1
|
Yang SF, Chen XC, Pan YJ. Microbiota-derived metabolites in tumorigenesis: mechanistic insights and therapeutic implications. Front Pharmacol 2025; 16:1598009. [PMID: 40444051 PMCID: PMC12119621 DOI: 10.3389/fphar.2025.1598009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Intestinal microbiota is a complex ecosystem of microorganisms that perform diverse metabolic activities to maintain gastrointestinal homeostasis. These microorganisms provide energy and nutrients for growth and reproduction while producing numerous metabolites including lipopolysaccharides (LPS), Bacteroides fragilis toxin (BFT), bile acids (BAs), polyamines (PAs), and short-chain fatty acids (SCFAs). These metabolites are linked to inflammation and various metabolic diseases, such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, cardiometabolic disease, and malnutrition. In addition, they may contribute to tumorigenesis. Evidence suggests that these microbes can increase the susceptibility to certain cancers and affect treatment responses. In this review, we discuss the current knowledge on how the gut microbiome and its metabolites influence tumorigenesis, highlighting the potential molecular mechanisms and prospects for basic and translational research in this emerging field.
Collapse
Affiliation(s)
| | | | - Yao-Jie Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen S, Deng Y, Huang C, Xie X, Long Z, Lao S, Gao X, Wang K, Wang S, Li X, Liu Y, Xu C, Chen X, Huang W, Zhang J, Peng T, Li L, Chen Y, Lv X, Cai M, Li M. BSRF1 modulates IFN-β-mediated antiviral responses by inhibiting NF-κB activity via an IKK-dependent mechanism in Epstein-Barr virus infection. Int J Biol Macromol 2025; 306:141600. [PMID: 40024405 DOI: 10.1016/j.ijbiomac.2025.141600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The Epstein-Barr virus (EBV) encoded tegument protein BSRF1 plays a significant role in the processes of viral maturation and release, however, it's not clear whether BSRF1 is involved in the modulation of host innate immunity. In this study, we demonstrated that BSRF1 can inhibit interferon β (IFN-β) production by downregulating nuclear factor kappa B (NF-κB) activity and subsequently reducing the yield of inflammatory cytokines, thereby facilitating viral replication. Dual luciferase reporter assays indicated that BSRF1 may inhibit NF-κB signaling at the level of IKK or between IKK and p65, while co-immunoprecipitation experiments revealed its association with multiple critical host adaptor proteins. Mechanistically, BSRF1 hinders the phosphorylation of IκBα at Ser32/36 and K48-linked polyubiquitination, thereby preventing proteasome-mediated degradation of IκBα by disrupting the assembly of the regulatory subunits within the IKK complex. Although BSRF1 interacts with p65 and its N-terminal domain, it does not alter the formation of the p65/p50 heterodimer. Instead, it prevents the nuclear translocation of p65 by inhibiting the dissociation of IκBα from the NF-κB dimer. Collectively, these findings suggested that BSRF1 assists EBV's evasion of host innate immune system by inhibiting the antiviral response to IFN-β through the NF-κB signaling pathway, potentially contributing to the virus's ability to establish persistent infection and its association with tumorigenesis.
