1
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Larrimore KE, Kannan L, Kendle RP, Jamal T, Barcus M, Stefanko K, Kilbourne J, Brimijoin S, Zhan CG, Neisewander J, Mor TS. A plant-derived cocaine hydrolase prevents cocaine overdose lethality and attenuates cocaine-induced drug seeking behavior. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109961. [PMID: 32387315 PMCID: PMC7398606 DOI: 10.1016/j.pnpbp.2020.109961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
Cocaine use disorders include short-term and acute pathologies (e.g. overdose) and long-term and chronic disorders (e.g. intractable addiction and post-abstinence relapse). There is currently no available treatment that can effectively reduce morbidity and mortality associated with cocaine overdose or that can effectively prevent relapse in recovering addicts. One recently developed approach to treat these problems is the use of enzymes that rapidly break down the active cocaine molecule into inactive metabolites. In particular, rational design and site-directed mutagenesis transformed human serum recombinant butyrylcholinesterase (BChE) into a highly efficient cocaine hydrolase with drastically improved catalytic efficiency toward (-)-cocaine. A current drawback preventing the clinical application of this promising enzyme-based therapy is the lack of a cost-effective production strategy that is also flexible enough to rapidly scale-up in response to continuous improvements in enzyme design. Plant-based expression systems provide a unique solution as this platform is designed for fast scalability, low cost and the advantage of performing eukaryotic protein modifications such as glycosylation. A Plant-derived form of the Cocaine Super Hydrolase (A199S/F227A/S287G/A328W/Y332G) we designate PCocSH protects mice from cocaine overdose, counters the lethal effects of acute cocaine overdose, and prevents reinstatement of extinguished drug-seeking behavior in mice that underwent place conditioning with cocaine. These results demonstrate that the novel PCocSH enzyme may well serve as an effective therapeutic for cocaine use disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Latha Kannan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - R Player Kendle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Tameem Jamal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Matthew Barcus
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Kathryn Stefanko
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacquelyn Kilbourne
- Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Tsafrir S Mor
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| |
Collapse
|
3
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
4
|
Plant-expressed cocaine hydrolase variants of butyrylcholinesterase exhibit altered allosteric effects of cholinesterase activity and increased inhibitor sensitivity. Sci Rep 2017; 7:10419. [PMID: 28874829 PMCID: PMC5585256 DOI: 10.1038/s41598-017-10571-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/10/2017] [Indexed: 12/04/2022] Open
Abstract
Butyrylcholinesterase (BChE) is an enzyme with broad substrate and ligand specificities and may function as a generalized bioscavenger by binding and/or hydrolyzing various xenobiotic agents and toxicants, many of which target the central and peripheral nervous systems. Variants of BChE were rationally designed to increase the enzyme’s ability to hydrolyze the psychoactive enantiomer of cocaine. These variants were cloned, and then expressed using the magnICON transient expression system in plants and their enzymatic properties were investigated. In particular, we explored the effects that these site-directed mutations have over the enzyme kinetics with various substrates of BChE. We further compared the affinity of various anticholinesterases including organophosphorous nerve agents and pesticides toward these BChE variants relative to the wild type enzyme. In addition to serving as a therapy for cocaine addiction-related diseases, enhanced bioscavenging against other harmful agents could add to the practicality and versatility of the plant-derived recombinant enzyme as a multivalent therapeutic.
Collapse
|
5
|
Wang G, Zhang T, Huang H, Hou S, Chen X, Zheng F, Zhan CG. Plant expression of cocaine hydrolase-Fc fusion protein for treatment of cocaine abuse. BMC Biotechnol 2016; 16:72. [PMID: 27756365 PMCID: PMC5069871 DOI: 10.1186/s12896-016-0302-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A recently reported cocaine hydrolase (CocH3) fused with fragment crystallizable (Fc) region of human immunoglobulin G1, denoted as CocH3-Fc, is known as a promising therapeutic candidate for the treatment of cocaine overdose and addiction. A challenge for practical therapeutic use of this enzyme exists in the large-scale protein production and, therefore, it is interesting to identify a low-cost and feasible, sustainable source of CocH3-Fc production. RESULTS CocH3-Fc was transiently expressed in plant Nicotiana benthamiana leaves. The plant-expressed protein, denoted as pCocH3-Fc, was as active as that expressed in mammalian cells both in vitro and in vivo. However, compared to the mammalian-cell expressed CocH3-Fc protein, pCocH3-Fc had a shorter biological half-life, probably due to the lack of protein sialylation in plant. Nevertheless, the in vivo half-life was significantly extended upon the PEGylation of pCocH3-Fc. The Fc fusion did not prolong the biological half-life of the plant-expressed enzyme pCocH3-Fc, but increased the yield of the enzyme expression in the plant under the same experimental conditions. CONCLUSIONS It is feasible to express pCocH3-Fc in plants. Further studies on the pCocH3-Fc production in plants should focus on the development of vectors with additional genes/promoters for the complete protein sialylation and for a better yield.
Collapse
Affiliation(s)
- Guojun Wang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Present address: Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Haifeng Huang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Shurong Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
- Chemoinformatics and Drug Design Core, Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
6
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
7
|
Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine. Biochem J 2013; 453:447-54. [PMID: 23849058 DOI: 10.1042/bj20130549] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min-1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell line expressing BChE or its mutant. In the present study, we successfully developed a stable cell line efficiently expressing the BChE mutant by using a lentivirus-based repeated-transduction method. The scaled-up protein production enabled us to determine for the first time the in vivo catalytic activity and the biological half-life of this high-activity mutant of human BChE in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant (administered to mice 1 min prior to cocaine) can quickly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment.
Collapse
|