1
|
Ibrahim AA, Khan T, Nowlin K, Averitt J, Pathiraja G, LaJeunesse D, Obare SO, Dellinger AL. A rapid one-step synthesis of silver and copper coordinated chlorine functionalized fullerene nanoparticles with enhanced antibacterial activity. NANOSCALE ADVANCES 2024:d4na00732h. [PMID: 39507748 PMCID: PMC11533167 DOI: 10.1039/d4na00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Nanoparticle modification demonstrates a remarkable synergetic effect in combating bacteria, particularly resistant bacteria, enhancing their efficacy by simultaneously targeting multiple cellular pathways. This approach positions them as a potent solution against the growing challenge of antimicrobial-resistant (AMR) strains. This research presents an investigation into the synthesis, characterization, and antibacterial evaluation of silver-coordinated chloro-fullerenes nanoparticles (Ag-C60-Cl) and copper-coordinated chloro-fullerenes nanoparticles (Cu-C60-Cl). Utilizing an innovative, rapid one-step synthesis approach, the nanoparticles were rigorously characterized using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometer (SEM-EDS), High-Resolution Transmission Electron Microscopy (HR-TEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Raman spectroscopy. In conjunction with the analytical techniques, a computational approach was utilized to corroborate the findings from Raman spectroscopy as well as the surface potential of these nanoparticles. Moreover, the antibacterial activities of the synthesized nanoparticles were assessed against Escherichia coli (E. coli) and Methicillin-Resistant Staphylococcus aureus (MRSA). These findings demonstrated that the synthesized Ag-C60-Cl and Cu-C60-Cl nanoparticles exhibited minimum inhibitory concentrations (MIC) of 3.9 μg mL-1 and 125 μg mL-1, respectively. Reactive oxygen species (ROS) quantification, catalase assay, and efflux pump inhibition results revealed promising broad-spectrum antibacterial effects.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Tariq Khan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Jared Averitt
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| | - Anthony L Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
- Kepley Biosystems Incorporated Greensboro NC 27214 USA
- AT Research Partners Burlington NC 27217 USA
| |
Collapse
|
2
|
Lokolkar M, Udnoor A, Ali MS, Katrahalli U, Kalasad MN, Al-Lohedan HA, Hadagali MD. Investigations on the complexation and binding mechanism of bovine serum albumin with Ag-doped TiO 2 nanoparticles. Phys Chem Chem Phys 2024; 26:26453-26464. [PMID: 39392120 DOI: 10.1039/d4cp02056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
It is essential to study the interactions between nanoparticles and proteins to better understand the biological interactions of nanoparticles. In this study, we studied the protein adsorption mode on the surface of Ag-doped TiO2 nanoparticles (NPs) using a model protein, bovine serum albumin (BSA). The mechanism of binding BSA to the Ag-doped TiO2 NPs was studied by applying fluorescence quenching, absorbance measurements, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy techniques. The strong binding between BSA and Ag-doped TiO2 NPs was confirmed by a high value of binding constant (K = 2.65 × 105 L mol-1). We also studied the thermal stability of BSA in the presence of the Ag-doped TiO2 NPs. Thermodynamic parameters indicated that the adsorption of BSA on the Ag-doped TiO2 NPs was a spontaneous, natural and exothermic process. The effect of Ag-doped TiO2 NPs on the transportation function of BSA was also studied using a fluorescence spectroscopic technique. Fluorescence spectroscopic data suggested the existence of a strong interaction between BSA and the surface of the Ag-doped TiO2 NPs, which indicated that the binding affinities of some selected amino acids in BSA changed. This, in turn, clearly confirms that the Ag-doped TiO2 NPs affect the transportation capability of BSA in blood.
Collapse
Affiliation(s)
- Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi - 590003, Karnataka, India
| | - Abhishek Udnoor
- University of Chemistry and Chemical Technology, Technická 5, 160 00 Praha, Czech Republic
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bengaluru 560 004, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangotri, Davangere 577007, Karnataka, India
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Rokicka-Konieczna P, Morawski AW. Photocatalytic Bacterial Destruction and Mineralization by TiO 2-Based Photocatalysts: A Mini Review. Molecules 2024; 29:2221. [PMID: 38792082 PMCID: PMC11123885 DOI: 10.3390/molecules29102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.