Collapse
Affiliation(s)
- Shengwen Chen
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yangxi Deng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Chen Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xiaolei Xie
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Zhiwei Long
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Shuxian Lao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinghong Gao
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shuai Wang
- Children's Hospital of Soochow University, Suzhou 215025, Jiangsu, China
| | - Xiaoqing Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yintao Liu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Chunyan Xu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinru Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Wenzhuo Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China; Guangdong South China Vaccine, Guangzhou 510663, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China
| | - Yonger Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Xi Lv
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Meili Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University; Department of Laboratory Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, 511518, Qingyuan, Guangdong, China; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
3
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wu CC, Chen MS, Chen JY. The Application of Emodin Treatment on Nasopharyngeal Carcinoma Therapy. Biomedicines 2024; 12:486. [PMID: 38540100 PMCID: PMC10967729 DOI: 10.3390/biomedicines12030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 01/03/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy prevailing in Taiwan, Hong Kong, Southern China, Southeast Asia, and North Africa. Although early-stage NPC responds well to the primary treatment of radio-chemotherapy, the mortality rate of advanced NPC remains high. Therefore, developing new therapies for nasopharyngeal carcinoma is an urgent task. Emodin is an anthraquinone derivative mainly found in Rheum palmatum. Emodin has been found to possess many anti-cancer functions against various types of cancers, but they are less discussed in the treatment of NPC. This review organized the different studies about the anti-NPC activity of emodin and discussed the potential and challenges of emodin treatment in NPC therapy.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 404447, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350401, Taiwan;
| |
Collapse
|
5
|
Li LT, Liu J, Luo M, Liu JS, Zhang MM, Zhang WJ, Chen HC, Liu ZF. Establishment of pseudorabies virus latency and reactivation model in mice dorsal root ganglia culture. J Gen Virol 2023; 104. [PMID: 37991423 DOI: 10.1099/jgv.0.001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Pseudorabies virus (PRV) belongs to the alpha herpesvirus family and is responsible for Aujeszky's disease in pigs. Similar to other alpha herpesviruses, PRV establishes a lifelong latent infection in trigeminal ganglion. These latently infected pigs serve as a reservoir for recurrent infections when reactivation is triggered, making the eradication of PRV a challenging task. However, the molecular mechanism underlying PRV latency and reactivation in neurons is still poorly understood due to limitations in the in vitro model. To establish a pseudorabies virus latency and reactivation model in primary neuron cultures, we isolated dorsal root ganglion (DRG) from newborn Kunming mice using a method named epineurium-pulling for DRG collection (EPDC) and cultured primary neurons in vitro. A dual-colour recombinant PRV BAC mRuby-VP16 was constructed and 0.5 multiplicity of infection (MOI) was found as an appropriate dose in the presence of aciclovir to establish latency. Reactivation was induced using UV-inactivated herpesviruses or a series of chemical inhibitors. Interestingly, we found that not only UV-PRV, but also UV-HSV-1 and UV-BHoV-5 were able to induce rapid PRV reactivation. The efficiency of reactivation for LY294002, forskolin, etoposide, dexamethasone, and acetylcholine was found to be dependent on their concentration. In conclusion, we developed a valuable model of PRV latency and reactivation, which provides a basis for future mechanism research.
Collapse
Affiliation(s)
- Lin-Tao Li
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Liu
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Miao Luo
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing-Song Liu
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mei-Mei Zhang
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
6
|
Tan H, Gong Y, Liu Y, Long J, Luo Q, Faleti OD, Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother 2023; 164:114916. [PMID: 37229802 DOI: 10.1016/j.biopha.2023.114916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus associated with lymphomas and epithelial cell cancers. It establishes two separate infection phases, latent and lytic, in the host. Upon infection of a new host cell, the virus activates several pathways, to induce the expression of lytic EBV antigens and the production of infectious virus particles. Although the carcinogenic role of latent EBV infection has been established, recent research suggests that lytic reactivation also plays a significant role in carcinogenesis. In this review, we summarize the mechanism of EBV reactivation and recent findings about the role of viral lytic antigens in tumor formation. In addition, we discuss the treatment of EBV-associated tumors with lytic activators and the targets that may be therapeutically effective in the future.
Collapse
Affiliation(s)
- Haiqi Tan
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yibing Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Yi Liu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China
| | - Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999000, Hong Kong Special Administrative Region of China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
7
|
Gopalakrishnan Mahalingam KK, Sankar LS, Masthan K, Mahalakshmi K, Naveen Kumar V. Epstein- Barr viral load in exfoliated cells of oral squamous cell carcinoma and oral potentially malignant disorders - A cross-sectional study. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Linton RE, Daker M, Khoo ASB, Choo DCY, Viljoen M, Neilsen PM. Nasopharyngeal carcinoma among the Bidayuh of Sarawak, Malaysia: History and risk factors. Oncol Lett 2021; 22:514. [PMID: 33986874 PMCID: PMC8114476 DOI: 10.3892/ol.2021.12775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a cancer of the epithelial cells lining the nasopharynx. The incidence of NPC has a distinct geographical distribution, mainly affecting the Chinese population of Southern China. In Malaysia, this cancer is exceptionally prevalent among males. There is a high incidence rate of NPC among the Bidayuh natives in Sarawak, Malaysia. Other than epidemiology reports, there has not been an article describing plausible cancer risk factors contributing to NPC within this native group. Researchers are still trying to understand the reasons the Bidayuh and Southern Chinese are highly susceptible to NPC. This article discusses the risk factors of developing NPC: Epstein-Barr virus infection, genetic predisposition, diet, environmental exposure and tobacco smoking. There is a need to improve the understanding of the role of risk factors to identify new ways to prevent cancer, especially among high-risk groups.
