctional enzymes comprising multiple classes and subtypes. This paper describes the synthesis and characterization of TPPBN-1, a naphthalimide derivative conjugated with a triphenylphosphonium (TPP) cation. When 4-bromonaphthalimide (BrNaph), a previously characterized GST substrate, was conjugated to a TPP cation, the conjugate showed increased reactivity towards most alpha- and mu-class GSTs, particularly the GSTA2 subtype, compared to the parent compound, but hardly towards Pi-class GSTs. Using this probe with enhanced reactivity, the enzymatic activity of endogenous GSTA1/2 in HepG2 cells was visualized by confocal fluorescence microscopy. The results demonstrated that modification with TPP cations, which are often used as tags for targeting mitochondria, can be used to enhance the reactivity of probes for specific GST subtypes.
Collapse
Affiliation(s)
- Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kenta Terakado
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sayaka Nezu
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kota Noritsugu
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
4
|
Anandi P, Dickson AL, Feng Q, Wei WQ, Dupont WD, Plummer D, Liu G, Octaria R, Barker KA, Kawai VK, Birdwell K, Cox NJ, Hung A, Stein CM, Chung CP. Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. THE PHARMACOGENOMICS JOURNAL 2020; 20:736-745. [PMID: 32054992 PMCID: PMC7426242 DOI: 10.1038/s41397-020-0163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Leukopenia is a serious, frequent side effect associated with azathioprine use. Currently, we use thiopurine methyltransferase (TPMT) testing to predict leukopenia in patients taking azathioprine. We hypothesized that a risk score incorporating additional clinical and genetic variables would improve the prediction of azathioprine-associated leukopenia. In the discovery phase, we developed four risk score models: (1) age, sex, and TPMT metabolizer status; (2) model 1 plus additional clinical variables; (3) sixty candidate single nucleotide polymorphisms; and (4) model 2 plus model 3. The area under the receiver-operating-characteristic curve (AUC) of the risk scores was 0.59 (95% CI: 0.54-0.64), 0.75 (0.71-0.80), 0.66 (0.61-0.71), and 0.78 (0.74-0.82) for models 1, 2, 3, and 4, respectively. During the replication phase, models 2 and 4 (AUC = 0.64, 95% CI: 0.59-0.70 and AUC = 0.63, 95% CI: 0.58-0.69, respectively) were significant in an independent group. Compared with TPMT testing alone, additional genetic and clinical variables improve the prediction of azathioprine-associated leukopenia.
Collapse
Affiliation(s)
- Prathima Anandi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ge Liu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rany Octaria
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Barker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Daniel LL, Dickson AL, Chung CP. Precision medicine for rheumatologists: lessons from the pharmacogenomics of azathioprine. Clin Rheumatol 2020; 40:65-73. [PMID: 32617765 DOI: 10.1007/s10067-020-05258-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to personalize treatment for both effectiveness and safety. As a critical component of this emerging initiative, pharmacogenomics seeks to guide drug treatment based on genetics. In this review article, we give an overview of pharmacogenomics in the setting of an immunosuppressant frequently prescribed by rheumatologists, azathioprine. Azathioprine has a narrow therapeutic index and a high risk of adverse events. By applying candidate gene analysis and unbiased approaches, researchers have identified multiple variants associated with an increased risk for adverse events associated with azathioprine, particularly bone marrow suppression. Variants in two genes, TPMT and NUDT15, are widely recognized, leading drug regulatory agencies and professional organizations to adopt recommendations for testing before initiation of azathioprine therapy. As more gene-drug interactions are discovered, our field will continue to face the challenge of balancing benefits and costs associated with genetic testing. However, novel approaches in genomics and the integration of clinical and genetic factors into risk scores offer unprecedented opportunities for the application of pharmacogenomics in routine practice. Key Points • Pharmacogenomics can help us understand how individuals' genetics may impact their response to medications. • Azathioprine is a success story for the clinical implementation of pharmacogenomics, particularly the effects of TPMT and NUDT15 variants on myelosuppression. • As our knowledge advances, testing and dosing recommendations will continue to evolve, with our field striving to balance costs and benefits to patients. • As we aim toward the goals of precision medicine, future research may integrate increasingly individualized traits-including clinical and genetic characteristics-to predict the safety and efficacy of particular medications for individual patients.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Alyson L Dickson
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Cecilia P Chung
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA. .,Tennessee Valley Healthcare System-Nashville Campus (CPC), Nashville, TN, USA. .,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine (CPC), Nashville, TN, USA.