Collapse
Affiliation(s)
- Paulina Rokicka-Konieczna
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | | |
Collapse
|
4
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Gurunathan S, Thangaraj P, Das J, Kim JH. Antibacterial and antibiofilm effects of Pseudomonas aeruginosa derived outer membrane vesicles against Streptococcus mutans. Heliyon 2023; 9:e22606. [PMID: 38125454 PMCID: PMC10730581 DOI: 10.1016/j.heliyon.2023.e22606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious and most urgent global threat to human health. AMR is one of today's biggest difficulties in the health system and has the potential to harm people at any stage of life, making it a severe public health issue. There must be fewer antimicrobial medicines available to treat diseases given the rise in antibiotic-resistant organisms. If no new drugs are created or discovered, it is predicted that there won't be any effective antibiotics accessible by 2050. In most cases, Streptococcus increased antibiotic resistance by forming biofilms, which account for around 80 % of all microbial infections in humans. This highlights the need to look for new strategies to manage diseases that are resistant to antibiotics. Therefore, development alternative, biocompatible and high efficacy new strategies are essential to overcome drug resistance. Recently, bacterial derived extracellular vesicles have been applied to tackle infection and reduce the emergence of drug resistance. Therefore, the objective of the current study was designed to assess the antibacterial and antibiofilm potential of outer membrane vesicles (OMVs) derived from Pseudomonas aeruginosa againstStreptococcus mutans. According to the findings of this investigation, the pure P. aeruginosa outer membrane vesicles (PAOMVs) display a size of 100 nm. S. mutans treated with PAOMVs showed significant antibacterial and antibiofilm activity. The mechanistic studies revealed that PAOMVs induce cell death through excessive generation of reactive oxygen species and imbalance of redox leads to lipid peroxidation, decreased level of antioxidant markers including glutathione, superoxide dismutase and catalase. Further this study confirmed that PAOMVs significantly impairs metabolic activity through inhibiting lactate dehydrogenase activity (LDH), adenosine triphosphate (ATP) production, leakage of proteins and sugars. Interestingly, combination of sub-lethal concentrations of PAOMVs and antibiotics enhances cell death and biofilm formation of S. mutans. Altogether, this work, may serve as an important basis for further evaluation of PAOMVs as novel therapeutic agents against bacterial infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Joydeep Das
- Department of Chemistry, Mizoram University, Aizawl, 796 004, Mizoram, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
6
|
Dieplinger J, Moser C, König G, Pinto JT, Paudel A. Investigation of the Impact of Saccharides on the Relative Activity of Trypsin and Catalase after Droplet and Spray Drying. Pharmaceutics 2023; 15:2504. [PMID: 37896264 PMCID: PMC10609839 DOI: 10.3390/pharmaceutics15102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
While using saccharides as stabilizers for therapeutic protein drying is common, the mechanisms underlying the stabilization during drying remain largely unexplored. Herein, we investigated the effect of different saccharides, trehalose dihydrate (TD), dextran (DEX), and hydroxypropyl β-cyclodextrins (low substitution-HP and high substitution-HPB), on the relative activities of the enzymes trypsin and catalase during miniaturized drying (MD) or spray drying (SD). For trypsin, the presence of saccharides, especially HP, was beneficial, as it significantly improved the enzyme activity following MD. The HPB preserved trypsin's activity during MD and SD. Adding saccharides during MD did not show a notable improvement in catalase activities. Increasing TD was beneficial during the SD of catalase, as indicated by significantly increased activity. Molecular docking and molecular dynamics simulations oftrypsin with HP or HPB revealed the influence of their substitution on the binding affinity for the enzyme. A higher affinity of HP to bind trypsin and itself was observed during simulations. Experimentally, activity reduction was mainly observed during MD, attributable to the higher droplet temperature during MD than during SD. The activities from the experiments and aggregation propensity from molecular modeling helped elucidate the impact of the size of protein and saccharides on preserving the activity during drying.