Collapse
Affiliation(s)
- Reagan Entigu Linton
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
| | - Maelinda Daker
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor 40170, Malaysia
| | - Alan Soo-Beng Khoo
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor 40170, Malaysia
| | - Diana Chung Yiing Choo
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
| | - Mignon Viljoen
- College of Clinical Sciences, School of Health, Medical and Applied Science, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| | - Paul M. Neilsen
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- College of Clinical Sciences, School of Health, Medical and Applied Science, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| |
Collapse
|
9
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Patient-derived tumor models for human nasopharyngeal carcinoma. Enzymes 2019. [PMID: 31727278 DOI: 10.1016/bs.enz.2019.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck tumors in Southern China. At present, the interaction of genetic susceptibility, Epstein-Barr virus (EBV) infection and environmental factors has been considered to be the main cause of NPC. However, the detailed molecular mechanisms of tumorigenesis and tumor metastasis have not been fully understood. The effective therapeutic drugs targeting NPC are still being developed and discovered. NPC cell lines and normal nasopharyngeal epithelial cell lines were frequently used by researchers, but not represent the complex situation in vivo. Establishing an ideal animal model of NPC is one of the keys to solving the above problems. Here, we introduce the development of in vitro and in vivo models of NPC.
Collapse
|
11
|
Tan SN, Sim SP, Khoo ASB. Matrix association region/scaffold attachment region (MAR/SAR) sequence: its vital role in mediating chromosome breakages in nasopharyngeal epithelial cells via oxidative stress-induced apoptosis. BMC Mol Biol 2018; 19:15. [PMID: 30514321 PMCID: PMC6278157 DOI: 10.1186/s12867-018-0116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Background Oxidative stress is known to be involved in most of the aetiological factors of nasopharyngeal carcinoma (NPC). Cells that are under oxidative stress may undergo apoptosis. We have previously demonstrated that oxidative stress-induced apoptosis could be a potential mechanism mediating chromosome breakages in nasopharyngeal epithelial cells. Additionally, caspase-activated DNase (CAD) may be the vital player in mediating the chromosomal breakages during oxidative stress-induced apoptosis. Chromosomal breakage occurs during apoptosis and chromosome rearrangement. Chromosomal breakages tend to cluster in certain regions, such as matrix association region/scaffold attachment region (MAR/SAR). We hypothesised that oxidative stress-induced apoptosis may result in chromosome breaks preferentially at the MAR/SAR sites. The AF9 gene at 9p22 was targeted in this study because 9p22 is a deletion site commonly found in NPC. Results By using MAR/SAR recognition signature (MRS), potential MAR/SAR sites were predicted in the AF9 gene. The predicted MAR/SAR sites precisely match to the experimentally determined MAR/SARs. Hydrogen peroxide (H2O2) was used to induce apoptosis in normal nasopharyngeal epithelial cells (NP69) and NPC cells (HK1). Nested inverse polymerase chain reaction was employed to identify the AF9 gene cleavages. In the SAR region, the gene cleavage frequency of H2O2-treated cells was significantly higher than that of the non-treated cells. A few chromosomal breakages were detected within the AF9 region which was previously found to be involved in the mixed lineage leukaemia (MLL)-AF9 translocation in an acute lymphoblastic leukaemia patient. As for the non-SAR region, no significant difference in the gene cleavage frequency was found between the untreated control and H2O2-treated cells. Furthermore, H2O2-induced cleavages within the SAR region were reduced by caspase-3 inhibitor, which indirectly inhibits CAD. Conclusions These results reaffirm our previous findings that oxidative stress-induced apoptosis could be one of the potential mechanisms underlying chromosome breakages in nasopharyngeal epithelial cells. MAR/SAR may play a vital role in defining the location of chromosomal breakages mediated by oxidative stress-induced apoptosis, where CAD is the major nuclease. Electronic supplementary material The online version of this article (10.1186/s12867-018-0116-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang-Nee Tan
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Sai-Peng Sim
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia.
