1
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Zhang M, Chen S, Dai Y, Duan T, Xu Y, Li X, Yang J, Zhu X. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food Funct 2021; 12:9912-9921. [PMID: 34486601 DOI: 10.1039/d1fo01579f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspartame (ASP) and sucralose (SUC) are non-nutritive sweeteners which are widely consumed worldwide. They are considered safe for human consumption, but their effects on certain physiological aspects, such as the lifespan or health status, of the organism have not yet been studied in depth and only limited data are available in the literature. The objectives of this study were to evaluate the effects of ASP and SUC on the lifespan and health indexes using Caenorhabditis elegans (C. elegans) as a model system. Interestingly, it was shown that at the concentrations tested, ASP (0.03-3 mg mL-1) showed an increasing trend of the mean lifespan of C. elegans, with a significant increase of 27.6% compared to the control at 3 mg mL-1. Similarly, SUC (ranging from 0.03 to 10 mg mL-1) also significantly increased the mean lifespan by 20.3% and 22.3% at 0.03 and 0.3 mg mL-1, respectively. However, 10 mg mL-1 SUC had a negative effect on the lifespan, though it did not reach a statistically significant level. In addition, ASP and SUC decreased lipofuscin accumulation and transiently improved motility, indicating improved health status. Nonetheless, they had different effects on food intake and intestinal fat deposition (IFD) at different intervals of time. Taken together, our findings revealed that ASP and SUC can prolong the lifespan and improve the health status of C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China.,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Yuhua Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaolin Li
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs district, Shanghai 200135, China
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China. .,Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinqiang Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. .,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Papaevgeniou N, Hoehn A, Tur JA, Klotz LO, Grune T, Chondrogianni N. Sugar-derived AGEs accelerate pharyngeal pumping rate and increase the lifespan of Caenorhabditis elegans. Free Radic Res 2019; 53:1056-1067. [DOI: 10.1080/10715762.2019.1661403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Annika Hoehn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
| | - Josep A. Tur
- Research Group on Nutrition and Oxidative Stress, University of the Balearic Islands and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
4
|
Zheng J, Heber D, Wang M, Gao C, Heymsfield SB, Martin RJ, Greenway FL, Finley JW, Burton JH, Johnson WD, Enright FM, Keenan MJ, Li Z. Pomegranate juice and extract extended lifespan and reduced intestinal fat deposition in Caenorhabditis elegans. INT J VITAM NUTR RES 2019; 87:149-158. [PMID: 31084484 DOI: 10.1024/0300-9831/a000570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pomegranate juice with a high content of polyphenols, pomegranate extract, ellagic acid, and urolithin A, have anti-oxidant and anti-obesity effects in humans. Pomegranate juice extends lifespan of Drosophila melanogaster. Caenorhabditis elegans (C. elegans) (n = 6) compared to the control group in each treatment, lifespan was increased by pomegranate juice in wild type (N2, 56 %, P < 0.001) and daf-16 mutant (daf-16(mgDf50)I) (18 %, P = 0.00012), by pomegranate extract in N2 (28 %, P = 0.00004) and in daf-16(mgDf50)I (10 %, P < 0.05), or by ellagic acid (11 %, P < 0.05). Pomegranate juice reduced intestinal fat deposition (IFD) in C. elegans (n = 10) N2 (-68 %, P = 0.0003) or in the daf-16(mgDf50)I (-33 %, P = 0.0034). The intestinal fat deposition was increased by pomegranate extract in N2 (137 %, P < 0.0138) and in daf-16(mgDf50)I (26 %, P = 0.0225), by ellagic acid in N2 (66 %, P < 0.0001) and in daf-16(mgDf50)I (74 %, P < 0.0001), or by urolithin A in N2 (57 %, P = 0.0039) and in daf-16(mgDf50)I (43 %, P = 0.0001). These effects were partially mediated by the daf-16 pathway. The data may offer insights to human aging and obesity due to homology with C. elegans.