Collapse
Affiliation(s)
- Johanna Dieplinger
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| | - Christina Moser
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
| | - Gerhard König
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
| | - Joana T. Pinto
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| | - Amrit Paudel
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
7
|
Guo LK, Yang L, Cui S, Sun Z, Li XT, Wang YC, Li YC, Ren YX. Positive responses and mechanisms of nitrifying sludge to carbon quantum dots: reactor performance, microbial behavior, and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91095-91107. [PMID: 37468779 DOI: 10.1007/s11356-023-28763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Extensive application of carbon quantum dots (CQDs) enlarges its concentration in sewage treatment system. The response of nitrifying sludge to CQDs after long-term exposure was investigated. Results showed that CQD concentrations of 0-100 mg/L presented positive effect to enzymes involved in nitrification, accelerating NH4+-N degradation and NO2--N transformation. The oxidation rate of NO2--N was significantly improved from 3.14 to 7.91 mg/(L h) under the stress of 100 mg/L CQDs. Besides, CQDs stimulated the production of sludge biomass and kept the stability of sludge settleability. Additionally, CQDs were mainly captured by loosely bound extracellular polymeric substances, reducing aromatic-like protein. Microbes alleviated CQD stress by secreting tryptophan-like protein and polysaccharides. After few CQDs entered cells, intracellular antioxidant defense was activated. Total antioxidant capacity level was heightened at least 31%. The activities of superoxide dismutase and catalase were enhanced at relatively low and high CQD concentration levels. Hence, microbial metabolic pathways, microbial community, and nitrifying bacteria were not significantly affected by CQDs. The findings of this work provide new insight for understanding the environmental implication of CQDs in the biological treatment system.
Collapse
Affiliation(s)
- Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Sun
- China Construction Third Bureau Group Co. LTD., Xi'an, 710065, China
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu-Chao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu-Cai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Udnoor A, Lokolkar M, Yallur BC, Kale R, Kalasad MN, Katrahalli U, Manjunatha DH. Monitoring the interactions between bovine serum albumin and ZnO/Ag nanoparticles by spectroscopic techniques. J Biomol Struct Dyn 2023; 41:352-365. [PMID: 34821210 DOI: 10.1080/07391102.2021.2006788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inducing the bio-functionalization in noble metal nanoparticles like gold, silver, zinc is very important to accomplish their biocompatibility in biological activities. These metal nanoparticles are being rigorously used in bio-sensing tools keeping their remarkable properties in mind. Amongst the serum albumins, the most ample proteins in plasma are bovine serum albumin and human serum albumin. A broad variety of physiological functions of bovine serum albumin has made it a model protein for bio-functionalization. In the present study, ZnO/Ag nanoparticles were synthesized and characterized by SEM and XRD techniques and the interaction between bovine serum albumin and ZnO/Ag nanoparticles was evaluated by employing ultra-violet, steady state fluorescence, circular dichroism and FTIR spectroscopic techniques. Upon the excitation of bovine serum albumin, ZnO/Ag nanoparticles appreciably reduced the intrinsic fluorescence intensity of bovine serum albumin. The number of binding locations and apparent binding constants at different temperatures were calculated by the fluorescence quenching method. Static mechanism of quenching and conformational modifications in bovine serum albumin were also found.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Udnoor
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Manjunath Lokolkar
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Basappa C Yallur
- Department of Chemistry, MS Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | - Raju Kale
- PG Department of Chemistry, The Maratha Mandal Degree College, Belagavi, Karnataka, India
| | - Muttanagoud N Kalasad
- Department of Studies in Physics, Davangere University, Shivagangothri, Davangere, Karnataka, India
| | - Umesha Katrahalli
- PG Department of Chemistry, Vijaya College, Bangalore, Karnataka, India
| | | |
Collapse
|
9
|