| | - Alan S B Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Wu CC, Fang CY, Huang SY, Chiu SH, Lee CH, Chen JY. Perspective: Contribution of Epstein-Barr virus (EBV) Reactivation to the Carcinogenicity of Nasopharyngeal Cancer Cells. Cancers (Basel) 2018; 10:cancers10040120. [PMID: 29673164 PMCID: PMC5923375 DOI: 10.3390/cancers10040120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma derived from the epithelium of the post-nasal cavity, with a unique geographic and ethnic distribution. Epstein–Barr virus (EBV) is an etiological agent of NPC, but how it contributes to carcinogenesis is not completely clear. Although it is thought that EBV latency participates in the development of NPC, increasing evidence reveals that the lytic cycle also plays an important role in the carcinogenic process. In this review, we summarize our recent studies on how EBV reactivation causes genomic instability and accelerates tumorigenesis in epithelial cells. The roles of three lytic genes, namely, BRLF1, BGLF5 and BALF3, in this process are also introduced. Moreover, blocking EBV reactivation using natural compounds may help delay the progression of NPC tumorigenesis. These studies provide a new insight into NPC carcinogenesis and raise the possibility that inhibition of EBV reactivation may be a novel approach to prevent the relapse of NPC.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Chih-Yeu Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Shih-Hsin Chiu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Chia-Huei Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan.
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
13
|
Teow SY, Yap HY, Peh SC. Epstein-Barr Virus as a Promising Immunotherapeutic Target for Nasopharyngeal Carcinoma Treatment. J Pathog 2017; 2017:7349268. [PMID: 29464124 PMCID: PMC5804410 DOI: 10.1155/2017/7349268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen that infects more than 90% of global human population. EBV primarily targets B-lymphocytes and epithelial cells while some of them infect monocyte/macrophage, T-lymphocytes, and dendritic cells (DCs). EBV infection does not cause death by itself but the infection has been persistently associated with certain type of cancers such as nasopharyngeal carcinoma (NPC), Burkitt's lymphoma (BL), and Hodgkin's lymphoma (HL). Recent findings have shown promise on targeting EBV proteins for cancer therapy by immunotherapeutic approach. Some studies have also shown the success of adopting EBV-based therapeutic vaccines for the prevention of EBV-associated cancer particularly on NPC. In-depth investigations are in progress to refine the current therapeutic and vaccination strategies. In present review, we discuss the highly potential EBV targets for NPC immunotherapy and therapeutic vaccine development as well as addressing the underlying challenges in the process of bringing the therapy and vaccination from the bench to bedside.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Hooi-Yeen Yap
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Suat-Cheng Peh
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
- Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Hu J, Li H, Luo X, Li Y, Bode A, Cao Y. The role of oxidative stress in EBV lytic reactivation, radioresistance and the potential preventive and therapeutic implications. Int J Cancer 2017; 141:1722-1729. [PMID: 28571118 DOI: 10.1002/ijc.30816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Jianmin Hu
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education; Xiangya Hospital, Central South University; Changsha China
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Changsha China
- Key Laboratory of Carcinogenesis; Chinese Ministry of Health; Changsha China
| | - Hongde Li
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education; Xiangya Hospital, Central South University; Changsha China
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Changsha China
- Key Laboratory of Carcinogenesis; Chinese Ministry of Health; Changsha China
| | - Xiangjian Luo
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education; Xiangya Hospital, Central South University; Changsha China
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Changsha China
- Key Laboratory of Carcinogenesis; Chinese Ministry of Health; Changsha China
| | - Yueshuo Li
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education; Xiangya Hospital, Central South University; Changsha China