| |
Collapse
|
6
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Interaction of glutathione S-transferase polymorphisms and tobacco smoking during pregnancy in susceptibility to autism spectrum disorders. Sci Rep 2019; 9:3206. [PMID: 30824761 PMCID: PMC6397281 DOI: 10.1038/s41598-019-39885-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex psychiatric disorders, with a proposed gene-environment interaction in their etiology. One mechanism that could explain both the genetic and environmental component is oxidative stress. The aim of our study was to investigate the potential role of common polymorphisms in genes for glutathione transferase A1, M1, T1 and P1 in susceptibility to ASD. We also aimed to explore the possible oxidative stress - specific gene-environment interaction, regarding GST polymorphisms, maternal smoking tobacco during pregnancy (TSDP) and the risk of ASD. This case-control study included 113 children with ASD and 114 age and sex-matched controls. The diagnosis was made based on ICD-10 criteria and verified by Autism Diagnostic Interview – Revised (ADI-R). We investigated GSTA1, GSTM1, GSTP1 and GSTT1 genotypes and explored their individual and combined effects in individuals with ASD. Individual effect of GST genotypes was shown for GSTM1 active genotype decreasing the risk of ASD (OR = 0.554, 95%CI: 0.313–0.983, p = 0.044), and for GSTA1 CC genotype, increasing susceptibility to ASD (OR = 4.132, 95%CI: 1.219–14.012, p = 0.023); the significance was lost when genotype-genotype interactions were added into the logistic regression model. The combination of GSTM1 active and GSTT1 active genotype decreased the risk of ASD (OR = 0.126, 95%CI: 0.029–0.547, p = 0.006), as well as combination of GSTT1 active and GSTP1 llelle (OR = 0.170, 95%CI: 0.029–0.992, p = 0.049). Increased risk of ASD was observed if combination of GSTM1 active and GSTP1 llelle was present (OR = 11.088, 95%CI: 1.745–70.456, p = 0.011). The effect of TSDP was not significant for the risk of ASD, neither individually, nor in interaction with specific GST genotypes. Specific combination of GST genotypes might be associated with susceptibility to ASD, while it appears that maternal smoking during pregnancy does not increase the risk of ASD.
Collapse
|
8
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
9
|
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 2017; 112:36-48. [PMID: 28705657 DOI: 10.1016/j.freeradbiomed.2017.07.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain; Faculty of Biomedicine and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Gisselle Pérez-Machado
- Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain
| | | | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| |
Collapse
|
10
|
Broekman MMTJ, Wong DR, Wanten GJA, Roelofs HM, van Marrewijk CJ, Klungel OH, Verbeek ALM, Hooymans PM, Guchelaar HJ, Scheffer H, Derijks LJJ, Coenen MJH, de Jong DJ. The glutathione transferase Mu null genotype leads to lower 6-MMPR levels in patients treated with azathioprine but not with mercaptopurine. THE PHARMACOGENOMICS JOURNAL 2017; 18:160-166. [PMID: 28045129 DOI: 10.1038/tpj.2016.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
The conversion of azathioprine (AZA) to mercaptopurine (MP) is mediated by glutathione transferase Mu1 (GSTM1), alpha1 (GSTA1) and alpha2 (GSTA2). We designed a case-control study with data from the TOPIC trial to explore the effects of genetic variation on steady state 6-methylmercaptopurine ribonucleotide (6-MMPR) and 6-thioguanine nucleotide (6-TGN) metabolite levels. We included 199 patients with inflammatory bowel disease (126 on AZA and 73 on MP). GSTM1-null genotype carriers on AZA had two-fold lower 6-MMPR levels than AZA users carrying one or two copies of GSTM1 (2239 (1006-4587) versus 4371 (1897-7369) pmol/8 × 108 RBCs; P<0.01). In patients on MP (control group) 6-MMPR levels were comparable (6195 (1551-10712) versus 6544 (1717-11600) pmol/8 × 108 RBCs; P=0.84). The 6-TGN levels were not affected by the GSTM1 genotype. The presence of genetic variants in GSTA1 and GSTA2 was not related to the 6-MMPR and 6-TGN levels.