Collapse
Affiliation(s)
- Jolene Zheng
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - David Heber
- 3 Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mingming Wang
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Chenfei Gao
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Steven B Heymsfield
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Roy J Martin
- 4 Department of Nutrition, University of California, Davis, CA, USA
| | - Frank L Greenway
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - John W Finley
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeffrey H Burton
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - William D Johnson
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frederick M Enright
- 5 School of Animal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michael J Keenan
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Zhaoping Li
- 3 Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Zheng J, Gao C, Wang M, Tran P, Mai N, Finley JW, Heymsfield SB, Greenway FL, Li Z, Heber D, Burton JH, Johnson WD, Laine RA. Lower Doses of Fructose Extend Lifespan in Caenorhabditis elegans. J Diet Suppl 2016; 14:264-277. [PMID: 27680107 DOI: 10.1080/19390211.2016.1212959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiological studies indicate that the increased consumption of sugars including sucrose and fructose in beverages correlate with the prevalence of obesity, type-2 diabetes, insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension in humans. A few reports suggest that fructose extends lifespan in Saccharomyces cerevisiae. In Anopheles gambiae, fructose, glucose, or glucose plus fructose also extended lifespan. New results presented here suggest that fructose extends lifespan in Caenorhabditis elegans (C. elegans) wild type (N2). C. elegans were fed standard laboratory food source (E. coli OP50), maintained in liquid culture. Experimental groups received additional glucose (111 mM), fructose (55 mM, 111 mM, or 555 mM), sucrose (55 mM, 111 mM, or 555 mM), glucose (167 mM) plus fructose (167 mM) (G&F), or high fructose corn syrup (HFCS, 333 mM). In four replicate experiments, fructose dose-dependently increased mean lifespan at 55 mM or 111 m Min N2, but decreased lifespan at 555 mM (P < 0.001). Sucrose did not affect the lifespan. Glucose reduced lifespan (P < 0.001). Equal amount of G&F or HFCS reduced lifespan (P < 0.0001). Intestinal fat deposition (IFD) was increased at a higher dose of fructose (555 mM), glucose (111 mM), and sucrose (55 mM, 111 mM, and 555 mM). Here we report a biphasic effect of fructose increasing lifespan at lower doses and shortening lifespan at higher doses with an inverse effect on IFD. In view of reports that fructose increases lifespan in yeast, mosquitoes and now nematodes, while decreasing fat deposition (in nematodes) at lower concentrations, further research into the relationship of fructose to lifespan and fat accumulation in vertebrates and mammals is indicated.
Collapse
Affiliation(s)
- Jolene Zheng
- a Pennington Biomedical Research Center , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - Chenfei Gao
- b School of Nutrition and Food Sciences , Louisiana State University Agriculture Center , Baton Rouge , LA , USA
| | - Mingming Wang
- b School of Nutrition and Food Sciences , Louisiana State University Agriculture Center , Baton Rouge , LA , USA
| | - Phuongmai Tran
- c Department of Biological Sciences, and Department of Chemistry , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - Nancy Mai
- c Department of Biological Sciences, and Department of Chemistry , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - John W Finley
- b School of Nutrition and Food Sciences , Louisiana State University Agriculture Center , Baton Rouge , LA , USA
| | - Steven B Heymsfield
- a Pennington Biomedical Research Center , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - Frank L Greenway
- a Pennington Biomedical Research Center , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - Zhaoping Li
- d Department of Nutrition , University of California , Los Angeles , CA , USA
| | - David Heber
- d Department of Nutrition , University of California , Los Angeles , CA , USA
| | - Jeffrey H Burton
- a Pennington Biomedical Research Center , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - William D Johnson
- a Pennington Biomedical Research Center , Louisiana State University and A & M College , Baton Rouge , LA , USA
| | - Roger A Laine
- c Department of Biological Sciences, and Department of Chemistry , Louisiana State University and A & M College , Baton Rouge , LA , USA
| |
Collapse
|
6
|
Gao C, Gao Z, Greenway FL, Burton JH, Johnson WD, Keenan MJ, Enright FM, Martin RJ, Chu Y, Zheng J. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutr Res 2015; 35:834-43. [PMID: 26253816 PMCID: PMC4561582 DOI: 10.1016/j.nutres.2015.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 12/15/2022]
Abstract
In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1–like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P < .05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P < .05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P < .01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P < .01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P < .01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism.