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Changsha China
- Key Laboratory of Carcinogenesis; Chinese Ministry of Health; Changsha China
| | - Ann Bode
- The Hormel Institute, University of Minnesota; Austin MN 55912
| | - Ya Cao
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education; Xiangya Hospital, Central South University; Changsha China
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Changsha China
- Key Laboratory of Carcinogenesis; Chinese Ministry of Health; Changsha China
| |
Collapse
|
15
|
Shumilov A, Tsai MH, Schlosser YT, Kratz AS, Bernhardt K, Fink S, Mizani T, Lin X, Jauch A, Mautner J, Kopp-Schneider A, Feederle R, Hoffmann I, Delecluse HJ. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability. Nat Commun 2017; 8:14257. [PMID: 28186092 PMCID: PMC5309802 DOI: 10.1038/ncomms14257] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/13/2016] [Indexed: 12/03/2022] Open
Abstract
Infections with Epstein–Barr virus (EBV) are associated with cancer development, and EBV lytic replication (the process that generates virus progeny) is a strong risk factor for some cancer types. Here we report that EBV infection of B-lymphocytes (in vitro and in a mouse model) leads to an increased rate of centrosome amplification, associated with chromosomal instability. This effect can be reproduced with virus-like particles devoid of EBV DNA, but not with defective virus-like particles that cannot infect host cells. Viral protein BNRF1 induces centrosome amplification, and BNRF1-deficient viruses largely lose this property. These findings identify a new mechanism by which EBV particles can induce chromosomal instability without establishing a chronic infection, thereby conferring a risk for development of tumours that do not necessarily carry the viral genome. Infection with Epstein–Barr virus (EBV) is associated with increased risk of cancer development. Here the authors show that EBV particles, and more specifically the viral protein BNRF1, induce centrosome amplification and chromosomal instability in host cells in the absence of chronic infection.
Collapse
Affiliation(s)
- Anatoliy Shumilov
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Yvonne T Schlosser
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Anne-Sophie Kratz
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Katharina Bernhardt
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Susanne Fink
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Tuba Mizani
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Xiaochen Lin
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Josef Mautner
- Helmholtz Zentrum München, Research Unit Gene Vectors, 81377 Munich, Germany.,Children's Hospital Technische Universität München, 80804 Munich, Germany.,German Center for Infection Research (DZIF), 81377 Munich, Germany
| | | | - Regina Feederle
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Core Facility Monoclonal Antibodies, 81377 Munich, Germany
| | - Ingrid Hoffmann
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| |
Collapse
|
16
|
EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget 2017; 7:18999-9017. [PMID: 26967558 PMCID: PMC4951347 DOI: 10.18632/oncotarget.7967] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx. Although a combination of radiotherapy with chemotherapy is effective for therapy, relapse and metastasis after remission remain major causes of mortality. Epstein-Barr virus (EBV) is believed to be one of causes of NPC development. We demonstrated previously that EBV reactivation is important for the carcinogenesis of NPC. We sought, therefore, to determine whether EBV reactivation can be a target for retardation of relapse of NPC. After screening, we found luteolin is able to inhibit EBV reactivation. It inhibited EBV lytic protein expression and repressed the promoter activities of two major immediate-early genes, Zta and Rta. Furthermore, luteolin was shown to reduce genomic instability induced by recurrent EBV reactivation in NPC cells. EBV reactivation-induced NPC cell proliferation and migration, as well as matrigel invasiveness, were also repressed by luteolin treatment. Tumorigenicity in mice, induced by EBV reactivation, was decreased profoundly following luteolin administration. Together, these results suggest that inhibition of EBV reactivation is a novel approach to prevent the relapse of NPC.