Faramarzi H, Department of Community Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Iran, Chaleshtori S, Zolghadri S, Beheshtroo M, Faramarzi A, Shafiee SM, Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran;, Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran;, Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz Iran;. Ferric oxide nanoparticles administration suppresses isoniazid induced oxidative stress in the rat brain tissue. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Homolak J. In vitro analysis of catalase and superoxide dismutase mimetic properties of blue tattoo ink. Free Radic Res 2022; 56:343-357. [PMID: 35848745 DOI: 10.1080/10715762.2022.2102976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Tattoo inks are comprised of different combinations of bioactive chemicals with combined biological effects that are insufficiently explored. Tattoos have been associated with oxidative stress; however, a recent N-of-1 study suggested that blue tattoos may be associated with suppressed local skin oxidative stress. The present study aimed to explore the attributes of the blue tattoo ink (BTI) that may explain its possible effects on redox homeostasis, namely the catalase (CAT) and superoxide dismutase (SOD)-mimetic properties that have been reported for copper(II) phthalocyanine (CuPC) - the main BTI constituent. Intenze™ Persian blue (PB) BTI has been used in the experiment. CAT and SOD-mimetic properties of PB and its pigment-enriched fractions were analyzed using the carbonato-cobaltate (III) formation-derived H2O2 dissociation and 1,2,3-trihydroxybenzene autoxidation rate assays utilizing simple buffers and biochemical matrix of normal skin tissue as chemical reaction environments. CuPC-based tattoo ink PB and both its blue and white pigment-enriched fractions demonstrate CAT and SOD-mimetic properties in vitro with effect sizes demonstrating a substantial dependence on the biochemical environment. PB constituents act as inhibitors of CAT but potentiate its activity in the biochemical matrix of the skin. CuPC-based BTI can mimic antioxidant enzymes, however chemical constituents other than CuPC (e.g. the photoreactive TiO2) seem to be at least partially responsible for the BTI redox-modulating properties.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
The Benefits of Using Saccharose for Photocatalytic Water Disinfection. Int J Mol Sci 2022; 23:ijms23094719. [PMID: 35563110 PMCID: PMC9101646 DOI: 10.3390/ijms23094719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the characteristics of saccharose (sucrose)-modified TiO2 (C/TiO2) photocatalysts obtained using a hydrothermal method at low temperature (100 °C) are presented. The influence of C/TiO2 on survivability and enzyme activity (catalase and superoxide dismutase) of Gram-negative bacteria Escherichia coli (ATCC 29425) and Gram-positive bacteria Staphylococcus epidermidis (ATCC 49461) under UV-A and artificial solar light (ASL) were examined. The obtained TiO2-1%-S-100 photocatalysts were capable of total E. coli and S. epidermidis inactivation under ASL irradiation in less than 1 h. In addition, the impacts of sugars on the photocatalytic activity and disinfection performance are discussed.
Collapse
|
12
|
Baniamerian H, Ghofrani-Isfahani P, Tsapekos P, Alvarado-Morales M, Shahrokhi M, Angelidaki I. Multicomponent nanoparticles as means to improve anaerobic digestion performance. CHEMOSPHERE 2021; 283:131277. [PMID: 34182648 DOI: 10.1016/j.chemosphere.2021.131277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3-TiO2, and NiO-TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2-CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated TiO2 with both metals. For instance, the hydrolysis rate was increased up to 54% at Fe2O3-TiO2 and at a concentration of 23.5 mg/L for NiO-TiO2 it was increased up to 58%, while higher dosage suppressed the hydrolytic activity. Experimental results revealed that low dosages of NiO-TiO2 increased the accumulated methane production up to 24% probably by increasing the enzymatic activity of acetoclastic methanogenesis. NiO-TiO2 showed positive effect on batch and continuous AD of biopulp and improved methane yield up to 8%.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Parisa Ghofrani-Isfahani
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mohammad Shahrokhi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
13
|
Effect of APTES modified TiO 2 on antioxidant enzymes activity secreted by Escherichia coli and Staphylococcus epidermidis. Biochem Biophys Res Commun 2020; 534:1064-1068. [PMID: 33092791 DOI: 10.1016/j.bbrc.2020.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022]
Abstract
In this work, the impact of APTES-modified TiO2 photocatalysts on antioxidant enzymes (catalase and superoxide dismutase) activity secreted by bacteria was presented. Microbial tests has been examined using Escherichia coli (ATCC 29425) and Staphylococcus epidermidis (ATCC 49461) as model organisms. It was found that APTES-TiO2 affected the activity of antioxidant enzymes. Additionally, obtained APTES-TiO2 photocatalysts were capable of total E. coli and S. epidermidis inactivation under artificial solar light irradiation. The sample modified with the concentration of APTES equals 300 mM (TiO2-4h-120°C-300mM) showed the strongest photocatalytic activity toward both bacteria species. The two-stage photocatalytic mechanism of bacteria response to photocatalysts was proposed.