Collapse
Affiliation(s)
- Chenfei Gao
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA, 70803
| | - Zhanguo Gao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808
| | - Frank L Greenway
- Outpatient unit, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808
| | - Jeffrey H Burton
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808
| | - William D Johnson
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA, 70803
| | - Frederick M Enright
- School of Animal Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA, 70803
| | | | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Global R&D Nutrition, Barrington, IL, 60010
| | - Jolene Zheng
- Bioactive Screening Lab, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808.
| |
Collapse
|
7
|
Otero-Losada M, Cao G, González J, Muller A, Ottaviano G, Lillig C, Capani F, Ambrosio G, Milei J. Functional and morphological changes in endocrine pancreas following cola drink consumption in rats. PLoS One 2015; 10:e0118700. [PMID: 25790473 PMCID: PMC4366068 DOI: 10.1371/journal.pone.0118700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/22/2015] [Indexed: 12/26/2022] Open
Abstract
Aim We report the effects of long-term cola beverage drinking on glucose homeostasis, endocrine pancreas function and morphology in rats. Methods Wistar rats drank: water (group W), regular cola beverage (group C, sucrose sweetened) or “light” cola beverage (group L, artificially sweetened). After 6 months, 50% of the animals in each group were euthanized and the remaining animals consumed water for the next 6 months when euthanasia was performed. Biochemical assays, insulinemia determination, estimation of insulin resistance (HOMA-IR), morphometry and immunohistochemistry evaluations were performed in pancreas. Results Hyperglycemia (16%, p<0.05), CoQ10 (coenzyme-Q10) decrease (−52%,p<0.01), strong hypertriglyceridemia (2.8-fold, p<0.01), hyperinsulinemia (2.4 fold, p<0.005) and HOMA-IR increase (2.7 fold, p<0.01) were observed in C. Group C showed a decrease in number of α cells (−42%, p<0.01) and β cells (−58%, p<0.001) and a moderate increase in α cells’ size after wash-out (+14%, p<0.001). Group L showed reduction in β cells’ size (−9%, p<0.001) and only after wash-out (L12) a 19% increase in size (p<0.0001) with 35% decrease in number of α cells (p<0.01). Groups C and L showed increase in α/β-cell ratio which was irreversible only in C (α/β = +38% in C6,+30% in C12, p<0.001vs.W6). Regular cola induced a striking increase in the cytoplasmic expression of Trx1 (Thioredoxin-1) (2.25-fold in C6 vs. W6; 2.7-fold in C12 vs. W12, p<0.0001) and Prx2 (Peroxiredoxin-2) (3-fold in C6 vs. W6; 2-fold in C12 vs. W12, p<0.0001). Light cola induced increase in Trx1 (3-fold) and Prx2 (2-fold) after wash-out (p<0.0001, L12 vs. W12). Conclusion Glucotoxicity may contribute to the loss of β cell function with depletion of insulin content. Oxidative stress, suggested by increased expression of thioredoxins and low circulating levels of CoQ10, may follow sustained hyperglycemia. A likely similar panorama may result from the effects of artificially sweetened cola though via other downstream routes.
Collapse
Affiliation(s)
- Matilde Otero-Losada
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
- * E-mail:
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Julián González
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Angélica Muller
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Graciela Ottaviano
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Christopher Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald KdöR, Ernst Moritz Arndt Universität, Greifswald, Germany
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Giuseppe Ambrosio
- Università di Perugia, Cardiologia e Fisiopatologia Cardiovascolare, Perugia, Italy
| | - José Milei
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 2015; 200:167-84. [PMID: 25762526 DOI: 10.1534/genetics.115.174631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.
Collapse
|
9
|
Lemieux GA, Ashrafi K. Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 2014; 50:69-84. [PMID: 25228063 DOI: 10.3109/10409238.2014.959890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C. elegans provides a genetically tractable system for deciphering the homeostatic mechanisms that underlie fat regulation in intact organisms. Here, we provide an overview of the recent advances in the C. elegans fat field with particular attention to studies of C. elegans lipid droplets, the complex links between lipases, autophagy, and lifespan, and analyses of key transcriptional regulatory mechanisms that coordinate lipid homeostasis. These studies demonstrate the ancient origins of mammalian and C. elegans fat regulatory pathways and highlight how C. elegans is being used to identify and analyze novel lipid pathways that are then shown to function similarly in mammals. Despite its many advantages, study of fat regulation in C. elegans is currently faced with a number of conceptual and methodological challenges. We critically evaluate some of the assumptions in the field and highlight issues that we believe should be taken into consideration when interpreting lipid content data in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California , San Francisco, CA , USA
| | | |
Collapse
|