Collapse
|
17
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
18
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
19
|
Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res 2016; 132:99-110. [PMID: 27185626 DOI: 10.1016/j.antiviral.2016.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
Abstract
The lytic reactivation of Epstein-Barr virus (EBV) has been reported to be strongly associated with several human diseases, including nasopharyngeal carcinoma (NPC). Inhibition of the EBV lytic cycle has been shown to be of great benefit in the treatment of EBV-associated diseases. The administration of dietary compounds is safer and more convenient than other approaches to preventing EBV reactivation. We screened several dietary compounds for their ability to inhibit EBV reactivation in NPC cells. Among them, the flavonoid luteolin showed significant inhibition of EBV reactivation. Luteolin inhibited protein expression from EBV lytic genes in EBV-positive epithelial and B cell lines. It also reduced the numbers of EBV-reactivating cells detected by immunofluorescence analysis and reduced the production of virion. Furthermore, luteolin reduced the activities of the promoters of the immediate-early genes Zta (Zp) and Rta (Rp) and also inhibited Sp1-luc activity, suggesting that disruption of Sp1 binding is involved in the inhibitory mechanism. CHIP analysis revealed that luteolin suppressed the activities of Zp and Rp by deregulating Sp1 binding. Taken together, luteolin inhibits EBV reactivation by repressing the promoter activities of Zp and Rp, suggesting luteolin is a potential dietary compound for prevention of virus infection.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ju Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Yang J, Deng W, Hau PM, Liu J, Lau VMY, Cheung ALM, Huen MSY, Tsao SW. Epstein-Barr virus BZLF1 protein impairs accumulation of host DNA damage proteins at damage sites in response to DNA damage. J Transl Med 2015; 95:937-950. [PMID: 26006018 DOI: 10.1038/labinvest.2015.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/08/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is closely associated with several human malignancies including nasopharyngeal carcinoma (NPC). The EBV immediate-early protein BZLF1 is the key mediator that switches EBV infection from latent to lytic forms. The lytic form of EBV infection has been implicated in human carcinogenesis but its molecular mechanisms remain unclear. BZLF1 has been shown to be a binding partner of several DNA damage response (DDR) proteins. Its functions in host DDR remain unknown. Thus, we explore the effects of BZLF1 on cellular response to DNA damage in NPC cells. We found that expression of BZLF1 impaired the binding between RNF8 and MDC1 (mediator of DNA damage checkpoint 1), which in turn interfered with the localization of RNF8 and 53BP1 to the DNA damage sites. The RNF8-53BP1 pathway is important for repair of DNA double-strand breaks and DNA damage-induced G2/M checkpoint activation. Our results showed that, by impairing DNA damage repair as well as abrogating G2/M checkpoint, BZLF1 induced genomic instability and rendered cells more sensitive to ionizing radiation. Moreover, the blockage of 53BP1 and RNF8 foci formation was recapitulated in EBV-infected cells. Taken together, our study raises the possibility that, by causing mis-localization of important DDR proteins, BZLF1 may function as a link between lytic EBV infection and impaired DNA damage repair, thus contributing to the carcinogenesis of EBV-associated human epithelial malignancies.
Collapse
Affiliation(s)
- Jie Yang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wen Deng
- 1] Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China [2] School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pok M Hau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jia Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Victoria M Y Lau
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie L M Cheung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael S Y Huen
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai W Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
21
|
Fang CY, Wu CC, Hsu HY, Chuang HY, Huang SY, Tsai CH, Chang Y, Tsao GSW, Chen CL, Chen JY. EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int J Mol Sci 2015; 16:2530-58. [PMID: 25625511 PMCID: PMC4346850 DOI: 10.3390/ijms16022530] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| | - Hsin-Ying Chuang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 701, Taiwan.
| | - George Sai-Wah Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| |
Collapse
|
22
|
Hutajulu SH, Kurnianda J, Tan IB, Middeldorp JM. Therapeutic implications of Epstein-Barr virus infection for the treatment of nasopharyngeal carcinoma. Ther Clin Risk Manag 2014; 10:721-36. [PMID: 25228810 PMCID: PMC4161530 DOI: 10.2147/tcrm.s47434] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC.
Collapse
Affiliation(s)
- Susanna Hilda Hutajulu
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Johan Kurnianda
- Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Bing Tan
- Department of Ear, Nose and Throat, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands ; Department of Ear, Nose and Throat, Faculty of Medicine Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [PMID: 24095032 DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
24
|
Huang SY, Fang CY, Wu CC, Tsai CH, Lin SF, Chen JY. Reactive oxygen species mediate Epstein-Barr virus reactivation by N-methyl-N'-nitro-N-nitrosoguanidine. PLoS One 2013; 8:e84919. [PMID: 24376853 PMCID: PMC3869928 DOI: 10.1371/journal.pone.0084919] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022] Open
Abstract
N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H₂O₂ treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Yang Chen
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
25
|
Liu YR, Huang SY, Chen JY, Wang LHC. Microtubule depolymerization activates the Epstein–Barr virus lytic cycle through protein kinase C pathways in nasopharyngeal carcinoma cells. J Gen Virol 2013; 94:2750-2758. [DOI: 10.1099/vir.0.058040-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.