Collapse
|
14
|
Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev 2019; 48:5381-5407. [PMID: 31495856 DOI: 10.1039/c9cs00309f] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-growing use of inorganic nanoparticles (NPs) in biomedicine provides an exciting approach to develop novel imaging and drug delivery systems, owing to the ease with which these NPs can be functionalized to cater to various applications. In cancer therapeutics, nanomedicine generally relies on the enhanced permeability and retention (EPR) effect observed in tumour vasculature to deliver anti-cancer drugs across the endothelium. However, such a phenomenon is dependent on the tumour microenvironment and is not consistently observed in all tumour types, thereby limiting drug transport to the tumour site. On the other hand, there is a rise in utilizing inorganic NPs to intentionally induce endothelial leakiness, creating a window of opportunity to control drug delivery across the endothelium. While this active targeting approach creates a similar phenomenon compared to the EPR effect arising from tumour tissues, its drug delivery applications extend beyond cancer therapeutics and into other vascular-related diseases. In this review, we summarize the current findings of the EPR effect and assess its limitations in the context of anti-cancer drug delivery systems. While the EPR effect offers a possible route for drug passage, we further explore alternative uses of NPs to create controllable endothelial leakiness within short exposures, a phenomenon we coined as nanomaterial-induced endothelial leakiness (NanoEL). Furthermore, we discuss the main mechanistic features of the NanoEL effect that make it unique from conventionally established endothelial leakiness in homeostatic and pathologic conditions, as well as examine its potential applicability in vascular-related diseases, particularly cancer. Therefore, this new paradigm changes the way inorganic NPs are currently being used for biomedical applications.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simin khataee, Dehghan G, Rashtbari S, Yekta R, Sheibani N. Synergistic inhibition of catalase activity by food colorants sunset yellow and curcumin: An experimental and MLSD simulation approach. Chem Biol Interact 2019; 311:108746. [DOI: 10.1016/j.cbi.2019.108746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 11/26/2022]
|
16
|
Mousavi M, Hakimian S, Mustafa TA, Aziz FM, Salihi A, Ale-Ebrahim M, Mirpour M, Rasti B, Akhtari K, Shahpasand K, Abou-Zied OK, Falahati M. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies. Int J Nanomedicine 2019; 14:5355-5368. [PMID: 31409992 PMCID: PMC6643057 DOI: 10.2147/ijn.s210136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Aim Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. Methods In the present study, the interaction of SiO2 NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. Results Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs. Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). Conclusion The current results suggest that low concentrations of SiO2 NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.
Collapse
Affiliation(s)
- Mina Mousavi
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Hakimian
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Twana Ahmed Mustafa
- Department of Medical Laboratory Technology, Health Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Lee JW, Lee JW, Kim K, Shin YJ, Kim J, Kim H, Kim H, Min SA, Kim P, Choi K, Park K. n-Butyl acrylate-induced antioxidant system alteration through two generations in Oryzias latipes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:873-883. [PMID: 30387033 DOI: 10.1007/s10695-018-0584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
n-Butyl acrylate (nBA) is one of acrylate esters which has been applied to diverse industrial fields. For unveiling of xeno-estrogenic effects and oxidative stress induction by nBA under two-generational exposure regimen (17 weeks), the biomarkers relevant to an estrogenic effect and oxidative stress were analyzed. Acute toxicity value of nBA in Oryzias latipes was 7.2 mg/L (96 h-LC50). Over exposure time, the significant transcriptional change of cytochrome P450 19A (CYP19A) and vitellogenin 1/2 (VTG1/2) was not observed (one-way ANOVA, P < 0.05), meaning no estrogenic effect of nBA. Significant reduction of glutathione (GSH) content was observed in F0 male and female fish, while in F1 male, the content was increased (P < 0.05). Catalase (CAT) activity of male fish showed the significant decrease in both F0 and F1 fish, showing multi-generational suppressing effect of nBA on CAT activity. But in case of reactive oxygen species (ROS), expression level and glutathione S-transferase (GST) activity were not modulated in response to nBA. These findings suggest that nBA could affect an antioxidant system alteration through GSH depletion and inhibition of CAT activity which could be transferred to the next generation, whereas xeno-estrogenic effect would be questionable.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Jae-Woo Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Kyungtae Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Yu-Jin Shin
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Jieun Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Hokyun Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Heejung Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Su-A Min
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Pilje Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Kyunghee Choi
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea
| | - Kyunghwa Park
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research (NIER), Incheon, 404-708, Republic of Korea.