Collapse
Affiliation(s)
- M M T J Broekman
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology, Nijmegen, The Netherlands
| | - D R Wong
- Department of Clinical Pharmacy, Pharmacology and Toxicology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - G J A Wanten
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology, Nijmegen, The Netherlands
| | - H M Roelofs
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology, Nijmegen, The Netherlands
| | - C J van Marrewijk
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Human Genetics, Nijmegen, The Netherlands
| | - O H Klungel
- Department of Pharmacoepidemiology and Pharmacotherapy, Utrecht University, Utrecht, The Netherlands
| | - A L M Verbeek
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - P M Hooymans
- Department of Clinical Pharmacy, Pharmacology and Toxicology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - H-J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Scheffer
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Human Genetics, Nijmegen, The Netherlands
| | - L J J Derijks
- Department of Clinical Pharmacy, Máxima Medical Center, Veldhoven, The Netherlands
| | - M J H Coenen
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Human Genetics, Nijmegen, The Netherlands
| | - D J de Jong
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Gastroenterology, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Moon W, Loftus EV. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:863-883. [PMID: 26876431 DOI: 10.1111/apt.13559] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Azathioprine and mercaptopurine have a pivotal role in the treatment of inflammatory bowel disease (IBD). However, because of their complex metabolism and potential toxicities, optimal use of biomarkers to predict adverse effects and therapeutic response is paramount. AIM To provide a comprehensive review focused on pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in IBD. METHODS A literature search up to July 2015 was performed in PubMed using a combination of relevant MeSH terms. RESULTS Pre-treatment thiopurine S-methyltransferase typing plus measurement of 6-tioguanine nucleotides and 6-methylmercaptopurine ribonucleotides levels during treatment have emerged with key roles in facilitating safe and effective thiopurine therapy. Optimal use of these tools has been shown to reduce the risk of adverse effects by 3-7%, and to improve efficacy by 15-30%. For the introduction of aldehyde oxidase (AOX) into clinical practice, the association between AOX activity and AZA dose requirements should be positively confirmed. Inosine triphosphatase assessment associated with adverse effects also shows promise. Nucleoside diphosphate-linked moiety X-type motif 15 variants have been shown to predict myelotoxicity on thiopurines in East Asian patients. However, the impact of assessments of xanthine oxidase, glutathione S-transferase, hypoxanthine guanine phosphoribosyltransferase and inosine monophosphate dehydrogenase appears too low to favour incorporation into clinical practice. CONCLUSIONS Measurement of thiopurine-related enzymes and metabolites reduces the risk of adverse effects and improves efficacy, and should be considered part of standard management. However, this approach will not predict or avoid all adverse effects, and careful clinical and laboratory monitoring of patients receiving thiopurines remains essential.
Collapse
Affiliation(s)
- W Moon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - E V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Ercegovac M, Jovic N, Sokic D, Savic-Radojevic A, Coric V, Radic T, Nikolic D, Kecmanovic M, Matic M, Simic T, Pljesa-Ercegovac M. GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure 2015; 32:30-6. [PMID: 26552558 DOI: 10.1016/j.seizure.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/06/2015] [Accepted: 08/29/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Oxidative stress is recognized as an important factor in progressive myoclonus epilepsy (PME). Genetic polymorphism of glutathione S-transferases (GSTs), which are involved in both protection from oxidative damage and detoxification, might alter the capacity for protecting tissues from exogenous and endogenous oxidants. We aimed to assess a possible association between GST polymorphism and PME, as well as, correlation between GST genotypes and oxidative phenotype in PME patients. METHODS GSTA1, GSTM1, GSTP1 and GSTT1 genotypes were determined in 26 patients with PME and 66 controls. Byproducts of protein oxidative damage (thiol groups (P-SH) and nitrotyrosine), superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities were determined. RESULTS The frequency of GSTA1, GSTM1 and GSTP1 genotypes was not significantly different between PME patients and controls, while individuals with GSTT1-null genotype were at 5.44-fold higher risk of PME than carriers of GSTT1-active genotype. Moreover, significant risk of PME was obtained in carriers of both GSTT1-null and GSTM1-null genotypes. Carriers of combined GSTA1- active and GSTT1-null genotype were at highest, 7.55-fold increased risk of PME. Byproducts of protein damage did not reach statistical significance, while SOD and GPX activities were significantly higher in PME patients then in controls. When stratified according to GST genotype, P-SH groups were significantly lower only in patients with GSTT1-null genotype in comparison to carriers of active genotype. Only SOD activity was increased in GSTT1-null when compared to corresponding active genotype. CONCLUSIONS GSTT1-null genotype might be associated with the increased risk and enhanced susceptibility to oxidative stress in PME patients.
