1
|
Li H, Lu C, Liu Z, Xiang F, Liu B, Wang H, Chang J, Pan L, Chen Y, Chen J. Advancements in bioscavenger mediated detoxification of organophosphorus poisoning. Toxicol Res (Camb) 2024; 13:tfae089. [PMID: 38863796 PMCID: PMC11163184 DOI: 10.1093/toxres/tfae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Background Organophosphorus compounds, widely used in agriculture and industry, pose a serious threat to human health due to their acute neurotoxicity. Although traditional interventions for organophosphate poisoning are effective, they often come with significant side effects. Objective This paper aims to evaluate the potential of enzymes within biological organisms as organophosphorus bioclearing agents. It analyses the technical challenges in current enzyme research, such as substrate specificity, stereoselectivity, and immunogenicity, while exploring recent advancements in the field. Methods A comprehensive review of literature related to detoxifying enzymes or proteins was conducted. Existing studies on organophosphorus bioclearing agents were summarised, elucidating the biological detoxification mechanisms, with a particular focus on advancements in protein engineering and novel delivery methods. Results Current bioclearing agents can be categorised into stoichiometric and catalytic bioclearing agents, both of which have shown some success in preventing organophosphate poisoning. Technological advancements have significantly improved various properties of bioclearing agents, yet challenges remain, particularly in substrate specificity, stereoselectivity, and immunogenicity. Future research will focus on expanding the substrate spectrum, enhancing catalytic efficiency, prolonging in vivo half-life, and developing convenient administration methods. Conclusion With the progression of clinical trials, bioclearing agents are expected to become widely used as a new generation of therapeutic organophosphate detoxifiers.
Collapse
Affiliation(s)
- Hexi Li
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
- Unit No. 31666 of PLA, 1 New City Courtyard, Jinyang Town, Liangzhou District, Wuwei, Gansu 733000, China
| | - Cong Lu
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
- Unit No. 94347 of PLA, 24 Wenfu Road, Shenhe District, Shenyang, Liaoning 110000, China
| | - Zhenmin Liu
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Fengshun Xiang
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Bo Liu
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Hongjuan Wang
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Jie Chang
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilians, 30 South Central Street, Yangfang Town, Changping District, Beijing 102205, P. R. China
| | - Youwei Chen
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
| | - Jingfei Chen
- Institute of NBC Defence, PLA, ARMY, 1 North Street, Yangfang Town, Changping District, Beijing 102205, China
- Unit No. 32169 of PLA, 100 Shuangyong East Road, Nyingchi, Tibet 860000, China
| |
Collapse
|
2
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
4
|
Corbin JM, Hashimoto BI, Karuppanan K, Kyser ZR, Wu L, Roberts BA, Noe AR, Rodriguez RL, McDonald KA, Nandi S. Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:412. [PMID: 27066048 PMCID: PMC4814504 DOI: 10.3389/fpls.2016.00412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/17/2016] [Indexed: 05/17/2023]
Abstract
An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE.
Collapse
Affiliation(s)
- Jasmine M. Corbin
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Bryce I. Hashimoto
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Kalimuthu Karuppanan
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Zachary R. Kyser
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | | | | | | | - Raymond L. Rodriguez
- Global HealthShare®, Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
| | - Karen A. McDonald
- Chemical Engineering and Materials Science, University of California, DavisDavis, CA, USA
| | - Somen Nandi
- Global HealthShare®, Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- *Correspondence: Somen Nandi
| |
Collapse
|
5
|
Abstract
The number of intoxications from xenobiotics—natural or synthetic foreign chemicals, or substances given in higher doses than typically present in humans—has risen tremendously in the last decade, placing poisoning as the leading external cause of death in the United States. This epidemic has fostered the development of antidotal nanomedicines, which we call “nano-antidotes,” capable of efficiently neutralizing offending compounds in situ. Although prototype nano-antidotes have shown efficacy in proof-of-concept studies, the gap to clinical translation can only be filled if issues such as the clinical relevance of intoxication models and the safety profile of nano-antidotes are properly addressed. As the unmet medical needs in resuscitative care call for better treatments, this Perspective critically reviews the recent progress in antidotal medicine and emerging nanotechnologies.
Collapse
Affiliation(s)
- Vincent Forster
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|