| |
Collapse
|
18
|
Zhang H, Zhang T, Wang Y. Mechanistic understanding and binding analysis of two-dimensional MoS 2 nanosheets with human serum albumin by the biochemical and biophysical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:18-25. [PMID: 30502580 DOI: 10.1016/j.saa.2018.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
With the advent of molybdenum disulfide nanosheets (MoS2 NSs) for biological applications, their complex interactions with human serum albumin (HSA) need to be understood in great detail for the molecular mechanisms of protein structure and activity. It was observed that MoS2 NSs quench the intrinsic fluorescence of HSA as a consequence of ground-state complex formation by the electron transfer, van der Waals, and hydrophobic forces. The presence of MoS2 NSs partly altered the conformation of HSA and destroyed the binding domain of HSA with bilirubin. In addition, MoS2 NSs can decrease the rate of the formation of beta sheet structures of HSA, reduce the non-enzymatic glycosylation, and increase the esterase-like activity of HSA. We hope that the present study will be helpful to understand the fundamental interactions of the two-dimensional materials with various biomacromolecules in human blood.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224007, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
19
|
Touaylia S, Labiadh H. Effect of the exposure to Mn-doped ZnS nanoparticles on biomarkers in the freshwater western mosquitofish Gambusia affinis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:60-70. [PMID: 30122067 DOI: 10.1080/09603123.2018.1508648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Synthesized Mn-doped ZnS nanoparticles, with 10% of Mn dopant, were used to investigate their environmental toxicity. Mn-doped ZnS quantum dots (QDs) stabilized by 3-mercaptopropionic acid (MPA) were synthesized in a basic aqueous solution using the nucleation doping. The optical properties and structure of the obtained Mn (10%):ZnS QDs have been characterized by X-ray diffraction, UV-vis, photoluminescence spectroscopies and transmission electron microscopy. The brain, gills and liver stained sections from Gambusia affinis were dissected. Antioxidant enzyme activities (acetylcholinesterase and catalase), as well as malondialdehyde and H2O2 levels, were determined after exposure (94 h) to 14 and 28 mg/L of nanoparticles. The obtained nearly monodisperse Mn(10%):ZnS@MPA QDs have an average diameter of ca. 2.8 nm and a zinc-blende crystal structure. Mn-doped ZnS acts differently on the activities of the biomarkers in a dose-dependent manner. The recorded alterations varied between organs. Such findings provide information on the biological target of nanoparticles and their behaviour within the environment.
Collapse
Affiliation(s)
- Samir Touaylia
- a Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte , Universite de Carthage , Bizerte , Tunisia
| | - Houcine Labiadh
- b Laboratoire de synthèse et structure des nanomatériaux , Université de Carthage , Bizerte , Tunisie
| |
Collapse
|
20
|
Hao X, Zhang L, Zheng X, Zong W, Liu C. Molecular mechanism of composite nanoparticles TiO 2 /WO 3 /GO-induced activity changes of catalase and superoxide dismutase. Chem Biol Interact 2018; 292:30-36. [PMID: 29935966 DOI: 10.1016/j.cbi.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/25/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
21
|
Pudlarz AM, Czechowska E, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Appl Biochem Biotechnol 2018; 185:717-735. [PMID: 29299755 DOI: 10.1007/s12010-017-2682-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/19/2017] [Indexed: 01/20/2023]
Abstract
Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis. After immobilization on gold nanoparticles, recombinant catalase activity was found to be lower than that of the same amount of enzyme in aqueous solution. However, after 10 days of storage at room temperature, the activity of catalase immobilized on gold nanoparticles (AuNPs) of 13 and 20 nm and coverage of 133% was 68 and 83% greater than catalase in aqueous solution, respectively. During 10 days of experiment, percentage activity of catalase immobilized on those gold nanoparticles was higher in comparison to CAT in aqueous solution. Catalase immobilized on silver nanoparticles did not lose activity as significantly as catalase immobilized on AuNPs. Those results confirm the ability to produce recombinant human enzymes in a bacterial expression system and its potential use while immobilized on silver or gold nanoparticles.