Collapse
Affiliation(s)
- Marko Ercegovac
- Clinic of Neurology, Clinical Centre of Serbia, Dr Subotica 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Nebojsa Jovic
- Clinic of Neurology and Psychiatry for Children and Youth, Clinical Centre of Serbia, Dr Subotica 6a, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Dragoslav Sokic
- Clinic of Neurology, Clinical Centre of Serbia, Dr Subotica 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Tanja Radic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia.
| | - Dimitrije Nikolic
- University Children's Hospital, Tirsova 10, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Miljana Kecmanovic
- Faculty of Biology, University in Belgrade, Studentski trg 3, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| |
Collapse
|
13
|
Abstract
The prodrug azathioprine is primarily used for maintaining remission in inflammatory bowel disease, but approximately 30% of the patients suffer adverse side effects. The prodrug is activated by glutathione conjugation and release of 6-mercaptopurine, a reaction most efficiently catalyzed by glutathione transferase (GST) A2-2. Among five genotypes of GST A2-2, the variant A2*E has threefold-fourfold higher catalytic efficiency with azathioprine, suggesting that the expression of A2*E could boost 6-mercaptopurine release and adverse side effects in treated patients. Structure-activity studies of the GST A2-2 variants and homologous alpha class GSTs were made to delineate the determinants of high catalytic efficiency compared to other alpha class GSTs. Engineered chimeras identified GST peptide segments of importance, and replacing the corresponding regions in low-activity GSTs by these short segments produced chimeras with higher azathioprine activity. By contrast, H-site mutagenesis led to decreased azathioprine activity when active-site positions 208 and 213 in these favored segments were mutagenized. Alternative substitutions indicated that hydrophobic residues were favored. A pertinent question is whether variant A2*E represents the highest azathioprine activity achievable within the GST structural framework. This issue was addressed by mutagenesis of H-site residues assumed to interact with the substrate based on molecular modeling. The mutants with notably enhanced activities had small or polar residues in the mutated positions. The most active mutant L107G/L108D/F222H displayed a 70-fold enhanced catalytic efficiency with azathioprine. The determination of its structure by X-ray crystallography showed an expanded H-site, suggesting improved accommodation of the transition state for catalysis.
Collapse
Affiliation(s)
- Olof Modén
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Bengt Mannervik
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Neurochemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Stocco G, Cuzzoni E, De Iudicibus S, Franca R, Favretto D, Malusà N, Londero M, Cont G, Bartoli F, Martelossi S, Ventura A, Decorti G. Deletion of glutathione-s-transferase m1 reduces azathioprine metabolite concentrations in young patients with inflammatory bowel disease. J Clin Gastroenterol 2014; 48:43-51. [PMID: 23787247 DOI: 10.1097/mcg.0b013e31828b2866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
GOALS To investigate, in young patients with inflammatory bowel disease (IBD) treated with azathioprine, the association between genetic polymorphisms of thiopurine-S-methyl-transferase (TPMT), inosine-triphosphate-pyrophosphatase (ITPA), and glutathione-S-transferases (GST), involved in azathioprine metabolism, the concentration of the main metabolites of azathioprine, thioguanine nucleotides (TGNs) and the methylated nucleotides (MMPN), and the dose of the medication. BACKGROUND Azathioprine is widely used in IBD as an immunosuppressive agent, particularly to maintain remission in patients with steroid refractory disease. Azathioprine is a prodrug and requires conversion to its active form mercaptopurine, which has no intrinsic activity, and is activated by the enzymes of the purine salvage pathway to TGNs. Polymorphisms in genes of enzymes involved in azathioprine metabolism influence the efficacy and toxicity of treatment. STUDY Seventy-five young patients with IBD treated with azathioprine at least for 3 months were enrolled and genotyped for the selected genes; for these patients, TGN and MMPN metabolites were measured by high performance liquid chromatography in erythrocytes. RESULTS GST-M1 deletion was associated with lower TGN/dose ratio (P=0.0030), higher azathioprine dose requirement (P=0.022), and reduced response to therapy (P=0.0022). TPMT variant genotype was associated with lower MMPN concentration (P=0.0064) and increased TGN/dose ratio (P=0.0035). ITPA C94A polymorphism resulted in an increased MMPN concentration (P=0.037). CONCLUSIONS This study describes the effect of candidate genetic polymorphisms in TPMT, ITPA, and GST-M1 on azathioprine pharmacokinetics in IBD patients, showing, for the first time, relevant effects of GST-M1 genotype on azathioprine metabolites concentration.