Collapse
Affiliation(s)
- Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
26
|
Lan YY, Yeh TH, Lin WH, Wu SY, Lai HC, Chang FH, Takada K, Chang Y. Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One 2013; 8:e56121. [PMID: 23409137 PMCID: PMC3567054 DOI: 10.1371/journal.pone.0056121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/04/2013] [Indexed: 02/03/2023] Open
Abstract
Zta is a lytic transactivator of Epstein-Barr virus (EBV) and has been shown to promote migration and invasion of epithelial cells. Although previous studies indicate that Zta induces expression of matrix metalloproteinase (MMP) 9 and MMP1, direct evidence linking the MMPs to Zta-induced cell migration and invasion is still lacking. Here we performed a series of in vitro studies to re-examine the expression profile and biologic functions of Zta-induced MMPs in epithelial cells derived from nasopharyngeal carcinoma. We found that, in addition to MMP9, MMP3 was a new target gene upregulated by Zta. Ectopic Zta expression in EBV-negative cells increased both mRNA and protein production of MMP3. Endogenous Zta also contributed to induction of MMP3 expression, migration and invasion of EBV-infected cells. Zta activated the MMP3 promoter through three AP-1 elements, and its DNA-binding domain was required for the promoter binding and MMP3 induction. We further tested the effects of MMP3 and MMP9 on cell motility and invasiveness in vitro. Zta-promoted cell migration required MMP3 but not MMP9. On the other hand, both MMP3 and MMP9 were essential for Zta-induced cell invasion, and co-expression of the two MMPs synergistically increased cell invasiveness. Therefore, this study provides integrated evidence demonstrating that, at least in the in vitro cell models, Zta drives cell migration and invasion through MMPs.
Collapse
Affiliation(s)
- Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Yeh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yi Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Hsiao-Ching Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Hsin Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Fang CY, Huang SY, Wu CC, Hsu HY, Chou SP, Tsai CH, Chang Y, Takada K, Chen JY. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells. PLoS One 2012; 7:e44810. [PMID: 23024765 PMCID: PMC3443098 DOI: 10.1371/journal.pone.0044810] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/07/2012] [Indexed: 12/04/2022] Open
Abstract
Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N’-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can enhance the reactivation of EBV and, over recurrent reactivations, lead to alteration of cancer hallmark gene expression with resultant enhancement of tumorigenesis in NPC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Wu CC, Chuang HY, Lin CY, Chen YJ, Tsai WH, Fang CY, Huang SY, Chuang FY, Lin SF, Chang Y, Chen JY. Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog 2012; 52:946-58. [PMID: 22641235 DOI: 10.1002/mc.21926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/25/2012] [Accepted: 04/24/2012] [Indexed: 01/16/2023]
Abstract
Epstein-Barr virus (EBV) has been associated with several human malignancies including nasopharyngeal carcinoma (NPC). Reactivation of latent EBV has been considered to contribute to the carcinogenesis of NPC. Blocking the EBV lytic cycle has been shown effective in the treatment of EBV-associated diseases. We have searched for natural dietary compounds inhibiting EBV reactivation in NPC cells. Among them, sulforaphane (SFN) was found to be effective in the inhibition of EBV reactivation in latent EBV-positive NPC cells, NA and HA. SFN is a histone deacetylase (HDAC) inhibitor and has been recognized as an antioxidant and antitumor compound for chemoprevention. However, its antiviral effect is less well elucidated. In this study, after determination of the cytotoxicity of SFN on various epithelial cells, we showed that SFN treatment inhibits EBV reactivation, rather than induction, by detection of EBV lytic gene expression in EBV-positive NPC cells. We also determined that the number of cells supporting the EBV lytic cycle is decreased using immunofluorescence and flow cytometric analysis. Moreover, we have found that this inhibitory effect decreases virus production. To elucidate the inhibitory mechanism of SFN on the EBV lytic cycle, luciferase reporter assays were carried out on the Zta and Rta promoters. The results show that SFN inhibits transactivation activity of the EBV immediate-early gene Rta but not Zta. Together, our results suggest that SFN has the capability to inhibit EBV lytic cycle and the potential to be taken as a dietary compound for prevention of EBV reactivation.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|