Collapse
Affiliation(s)
- Agnieszka Małgorzata Pudlarz
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Ewa Czechowska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
22
|
Wu Y, Zhang H, Wang Y. Conformational and functional changes of bovine serum albumin induced by TiO2 nanoparticles binding. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Wu Q, Wan J, He Z, Liu R. Spectroscopic investigations on the conformational changes of lysozyme effected by different sizes of N-acetyl-l-cysteine-capped CdTe quantum dots. J Biochem Mol Toxicol 2017; 31. [PMID: 28902442 DOI: 10.1002/jbt.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 11/11/2022]
Abstract
The effect of N-acetyl-l-cysteine-capped CdTe quantum dots (NAC-CdTe QDs) with different sizes on lysozyme was investigated by isothermal titration calorimetry (ITC), enzyme activity assays, and multi-spectroscopic methods. ITC results proved that NAC-CdTe QDs can spontaneously bind with lysozyme and hydrophobic force plays a major role in stabilizing QDs-lysozyme complex. Multi-spectroscopic measurements revealed that NAC-CdTe QDs caused strong quenching of the lysozyme's fluorescence in a size-dependent quenching manner. Moreover, the changes of secondary structure and microenvironment in lysozyme caused by the NAC-CdTe QDs were higher with a bigger size. The results of enzyme activity assays showed that the interaction between lysozyme and NAC-CdTe QDs inhibited the activity of lysozyme and the inhibiting effect was in a size-dependent manner. Based on these results, we conclude that NAC-CdTe QDs with larger particle size had a larger impact on the structure and function of lysozyme.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Zhuo He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| |
Collapse
|
24
|
Hidouri S, Yohmes MB, Landoulsi A. Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes. Bioprocess Biosyst Eng 2016; 39:1635-44. [PMID: 27287758 DOI: 10.1007/s00449-016-1639-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/05/2016] [Indexed: 01/25/2023]
Abstract
Living cells interact with different forms of metal; the resulted biochemical alteration depends on the dose. Over an average dose in ionic form, metals interact with respiration processes at various levels, and it induces oxidative stress by shifting the whole oxydoreduction equilibrium. To correct the toxicity, cell develops different ways to cancel the effect of the exceeded charges, and it reduces the ion to get a more stable form. In the case of nanoparticles, the reactivity of surface has been enhanced that can alter the biological mechanisms; the cell may develop different strategies to minimize this reactivity. The current study is focused on the pursuing of cell behavior regarding the presence of nanoparticles and their associated metals. Nanoparticles have been synthesized using bio-reducing agents and then were structurally characterized using X-ray diffraction, UV-Vis, and infra-red spectroscopy. The oxydoreduction flexibility of the post-synthesis modified nanoparticles was tested in vitro. Interactions with cells were done using Salmonella under various respiration conditions. The final results show the possible correction of oxidative stress effects and the recuperation of respiration.
Collapse
Affiliation(s)
- Slah Hidouri
- Laboratory of Biochemistry and Molecular Biology, Department of Research, Faculty of Sciences of Bizerta, Carthage University, 7021, Jarzouna, Tunisia.
| | - Mannoubia Ben Yohmes
- Laboratory of Biochemistry and Molecular Biology, Department of Research, Faculty of Sciences of Bizerta, Carthage University, 7021, Jarzouna, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Department of Research, Faculty of Sciences of Bizerta, Carthage University, 7021, Jarzouna, Tunisia
| |
Collapse
|
25
|
Wang Y, Zhang H, Kang Y, Cao J. Effects of perfluorooctane sulfonate on the conformation and activity of bovine serum albumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:66-73. [DOI: 10.1016/j.jphotobiol.2016.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
26
|
|
27
|
Zhang H, Wu P, Zhu Z, Wang Y. Interaction of γ-Fe₂O₃ nanoparticles with fibrinogen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:40-47. [PMID: 26123604 DOI: 10.1016/j.saa.2015.06.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
In this article, an attempt is made to analysis the binding mechanism of γ-Fe2O3 nanoparticles with fibrinogen by using a combination of circular dichroism, UV-vis, fluorescence spectroscopic and computational methods. The multi-spectroscopic data revealed that the complex easily formed between γ-Fe2O3 nanoparticles and fibrinogen by mainly hydrogen bonding forces. The binding constants of fibrinogen with γ-Fe2O3 nanoparticles were 2.24×10(7), 1.15×10(7) and 0.72×10(7)Lmol(-1) at 298, 304, and 310K, respectively. Furthermore, the results from circular dichroism, UV-vis, synchronous fluorescence, and three-dimensional fluorescence studies showed that the strong binding interaction of γ-Fe2O3 nanoparticles with fibrinogen induced an obvious perturbation in the protein secondary and tertiary structure. Moreover, the results of molecular modeling indicated the existence of the preferable binding site on fibrinogen for γ-Fe2O3 NPs model.
Collapse
Affiliation(s)
- Hongmei Zhang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Peirong Wu
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Zhaohua Zhu
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Yanqing Wang
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|