Collapse
Affiliation(s)
- Gabriele Stocco
- Departments of *Life Sciences †Medical, Surgical, and Health Sciences ∥Scuola di Dottorato di Ricerca in Scienze della Riproduzione, University of Trieste ‡Institute for Maternal and Child Health IRCCS Burlo Garofolo §Department of Prevention, Sanitary Services Agency Number 1, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bonifazi F, Storci G, Bandini G, Marasco E, Dan E, Zani E, Albani F, Bertoni S, Bontadini A, De Carolis S, Sapienza MR, Rizzi S, Motta MR, Ferioli M, Garagnani P, Cavo M, Mantovani V, Bonafè M. Glutathione transferase-A2 S112T polymorphism predicts survival, transplant-related mortality, busulfan and bilirubin blood levels after allogeneic stem cell transplantation. Haematologica 2013; 99:172-9. [PMID: 24056816 DOI: 10.3324/haematol.2013.089888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Busulfan liver metabolism depends on glutathione, a crucial mediator of cellular and systemic stress. Here we investigated 40 polymorphisms at 27 loci involved in hepatic glutathione homeostasis, with the aim of testing their impact on the clinical outcome of 185 busulfan-conditioned allogeneic transplants. GSTA2 S112T serine allele homozygosity is an independent prognostic factor for poorer survival (RR=2.388), for increased any time- and 100-day transplant-related mortality (RR=4.912 and RR=5.185, respectively). The genotype also predicts a wider busulfan area under the concentration-time curve (1214.36 ± 570.06 vs. 838.10 ± 282.40 mMol*min) and higher post-transplant bilirubin serum levels (3.280 ± 0.422 vs. 1.874+0.197 mg/dL). In vitro, busulfan elicits pro-inflammatory activation (increased NF-KappaB activity and interleukin-8 expression) in human hepatoma cells. At the same time, the drug down-regulates a variety of genes involved in bilirubin liver clearance: constitutive androstane receptor, multidrug resistance-associated protein, solute carrier organic anion transporters, and even GSTA2. It is worthy of note that GSTA2 also acts as an intra-hepatic bilirubin binding protein. These data underline the prognostic value of GSTA2 genetic variability in busulfan-conditioned allotransplants and suggest a patho-physiological model in which busulfan-induced inflammation leads to the impairment of post-transplant bilirubin metabolism.
Collapse
|
16
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
17
|
Roberts RL, Barclay ML. Current relevance of pharmacogenetics in immunomodulation treatment for Crohn's disease. J Gastroenterol Hepatol 2012; 27:1546-54. [PMID: 22741564 DOI: 10.1111/j.1440-1746.2012.07220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
No drug therapy is completely risk free, and the costs associated with non-response and adverse effects can exceed the cost of the therapy. The ultimate goal of pharmacogenetic research is to find robust genetic predictors of drug response that enable the development of prospective genetic tests to reliably identify patients at risk of non-response or of developing an adverse effect prior to the drug being prescribed. Currently, thiopurine S-methyltransferase (TPMT) deficiency is the only pharmacogenetic factor that is prospectively assessed before azathioprine or 6-mercaptopurine immunomodulation is commenced in patients with Crohn's disease (CD). As yet no other inherited determinant of drug response has made the transition from bench to bedside for the management of this disease. In this review we summarize what is known about TPMT deficiency and explore whether there is evidence to support a role of other genetic polymorphisms in predicting the response of CD patients to thiopurine drugs, methotrexate, and anti-tumor necrosis factor α (TNFα) therapy.
Collapse
Affiliation(s)
- Rebecca L Roberts
- Department of Surgical Sciences, Dunedin School of Medicine, Dunedin, New Zealand.
| | | |
Collapse
|
18
|
Abstract
The conventional analysis of enzyme evolution is to regard one single salient feature as a measure of fitness, expressed in a milieu exposing the possible selective advantage at a given time and location. Given that a single protein may serve more than one function, fitness should be assessed in several dimensions. In the present study we have explored individual mutational steps leading to a triple-point-mutated human GST (glutathione transferase) A2-2 displaying enhanced activity with azathioprine. A total of eight alternative substrates were used to monitor the diverse evolutionary trajectories. The epistatic effects of the mutations on catalytic activity were variable in sign and magnitude and depended on the substrate used, showing that epistasis is a multidimensional quality. Evidently, the multidimensional fitness landscape can lead to alternative trajectories resulting in enzymes optimized for features other than the selectable markers relevant at the origin of the evolutionary process. In this manner the evolutionary response is robust and can adapt to changing environmental conditions.
Collapse
|
19
|
Zhang W, Modén O, Tars K, Mannervik B. Structure-Based Redesign of GST A2-2 for Enhanced Catalytic Efficiency with Azathioprine. ACTA ACUST UNITED AC 2012; 19:414-21. [DOI: 10.1016/j.chembiol.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
|
20
|
Modén O, Zhang W, Mannervik B. Mutational analysis of human glutathione transferase A2-2 identifies structural elements supporting high activity with the prodrug azathioprine. Protein Eng Des Sel 2012; 25:189-97. [PMID: 22334756 DOI: 10.1093/protein/gzs006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glutathione transferase (GST) A2-2 is the human enzyme displaying the highest catalytic activity with the prodrug azathioprine (Aza). The reaction releases pharmacologically active 6-mercaptopurine by displacing the imidazole moiety from the Aza molecule. The GST-catalyzed reaction is of medical significance, since high rates of Aza activation may lead to adverse side effects in treated patients. The present study involves structure-activity relationships in GST A2-2 variants. Chimeric GSTs were previously generated by DNA shuffling and two peptide segments, one N-terminal and one C-terminal, were identified as primary determinants of Aza activity. The segments contain several residues of the substrate-binding H-site and their significance for supporting high Aza activity was investigated. Substitution of the corresponding two small regions in the low-activity human GST A3-3 or rat GST A3-3 by the human GST A2-2 segments generated chimeras with ∼10-fold enhanced Aza activity. The H-site residues Met208 and Leu213 in the C-terminal segment of GST A2-2 were mutated to produce a library with all possible residue combinations. At a calculated 93% library coverage, all of the 1880 mutants examined showed wild-type or decreased Aza activity, even though some retained activities with alternative substrates, further emphasizing the importance of this region for the targeted activity.
Collapse
Affiliation(s)
- Olof Modén
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-75123 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X. Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2012; 35:15-36. [PMID: 22050052 DOI: 10.1111/j.1365-2036.2011.04905.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thiopurines represent an effective and widely prescribed therapy in inflammatory bowel disease (IBD). Concerns about toxicity, mainly resulting from a wide inter-individual variability in thiopurine metabolism, restrict their use. Optimal thiopurine dosing is challenging for preventing adverse drug reactions and improving clinical response. AIM To review efficacy and toxicity of thiopurines in IBD. To provide pharmacogenetic-based therapeutic recommendations. METHODS We conducted a query on PubMed database using 'inflammatory bowel disease', 'thiopurine', 'azathioprine', '6-mercaptopurine', 'TPMT', 'pharmacogenetics', 'TDM', and selected relevant articles, especially clinical studies. RESULTS Thiopurine metabolism - key enzyme: thiopurine S-methyltransferase (TPMT) - modulates clinical response, as it results in production of the pharmacologically active and toxic metabolites, the thioguanine nucleotides (6-TGN). Adjusting dosage according to TPMT status and/or metabolite blood levels is recommended for optimising thiopurine therapy (e.g. improving response rate up to 30% or decreasing haematological adverse events of 25%). Other enzymes or transporters of interest, as inosine triphosphatase (ITPase), glutathione S-transferase (GST), xanthine oxidase (XO), aldehyde oxidase (AOX), methylene tetrahydrofolate reductase (MTHFR) and ATP-binding cassette sub-family C member 4 (ABCC4) are reviewed and discussed for clinical relevance. CONCLUSIONS Based on the literature data, we provide a therapeutic algorithm for thiopurines therapy with starting dose recommendations depending on TPMT status and thereafter dose adjustments according to five metabolite profiles identified with therapeutic drug monitoring (TDM). This algorithm allows a dosage individualisation to optimise the management of patients under thiopurine. Furthermore, identification of new pharmacogenetic biomarkers is promising for ensuring maximal therapeutic response to thiopurines with a minimisation of the risk for adverse events.
Collapse
Affiliation(s)
- L Chouchana
- Assistance publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Biochimie, Pharmacogénétique et Oncologie Moléculaire, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Fedulova N, Mannervik B. Experimental conditions affecting functional comparison of highly active glutathione transferases. Anal Biochem 2011; 413:16-23. [DOI: 10.1016/j.ab.2011.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
|
23
|
Fedulova N, Raffalli-Mathieu F, Mannervik B. Characterization of porcine Alpha-class glutathione transferase A1-1. Arch Biochem Biophys 2011; 507:205-11. [DOI: 10.1016/j.abb.2010.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/14/2010] [Indexed: 11/29/2022]
|